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the River-Influenced West-Central
Bay of Bengal
Thejasino Suokhrie* , Rajeev Saraswat and Rajiv Nigam
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The huge riverine influx and associated processes decrease the ambient salinity, stratify
the water column, modulate the oxygen-deficient zone, and are also responsible for the
recent acidification in the Bay of Bengal. Here, we have studied the effect of these
riverine influx-dominated ecological parameters on living benthic foraminifera in the
west-central Bay of Bengal. We report that the pH below 7.6 in front of the Krishna
river, reduces the diversity and the richness of living benthic foraminifera on the adjacent
shelf and the slope. A similar decreased diversity and richness is also observed in
front of the Godavari River. We delineate three prominent assemblages, representing
different depth zones with associated distinct physico-chemical conditions. The shallow
water assemblage (∼27–100 m) is represented by Nonionella labradorica, Hanzawaia
nipponica, Brizalina dilatata, Ammonia tepida, and Nonionella limbato-striata. These
species are adapted to relatively warmer temperatures and more oxygenated waters.
The deepwater assemblage (∼1,940–2,494 m) includes Bulimina cf. delreyensis,
Bulimina marginata, Hormosinella guttifera, Cassidulina laevigata, and Gyroidinoides
subzelandica and can tolerate a relatively colder temperature. The intermediate-
depth assemblage (∼145–1,500 m) dominated by Eubuliminella exilis, Bolivinellina
earlandi, Fursenkoina spinosa, Bolivinellina lucidopunctata, Globobulimina globosa,
Fursenkoina spinosa, Eubuliminella cassandrae, Uvigerina peregrina, Rotaliatinopsis
semiinvoluta, and Cassidulina laevigata, represents oxygen-deficient and organic
carbon-rich environment. Besides the pH, temperature, dissolved oxygen and organic
matter, we also report a strong influence of bathymetry, coarse fraction (CF) and the
type of organic matter on a few living benthic foraminifera. The ecological preferences of
40 such dominant living benthic foraminifera, each representing a specific environment,
have also been reported for site-specific proxy. We conclude that although the huge
riverine influx affects living benthic foraminifera on the shelf, the dissolved oxygen
and organic carbon mostly control benthic foraminiferal distribution in the deeper
west-central Bay of Bengal.
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INTRODUCTION

The huge riverine influx creates a unique environment in
the Bay of Bengal. A few of the world’s largest snow and
rainfall-fed rivers (Irrawaddy, Ganga, Brahmaputra, Mahanadi,
Krishna, and Godavari) drain freshwater and sediments into
the Bay of Bengal, creating a specific environment with
associated physical and chemical parameters. The riverine
influx reduces the salinity, warms the seawater and creates
strong stratification (Sengupta et al., 2006). The associated
sediment influx contributes enormous nutrients, sustaining
the primary productivity (Prasanna Kumar et al., 2002). In
addition to the riverine influx, the anthropogenic input (sulfate
and nitrogen aerosols) to the Bay of Bengal significantly
affects its biogeochemistry (Sarma et al., 2016). Therefore,
the riverine influx primarily modulates the ambient physico-
chemical conditions in the northern Bay of Bengal. Additionally,
the dissolved oxygen, a critical requirement of a large fraction
of marine biota, is also perennially low at the Bay of Bengal’s
intermediate depths (Sarma et al., 2013). As suggested by the
acidification and a possibility of the bay turning into the foremost
nitrogen contributor soon (Bristow et al., 2017), the increasing
stress implies that it is essential to understand the effect of these
critical ecological parameters on the marine biota.

Benthic foraminifera are the dominant marine biota in the
continental margin sediments and are the primary component
of the global carbon cycling. The large abundance, combined
with the sensitivity to the ambient conditions and long-term
preservation in sediments, makes benthic foraminifera a
widely used proxy to reconstruct paleoceanographic changes
(Saraswat, 2015; Saraswat et al., 2017). The precise knowledge
of the influence of ambient environmental parameters on
abundance and distribution, is a prerequisite to use benthic
foraminiferal characteristics for paleoceanographic and
paleoclimatic interpretation (Murray, 2001; Gooday, 2003;
Jorissen et al., 2007; Gooday and Jorissen, 2012; Saraswat and
Nigam, 2013). Various environmental parameters, including
food, oxygen concentration, salinity, pH, temperature, substrate,
water depth and others, influence the diversity and abundance
of benthic foraminifera (Lutze and Coulbourn, 1984; Kaminski
et al., 1988; Altenbach, 1992; Mackensen et al., 1995; Gooday
and Rathburn, 1999; Van der Zwaan et al., 1999; Ernst et al.,
2002; Altenbach et al., 2003; Lei et al., 2017, 2019). The relative
influence of various factors on faunal distribution, however,
varies from region to region. The salinity and temperature are
the major factors in riverine influx dominated continental shelves
(Manasa et al., 2016). However, the deeper depth continental
slope assemblages are mainly controlled by the availability of
food and dissolved oxygen concentration (Gooday, 1986; Corliss
and Chen, 1988; Mackensen and Douglas, 1989; Corliss and
Emerson, 1990; Barmawidjaja et al., 1992; Jorissen et al., 1992;
Rosoff and Corliss, 1992; Rathburn and Corliss, 1994; Nisha
and Singh, 2012; Singh et al., 2015a, 2018; Verma et al., 2018).
Benthic foraminiferal abundance, diversity, species richness
and evenness also depend on ambient conditions (Gibson and
Buzas, 1973; Buzas and Culver, 1991; Murray, 2006; Singh
et al., 2015a,b). The overall benthic foraminiferal abundance

and diversity decreases, whereas the abundance of abnormal
or stress-tolerant specimen increases, under both naturally and
anthropogenically stressed environment (Alve, 1995; Saraswat
et al., 2004; Nigam et al., 2007). As the extent of stress varies
regionally, the benthic foraminiferal response has to be assessed
from different regions.

The fossil benthic foraminiferal assemblage is often biased by
the biological and taphonomical processes, including transport,
test disintegration or dissolution (Murray, 1991; Jorissen and
Wittling, 1999; Berkeley et al., 2014). Therefore, living benthic
foraminifera (rose-Bengal stained) provide a comparatively more
reliable response to the ecological conditions. The previous
studies on the distribution and ecology of living benthic
foraminifera (rose-Bengal stained) from the northern Bay of
Bengal are rare (Boltovskoy, 1978). The few studies documenting
living benthic foraminifera from the Bay of Bengal cover
a limited spatial extent, concentrating only on nearshore-
beaches and estuaries (maximum 19 m water depth) (Gandhi
et al., 2007; Gandhi and Solai, 2010). The influence of deep
water ecological conditions on benthic foraminifera from
the Bay of Bengal is rarely documented. Recently, Suokhrie
et al. (2020), compared the living benthic foraminifera of the
western Bay of Bengal’s oxygen-deficient zone with that from
a similar region in the Arabian Sea. A distinctly different
benthic foraminiferal assemblage was reported from the Bay
of Bengal oxygen deficient waters. However, the effect of
other stressors, including salinity, temperature, pH, riverine
influx on benthic foraminifera, both above and below the
oxygen-deficient zone of the western Bay of Bengal, was not
addressed. Therefore, we study the combined effect of multiple
ambient parameters on the living (stained) benthic foraminiferal
assemblage from the shallow inner shelf to the slope and
further deeper region of the west-central Bay of Bengal. The
main objective of this study is to establish representative
living (rose-Bengal stained) benthic foraminifera assemblages
characterizing a particular set of ecological niches on the
shallow continental shelf to the abyssal depth in the west-
central Bay of Bengal, where the freshwater influx and associated
processes primarily influence the physico-chemical parameters.
The baseline information will be beneficial to understand
the foraminiferal response to climatic changes in the future.
The precise information about benthic foraminifera’s ecological
preferences, will also be useful for a better reconstruction of the
past environmental conditions.

OCEANOGRAPHIC SETTING

The west-central Bay of Bengal is strongly influenced by the
riverine influx. Some of the world’s largest rivers drain into
the western Bay of Bengal, with an average runoff being
Ganga-11,892 m3s−1, Brahmaputra-16,186 m3s−1, Godavari-
3,180 m3s−1, Krishna-1,730 m3s−1, Pennar-95 m3s−1, and
Cauveri-664 m3s−1 (Rao, 1975; Subramanian, 1979; Dai and
Trenberth, 2002). The lithogenic components’ contribution is
∼39% in the northern bay and ∼12.6% in the southern bay
(Unger et al., 2003). The riverine influx is most intense during
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the summer monsoon and is also responsible for the salinity-
controlled stratification (Gomes et al., 2000; Unger et al., 2003;
Sarma et al., 2016) and surface circulation in the Bay of Bengal.
The southwestern Bay of Bengal receives significant precipitation
during the winter monsoon. The surface circulation (East India
Coastal Current) reverses seasonally along the bay’s western
boundary, flowing southward during the winter season and
northward during the summer season (Vinayachandran et al.,
1999; Shankar et al., 2002). The precipitation resulting from the
seasonal reversal of winds in the Bay of Bengal is maximum
during the summer monsoon (318 mm/month) as compared
to the winter monsoon (88 mm/month) (Ramesh Kumar and
Prasad, 1997). The summer precipitation causes substantial
spatial variation in the salinity and temperature in the bay. The
sea surface salinity varies from 29.1 psu closer to the continental
margin on the inner shelf to 33.7 psu toward the open ocean.
The warmer water input from the rivers is evident by the
relatively higher sea surface temperature (29–30◦C) in the river
mouths’ vicinity (Durand et al., 2011; Locarnini et al., 2013).
The dissolved oxygen is low at intermediate depths (∼100–
1,000 m), with concentration being as low as 5 µM (Wyrtki,
1971; Rao et al., 1994; Sardessai et al., 2007; Bristow et al.,
2017). The shallower inner shelf water in the vicinity of the river
has a higher dissolved oxygen. The chlorophyll-a concentration
varies from ∼0.3 mg/m3 to 2.0 mg/m3 in the western Bay of
Bengal, with higher concentration closer to the river mouth
(NASA Goddard Space Flight Center, Ocean Ecology Laboratory,
Ocean Biology Processing Group, 2014). A strong wind-induced
upwelling spread over ∼40 km wide band, all along the eastern
margin of India, is observed in the western Bay of Bengal, during
the summer season (Shetye et al., 1991). As a consequence of this
upwelling, salinity increases coastward (Shetye et al., 1991). The
modern-day lysocline depth is at 2,000–2,600 m, shallowing from
south to north in the Bay of Bengal (Cullen and Prell, 1984).

MATERIALS AND METHODS

Field Sampling
A total of 46 surface sediment samples (35 multi-core and 11
spade-core) were collected in 2014 and 2012, during the 308th
cruise of ORV Sagar Kanya (SK 308) and RV Sindhu Sankalp (SSK
35) from the west-central Bay of Bengal, respectively (Figure 1
and Supplementary Table 1). The samples were collected along
the coast perpendicular transects at regular depth intervals,
starting from the continental shelf to the slope (27–2,494 m),
during the pre-summer monsoon season of 2012 and 2014 (more
details in Suokhrie et al., 2020). After retrieval, the top 10 cm
(0–10 cm) of the sediment collected by using Ocean Science
Industries Limited (OSIL) – Maxi multi-corer was sub-sampled
at 1 cm interval. Half of the sediment from each section was
immediately preserved in ethanol rose-Bengal solution (2 g rose-
Bengal per liter of ethanol), to stain living benthic foraminifera.
The top two sections (0–2 cm) were analyzed, as they contain
the majority of the living benthic foraminifera in the northern
Indian Ocean (Singh et al., 2018). The use of rose-Bengal stained
living benthic foraminifera has been widely discussed since its

introduction by Walton (1952). A study by Walker et al. (1974)
compared rose-Bengal and Sudan Black B stains and reported
that rose-Bengal stain identified 70% of the specimens containing
protoplasm. The concern also remains in differentiating the
protoplasm living at the time of sample collection with the
recently dead protoplasm (Bernhard, 1988). However, a majority
of the tests lying in the sediments are usually devoid of
protoplasm because of reproduction, predation, or growth stages
(Murray and Bowser, 2000). Also, the living protoplasm (those
living at the time of staining) tend to acquire deeper and denser
stain up to one additional chamber. So, if the pattern of staining
can be understood thoroughly, the error of over-estimating the
stained living fauna can be reduced (Linshy, 2010).

The overlying bottom water in the multi-cores was collected at
each station, and its salinity, pH and temperature were measured
onboard by using a hand-held multimeter (S47-K/“SevenMulti”)
(Supplementary Table 2). The bottom water sample was not
retrieved at a few multi-core stations. For these stations, salinity,
temperature, dissolved oxygen, and also all the environmental
data for the 11 spade core stations were downloaded from the
World Ocean Atlas 2013 (Garcia et al., 2013; Locarnini et al.,
2013; Zweng et al., 2013) by using the Ocean Data View software
(Schlitzer, 2016, Ocean Data View)1 (Figure 2).

Laboratory Analysis
The stained sediments were stored in cold-storage (4◦C) for
a minimum of 2 weeks and were then processed following
the standard procedure (Manasa et al., 2016; Singh et al.,
2018; Suokhrie et al., 2020). The excess ethanol rose-Bengal
was removed, and the sediments were freeze-dried. The dried
samples were then weighed, and ∼2 g of the sediment was
finely powdered for total carbon, nitrogen and inorganic carbon
analysis. The rest of the sample was wet sieved by using a 63 µm
sieve. The >63 µm material coarse fraction (CF) was dried,
weighed and then transferred into plastic vials. A representative
aliquot of the CF was weighed to pick a minimum of 300
living benthic foraminifera, wherever possible. All available living
benthic foraminifera were picked from a fixed 0.1 g CF, in samples
where a limited number of specimens were found. The picked
specimens were mounted on the micropaleontological slides for
counting and identification. Only those specimens with precise
pink coloration with more than one chamber completely stained
were picked and counted for living benthic foraminifera. All
specimens were identified by using the previously published
literature. The foraminiferal treatise (Loeblich and Tappan,
1988) was followed for genus confirmation, and for species
confirmation, we have referred to the foraminiferal catalog (Ellis
and Messina, 1940–2015). The genus of a few species have
been shifted, as per the taxonomic shifts. Bolivinellina has been
shifted from Bolivina following Saidova (1975). One species
(Eubuliminella cassandrae) was also shifted from genus Bulimina
to Eubuliminella following Revets (1993). Only those references
mentioned in the main text of the paper have been added to
the reference list. All other species identification references are
mentioned in Supplementary Table 4 for further reading.

1http://odv.awi.de

Frontiers in Marine Science | www.frontiersin.org 3 April 2021 | Volume 8 | Article 656757

http://odv.awi.de
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-656757 April 24, 2021 Time: 18:17 # 4

Suokhrie et al. Living Benthic Foraminiferal Ecology

FIGURE 1 | The location of surface sediment samples in the west-central Bay of Bengal. Multicore stations are marked with red circles and green squares represent
spade core stations. The major rivers draining in the area are marked by thin black lines. The bathymetry is marked by colored contours.

The sedimentary characteristics, namely total inorganic
carbon (IC), total nitrogen (TN), and total carbon (TC),
were analyzed by using dried and finely powdered
sediment (∼10 mg weight). TIC was analyzed by
using UIC CM 5015 CO2 Coulometer and TC, TN
by CNS elemental analyzer (Thermo Fisher Scientific).
Calcium carbonate (CaCO3) was calculated from IC and

organic carbon (Corg) was estimated by subtracting TIC
from TC.

Statistical Analysis
To draw meaningful inferences from the large dataset of the
relative abundance of all benthic foraminifera species identified
from the western Bay of Bengal, 54 dominant species (≥3%
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FIGURE 2 | Bottom water environmental parameters measured onboard from the water collected in multicores along with data downloaded from the World Ocean
Atlas (Garcia et al., 2013; Locarnini et al., 2013; Zweng et al., 2013), and analyzed sediment characteristics in the western Bay of Bengal. (A) Salinity (psu), (B)
dissolved oxygen (ml/l), (C) temperature (◦C), (D) pH (The pH data in the southern part of the region is not available as we could not collect samples from the
sediment-water interface), (E) coarse fraction (CF%), (F) organic carbon (%Corg), (G) organic carbon/total nitrogen (Corg/TN) and (H) calcium carbonate (CaCO3%).
The stations are marked by black inverted triangles. The thin black lines mark the bathymetric contours.
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FIGURE 3 | The dominant living benthic foraminifera (relative
abundance ≥ 3% at atleast three stations) in the west-central Bay of Bengal
(1) Hormosinella distans (Brady, 1881); (2–4) Hormosinella guttifera (Brady,
1881); (5) Reophax scottii (Chaster, 1892); (6) Ammobaculites agglutinans
(d’Orbigny 1846); (7) Ammoglobigerina globigeriniformis (Parker and Jones,
1865); (8) Trochamminopsis quadriloba (Hoglund, 1947); (a) Ventral view (b)
Dorsal view; (9) Eggerella propinqua (Brady, 1884); (10) Textularia oceanica
Cushman, 1932; (11) Spiroloculina convexa Said, 1949, (a–c); (12)
Quinqueloculina bicarinata (d’Orbigny, 1878); (a) 4-chambered view (b)
Apertural view (c) 3-chambered view; (13, 14) Bolivinellina earlandi (Parr,
1950); (15) Bolivinellina lucidopunctata (Conato, 1964); (16) Bolivinellina
pacifica (Cushman and McCulloch, 1942); (17) Bolivinellina translucens
(Phleger and Parker, 1951); (18, 19) Brizalina dilatata (Reuss, 1850); (20)
Bolivina mekranensis (Haque, 1970); (21) Brizalina spathulata (Williamson,
1858); (22) Latibolivina lepida; (23) Latibolivina persiensis (Lutze, 1974); (24)
Cassidulina carinata Silvestri, 1896; (a) Ventral view showing aperture (b)
Dorsal view; (25) Cassidulina laevigata (d’Orbigny, 1826), (a) Dorsal view, (b)
Ventral view showing aperture. Scale bar is 100 µm.

abundance at a minimum of two stations) (Figures 3–6), were
used for the Cluster analysis. Bray Curtis similarity index
was applied through Q-mode cluster analysis by using Primer
6.1.10 software. The major clusters were identified with similar
species having a particular percentage contribution in each
cluster. The dominant assemblage representing a cluster and the
relative contribution of each species to the respective cluster was
identified by using the Simple Percentage (SIMPER) program at
100%. The canonical correspondence analysis (CCA) was done to
understand the influence of multiple parameters on the dominant
species. The multivariate statistical package version 3.1 (Kovach,
1998) was used for CCA. The CCA provides a better insight

FIGURE 4 | (1) Globocassidulina oblonga (Reuss, 1850); (a) Ventral view (b)
Dorsal view; (2, 3) Islandiella cushmani (Stewart and Stewart, 1930); (a,b) Side
views (c) Apertural view; (3) Eubuliminella cassandrae (Revets, 1993); (4, 5)
Eubuliminella exilis (Brady, 1884); (6) Hopkinsinella glabra (Millett, 1903); (7)
Bulimina cf. delreyensis (Cushman and Galliher, 1934); (8) Bulimina marginata
(d’Orbigny, 1826); (9) Globobulimina globosa (Leroy, 1944) (10);
Protoglobobulimina pupoides (d’Orbigny 1846); (11) Uvigerina globulosa
(Egger, 1895); (12, 13) Neouvigerina ampullacea (Brady, 1884); (14) Uvigerina
peregrina (Cushman, 1923); (15) Fursenkoina pauciloculata (Brady, 1884); (16)
Fursenkoina spinosa (Heron-Allen and Earland, 1932); (17) Fursenkoina
schreibersiana (Czjzek, 1848); (18) Rutherfordoides rotundiformis (McCulloch,
1977); (19) Suggrunda alata (Seguenza 1862); (a) Side view (b) Lateral view
showing aperture; (20) Suggrunda semiclara (McCulloch 1977); (a) Side view
(b) Lateral view showing aperture; (21) Baggina irregularis (McCulloch, 1977);
(a) Ventral view (b) Dorsal view. Scale bar is 100 µm.

into the cumulative effect of a set of ambient environmental
parameters on the abundance of species.

RESULTS

Bottom Water Parameters (Salinity,
Temperature, Dissolved Oxygen, and pH)
The salinity at the sediment-water interface was higher in
the shallow regions than at the deeper regions. The salinity
ranged from ∼32.15 psu to 35.2 psu (Figure 2A). The dissolved
oxygen varies from ∼0.3 ml/l to a maximum of ∼4.9 ml/l.
The dissolved oxygen is low within the depth range of ∼100–
1,000 m (Figure 2B). The previous reports suggest excessively
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FIGURE 5 | (1) Cancris oblongus (Williamson, 1858); (a) Ventral view (b)
Dorsal view; (2) Eponides cribrorepandus (Asano and Uchio, 1951); (a) Ventral
view (b) Dorsal view; (3) Gavelinopsis mira (Cushman, 1922); (a) Ventral view
(b) Lateral view (c) Dorsal view; (4) Pseudoeponides japonicum (Uchio, 1950);
(a) Dorsal view (b) Ventral view; (5) Nonionella auris (d’Orbigny, 1839); (a) Side
view (b) Apertural view (c) Side view showing the last chamber flap covering
the umbilicus; (6) Nonionella limbato-striata (Cushman 1931); (7) Nonionellina
labradorica (Dawson, 1860); (a,c) Side views (b) Apertural view; (8) Melonis (?)
chathamensis (McCulloch, 1977); (a,c) Side views (b) Apertural view; (9)
Pullenia bulloides (d’Orbigny, 1846); (a,b) Side views (c) Apertural view. Scale
bar is 100 µm.

low oxygen concentration (as low as 18 nM) at ∼150–450 m
(Bristow et al., 2017). The temperature at the sediment-water
interface was relatively warmer (>23◦C) in the shallow coastal
zone as compared to the deeper region (<17◦C) (Figure 2C).
The seawater pH at the spade core stations was not available, and
hence the data from the multicore stations only are plotted. The
measured pH at the sediment-water interface in the study area
ranges from 7.5 to 8.1. The region off Godavari and Pennar rivers
has higher pH than off the Krishna river (Figure 2D).

Sediment Characteristics
The fraction retained on the sieve (>63 µm) is considered as
the CF and comprises both biogenic remains (shells and tests),
and terrigenous material (quartz, mica, feldspars, and others).
A relatively more CF is observed in the southern segment
and at the shallower and deeper stations (Figure 2E). Overall,
the upper slope stations (∼250–1,000 m) have a comparatively
higher finer fraction. CF varied from ∼0.5% to an enormously
high percentage upto ∼90% at the southern stations. The
influence of riverine influx on CF, by contributing terrigenous

FIGURE 6 | (1) Chilostomella oolina Schwager 1878; (2) Gyroidinoides
subzelandica Hornibrook, 1961; (a) Dorsal view (b) Apertural view (c) Ventral
view; (3) Rotaliatinopsis semiinvoluta (Germeraad, 1946); (a,c) Side views (b)
Apertural view; (4) Hanzawaia nipponica Asano, 1944; (a) Ventral view (b)
Apertural view (c) Dorsal view; (5) Ammonia tepida (Cushman, 1926); (a)
Dorsal view (b) Ventral view. Scale bar is 100 µm.

material, is evident from the increase in CF in front of the
river mouths, especially in the southern part of the study area
(SC42, SC43, and SC44). Interestingly, the increased CF is also
observed in the deeper region and is attributed to increased
contribution from biogenic remains, including foraminiferal
tests (Figure 2E).

The organic carbon varied from 0.3 to 1.8% in the west-central
Bay of Bengal (Supplementary Table 2). The maximum %Corg
was at the deeper depths. The influence of riverine discharge
by contributing terrigenous organic matter and the fine fraction
is also evident (Figure 2F). The organic carbon comes both
from the terrigenous influx as well as marine productivity.
These two sources’ relative contribution is delineated by the
organic carbon to nitrogen ratio of the organic matter (Corg/TN).
Generally, Corg/TN > 6.0 is considered to be of terrestrial input,
as vascular plants have nitrogen depleted organic matter (Müller
and Mathesius, 1999; Ramaswamy et al., 2008), and values < 6.0
are used to infer marine input. A majority of the Corg/TN
values are >6.0 and hence suggests that the organic matter is
mainly contributed by terrestrial sources rather than by marine
productivity. Expectedly, the maximum Corg/TN is infront of
the Godavari, Krishna, and Cauvery rivers (SC37, SC38, MC30,
MC31, SC40, SC39, MC27, and MC28) (Figure 2G).

The biogenic skeletal remains mainly contribute CaCO3 to
the sediments. CaCO3 concentration in the west-central Bay of
Bengal ranged from 1.3 to 87.2%. CaCO3 concentration increases
toward the southern part of the west-central Bay of Bengal.
Additionally, CaCO3 is low at a few stations on the lower
slope (depth >1000 m), likely due to a reduction in the total
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foraminiferal abundance, which mainly contributes to the CaCO3
in the sediments at these depths (Figure 2H).

Cluster Analysis
A total of 263 living benthic foraminifera have been identified
(Supplementary Tables 3, 4). The cluster analysis groups similar
objects together to draw meaningful inferences from a large
dataset like the number of species and their relative abundance
in the western Bay of Bengal (Kaufman and Rousseeuw, 2009;
Khare et al., 2017). Based on the distribution at different stations,
54 dominant species were selected for the cluster analysis. We
delineate four major clusters at 20% similarity index, other than
a few insignificant ones (Figure 7). The clusters were named as
Cluster I, II, III, and IV. The dominant assemblage representing
a cluster and each species’ relative contribution to the respective
cluster is described below.

Cluster I
This cluster is represented by six stations, namely SC45, MC36,
MC32, SC36, MC24, and MC09. The stations in this cluster
are from a shallow depth (107–274 m) except for one station
MC36 (1,511 m). The similarity percentage (SIMPER) analysis
shows that this cluster has an average similarity of 20.59%
consisting of 12 species. The dominant species are Eubuliminella
exilis (24.88%), Bolivinellina earlandi (19.89%), Fursenkoina
spinosa (12.54%), Bolivinellina lucidopunctata (8.76%), and
Globobulimina globosa (6.48%).

Cluster II
Fursenkoina spinosa (15.64%), Eubuliminella cassandrae
(11.41%), Rotaliatinopsis semiinvoluta (11.07%), Uvigerina

peregrina (10.4%), and Cassidulina laevigata (8.26%) are the
dominant species in this cluster having an average similarity of
51.31%. This cluster represents a depth range of 500–1,518 m.

Cluster III
This cluster is represented by five stations (MC15, MC2,
MC37, MC18, and MC38) representing a depth range of
∼1,940–2,494 m with a similarity of 47.62%. Twelve species
comprise of this cluster and the five most dominant ones are
Bulimina cf. delreyensis (18.59%), Bulimina marginata (18.14%),
Hormosinella guttifera (9.05%), Cassidulina laevigata (8.02%),
and Gyroidinoides subzelandica (6.18%).

Cluster IV
The SIMPER analysis shows that the average similarity of
this cluster is 34.53%. The representative benthic foraminiferal
assemblage of this cluster includes nine species of which the five
most dominant ones are listed here, Nonionellina labradorica
(37.85%), Hanzawaia nipponica (17.58%), Brizalina dilatata
(17.31%), Ammonia tepida (4.71%), and Nonionella limbato-
striata (4.08%).

From the spatial distribution of various clusters, it is clear that
Cluster I, Cluster II and Cluster III, and Cluster IV follow a depth
zonation (Figure 8). Cluster IV is confined to the shallow water
depth. Cluster I represents a shallow to intermediate depth zone
covering the upper slope region. Cluster II mainly comprising
of angular asymmetrical foraminifera, represents a wide range
of intermediate water depth to deep water depth locations. The
assemblages in this cluster consist of species that are indicative of
an oxygen-deficient region. The species in Cluster III represent
the deep-water species.

FIGURE 7 | Cluster analysis using Bray-Curtis similarity at 20% similarity level. The four identified clusters have been shaded in different colors as Cluster I, II, III,
and IV.
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FIGURE 8 | Distribution of the four clusters in the western Bay of Bengal. A clear depth preference of the clusters is evident. Cluster I and II, intermediate water;
Cluster III, deep water; and Cluster IV, shallow water. The black triangles represent the sampling stations.

Canonical Correspondence Analysis
The dominant effect of one or a combination of several
parameters, out of a set of multiple parameters in the field,
on living benthic foraminiferal species, can be identified from
CCA. Out of the 54 dominant species, only 40 species showed
a significant relationship with atleast one of the ambient
environmental parameters (Figure 9). The rest of the species
do not show a significant relationship with any particular
parameter, as evident from the close proximity of these
species to the centroid in the CCA biplot (Ter Braak, 1986).
From CCA, it is evident that the dissolved oxygen, CF, and
temperature, are the most significant parameters controlling
the living benthic foraminifera species distribution in the west-
central Bay of Bengal. Besides these dominant factors, Corg,

salinity, and Corg/TN also influence the distribution of living
benthic foraminifera.

Species Representing Specific Set of
Parameter
Species Preferring Oxic, Colder Water With Organic
Matter Rich Sediments
Ammobaculites cf. agglutinans, Quinqueloculina bicarinata,
Bolivinellina pacifica, Brizalina dilatata, Latibolivina lepida,
Latibolivina persiensis, Fursenkoina pauciloculata, Eponides
cribrorepandus, Nonionella auris, Nonionella limbato-striata,
Nonionellina labradorica, Hanzawaia nipponica, and Ammonia
tepida were positively correlated with dissolved oxygen and
organic carbon, whereas negatively correlated with temperature
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FIGURE 9 | Canonical correspondence analysis (CCA) between species abundance and environmental parameters. The arrows represent environmental
parameters-Corg, organic carbon; Corg/TN, organic carbon/total nitrogen; CF, coarse fraction; DO, dissolved oxygen; T, temperature; S, salinity; D, depth. The
triangles represent the species (modified from Suokhrie et al., 2020).

(Figure 9). Ammobaculites cf. agglutinans, an agglutinated
benthic foraminifer, was present only at four stations, all
shallower than ∼60 m. Quinqueloculina bicarinata was present at
three stations, all shallower than 56 m. Even Bolivinellina pacifica
was present only upto 76 m. Brizalina dilatata was found at
stations mostly within depths of ∼300 m, beyond which <1%
abundance was observed at two stations. Latibolivina lepida was
found only at two stations with abundance varying from 4.2%
(53 m) to 6.2% (52 m). Likewise, Latibolivina persiensis was also
present at shallow depths between 40 and 76 m, beyond which it
was absent. Fursenkoina pauciloculata was abundant over a wider
depth range (∼30–1,000 m) but the highest abundance was at
the shallower depths. Eponides cribrorepandus was present only
at three stations with relative abundance varying from 0.15% (500
m water depth) to 25% (107 m water depth). It was totally absent
at stations deeper than ∼500 m. Nonionella auris was present
at most of the stations and abundant between ∼200 m and
∼1,000 m. Nonionellina labradorica was present upto a depth of
∼750 m. Hanzawaia nipponica, Ammonia tepida and Nonionella
limbato-striata were abundant at stations shallower than ∼150 m.

Species Preferring Oxygen Deficient, Warmer, and
Hypersaline Water
The species having a negative correlation with dissolved
oxygen and a positive correlation with temperature and salinity
were Reophax scottii, Eggerella propinqua, B. earlandii, B.
lucidopunctata, Bolivinellina translucens, Brizalina spathulata,
Eubuliminella cassandrae, E. exilis, Hopkinsinella glabra,
Protoglobobulimina pupoides, Uvigerina globulosa, Uvigerina
peregrina, Fursenkoina spinosa, Rutherfordoides rotundiformis,
Suggrunda semiclara, Baggina irregularis, Cancris oblongus,
Pullenia bulloides, Chilostomella oolina, and Rotaliatinopsis
semiinvoluta (Figure 9).

Agglutinated benthic foraminifera, Reophax scottii was
abundant only at four stations with abundance ranging from
0.14% (1,069 m) to 40.96% (259 m). Other agglutinated
foraminifer, Eggerella propinqua was abundant at depths varying
from ∼200 m to ∼700 m except for two shallow stations at
27 m and 31 m. The species of genus Bolivinellina reported
in the west-central Bay of Bengal include B. translucens,
B. earlandi, and B. lucidopunctata. The abundance of these
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three species was influenced by bathymetry, with B. translucens
and B. lucidopunctata being the most abundant between 76 m
and ∼500 m, while B. earlandi was abundant from 76 m upto
∼2,000 m. Brizalina spathulata was the most abundant between
∼100 m and 270 m. Eubuliminella cassandrae was abundant at
depths >∼150 up to ∼1,000 m, whereas E. exilis was present
only upto a depth of 274 m. Hopkinsinella glabra was present
only at 11 stations, with most of the stations being within ∼200–
900 m. Protoglobobulimina pupoides was present only at depth
>∼250 m. Uvigerina globulosa was present at depths >∼750 m
except at one shallow station (55 m). Uvigerina peregrina was
also dominant at deeper than 190 m with a maximum abundance
of 21%. Fursenkoina spinosa was also abundant at stations
>200 m deep, with a relative abundance ranging from 0 to a
maximum of 36%. Rutherfordoides rotundiformis was present
at stations deeper than ∼100 m, except for one station at
∼40 m. Suggrunda semiclara was present at seven stations, of
which four stations were on the upper slope, within a depth
range of ∼390–500 m. Baggina irregularis, Pullenia bulloides and
Rotaliatinopsis semiinvoluta were abundant at stations deeper
than 500 m. Cancris oblongus was present only at nine stations
with the highest abundance of 4.3% at 500 m depth. Similarly,
Chilostomella oolina with a maximum relative abundance of 6.2%
was present at stations deeper than ∼200 m. Interestingly the
maximum abundance of all the species listed above was within
the oxygen deficient zone (∼100–1,000 m).

Species Preferring Coarse Sediments With High
Corg/TN
Ammoglobigerina globigeriniformis, Trochammina quadriloba,
Islandiella cushmani, Bulimina marginata, Bulimina delreyensis,
Gavelinopsis mira, and Gyroidinoides subzelandica were positively
correlated with CF and Corg/TN (Figure 9). Ammoglobigerina
globigeriniformis, an agglutinated foraminifer was present at
almost all the stations with the highest abundance (∼19%)
at ∼1,980 m. Trochammina quadriloba, another agglutinated
foraminifer, was abundant at stations deeper than ∼250 m, except
for three shallower stations with abundance ≤2%. Islandiella
cushmani was present at most of the stations in the study
area but mostly abundant at stations deeper than ∼200 m.
Bulimina marginata, Bulimina delreyensis, Gavelinopsis mira, and
Gyroidinoides subzelandica were abundant at the deeper stations
(>∼250 m) in the west-central Bay of Bengal. Although the CCA
biplot shows influence of both CF as well as Corg/TN on these
species, the influence of CF was more significant. Interestingly,
Hormosina guttifera shows a positive correlation only with CF.

DISCUSSION

Differential Foraminiferal Abundance on
the Shelf and Slope
Interestingly, the abundance of living (stained) benthic
foraminifera between ∼200 m and ∼1,000 m was higher
(∼1,300 specimen/g sediment), as compared to the continental
shelf (∼300 specimen/g sediment upto ∼200 m) as well as
at depths deeper than ∼1,500 m (∼46 specimen/g sediment)

(Suokhrie et al., 2020). We suggest that the lower dissolved
oxygen concentration with an average of ∼0.5 ml/l within
the depth range of ∼100–1,000 m and corresponding high
organic matter content, dominantly control the living benthic
foraminiferal population at these depths in the western Bay of
Bengal. The high %Corg concentration between ∼250 m and
1,500 m water depth is attributed to the relatively finer sediments
at these depths. The finer sediments can preserve more Corg
(Mayer, 1994). Additionally, there is an enormous influx of both
freshwater and sediments in the northern Bay of Bengal. The
riverine influx is also a source of organic carbon. The immense
terrestrial organic carbon contribution is further confirmed by
a clear pattern of very high Corg/TN (∼20.0) close to the river
mouth as compared to low Corg/TN, indicating marine organic
carbon, away from the river mouth (>6.0).

The foraminiferal abundance is low at stations shallower than
∼100 m water depth with sediments dominated by terrestrially
sourced organic matter. This low abundance is attributed
to the taphonomic processes, including more disturbance or
turbulence from the riverine influx leading to less proliferation
and diversification of benthic foraminifera (Berkeley et al., 2014).
Besides, the %Corg at the shallow depths is also lower than
the intermediate water depth, except in front of the Godavari
river mouth. The enormous freshwater runoff in the bay results
in ocean surface stratification and an oligotrophic condition
and thus the low organic matter on the shelf. This is also a
factor for the low living benthic foraminiferal abundance at the
shallow depth stations as the organic carbon is the food for
benthic foraminifera. The lack or low organic carbon content in
sediments is detrimental to benthic foraminifera (Duffield et al.,
2014). The coarser sediments close to the river mouth are one
reason for the lower %Corg despite the high primary productivity
at these depths, as evident from the chlorophyll-a content
(NASA Goddard Space Flight Center, Ocean Ecology Laboratory,
Ocean Biology Processing Group, 2014). The intermediate
depths within ∼100–1,000 m have abundant organic matter,
which leads to reduced bottom water DO, and hence the
abundance of total living abundance is a positive response to the
organic matter supply. The increased foraminiferal abundance at
these depths is also due to the significantly reduced predatory
pressure as the macrofauna are comparatively more susceptible to
oxygen-deficient environments. These depths are dominated by
opportunistic species that thrive well in low DO concentrations.
With a decrease in organic matter, the DO concentration
increases beyond ∼1,000 m water depth. A drastic decrease
in foraminiferal abundance is seen below ∼1,000 m water
depth in the study area, and is attributed to the increase in
predatory pressure. Additionally, the environment is more food
limiting than oxygen and leads to a significant reduction in the
total living fauna.

Drivers of Benthic Foraminiferal Diversity
and Richness
The low diversity and species richness in front of the major rivers
suggests a strong riverine influx. Both the diversity and species
richness are low in the southern part, suggesting a restricted
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environment facilitating a select few species to survive (Suokhrie
et al., 2020). Incidentally, the seawater pH is very low in front
of the major river mouths. Although benthic foraminifera can
tolerate a wide range of pH, comparatively less alkaline pH is
detrimental to calcareous tests (Saraswat et al., 2015). Therefore,
the low diversity in low pH regions is attributed to the thin-walled
benthic foraminifera’s inability to survive in adverse conditions.
In contrast, more diverse microenvironments in the northern
part are inferred from the high diversity and richness. From
our earlier work based on CCA between benthic foraminiferal
abundance and ambient parameters in the oxygen-deficient zone
of this region, we inferred that the increased abundance of
a few angular benthic foraminifera thriving as opportunistic
species (F. spinosa, E. cassandrae, U. peregrina, R. semiinvoluta,
S. semiclara, E. propinqua, and B. irregularis) contributes to the
overall more population of living benthic foraminifera in the
oxygen-deficient zones on the slope. The dominance of a few
opportunistic species is supported by low diversity and richness
at these depths (Suokhrie et al., 2020). The present study’s cluster
analysis groupings also indicate the abundance of angular forms
at the depths where dissolved oxygen is low. Such a decrease in
diversity of living benthic foraminifera in a low dissolved oxygen
environment has also been reported from the oxygen minimum
zone (Jannink et al., 1998; Gooday et al., 2000; Schumacher et al.,
2007; Suokhrie et al., 2020).

Living Benthic Foraminiferal
Assemblages
From cluster analysis, we delineate three faunal assemblages
based on significant correlation of the assemblages to a similar set
of environmental parameters in the study area. Incidentally, the
assemblages dominate different depth zones as well. The details
of the representative assemblages are discussed below.

Assemblage I (27–107 m)
This assemblage comprises of Cluster IV. The dominant
species are N. labradorica, H. nipponica, B. dilatata, A. tepida,
and N. limbato-striata with minor contributions from
F. pauciloculata, B. pacifica, L. persiensis, and N. auris (Figure 10).
These species are abundant on the continental shelf (<∼100 m
water depth). The Assemblage I includes only calcareous benthic
foraminifera. Nonionellina labradorica is a dominant species
in this assemblage and has also been reported from the Corg
rich fjords in the Arctic (Shetye et al., 2011). This species has
been referred to as Arctic-boreo species (Seidenkrantz, 1993).
Its high abundance is also reported from the oxygen-depleted
environments where it sequesters chloroplast as it enables it to
survive even in the anoxic conditions (Cedhagen, 1991; Bernhard
and Bowser, 1999). In our study area, however, the abundant
presence of N. labradorica is associated with the shallow inner
shelf warm well-oxygenated waters with low organic carbon. We
report another species belonging to the Assemblage I, namely
H. nipponica, with its preference for shallow, well-oxygenated
waters. From the Bay of Bengal, this species has been reported as
a ‘turbidity sensitive species’ (Jayaraju et al., 2010).

Similarly, B. dilatata is also abundant on the shallow shelf, with
a rare presence at a few stations upto ∼700 m. Its abundance in

shallow to intermediate water depth is also reported by Gooday
(1993) and Bernhard and Gupta (1999). Brizalina dilatata is
also commonly reported from low oxygenated and high organic
carbon-rich environments (Gupta and Machain-Castillo, 1993;
Rouchy et al., 1998; Kuhnt et al., 2007). In the present study, this
species correlates well with the shallow and warmer waters. The
characteristic shallow-water species A. tepida is also abundant
on the shelf of the present study. Ammonia tepida is widely
distributed over estuaries, shelf and salt marshes (Murray, 1991;
Nisha and Singh, 2012). Most workers have reported A. tepida
as a pollution-sensitive species (Bergin et al., 2006; Burone
et al., 2007; Frontalini and Coccioni, 2008; Elshanawany, 2011;
Debenay et al., 2015; Schintu et al., 2016; Saalim et al., 2017).
Ammonia tepida is also reported as a dominant species in the
modern intertidal and estuarine areas (Nigam, 1984; Adarsh and
Rajeshwara Rao, 2010). We also report A. tepida being abundant
in shallow and warm water with a moderate organic matter
supply in the study area. Nonionella limbato-striata is another
dominant species in this assemblage, preferring the shallow and
well-oxygenated waters.

Fursenkoina pauciloculata is a minor species in this
assemblage. Bolivinellina pacifica, another dominant species
of this assemblage, was earlier reported from the shallow
water depths (Saidova, 2010), same as that in this study area.
Latibolivina persiensis is reported from shallow depth (Sliter,
1969, 1970; Panchang and Nigam, 2014). It has been found to
prefer oligotrophic and well-oxygenated water (Abu-Zied, 2013),
similar to its distribution in this study, where this species is
present only in shallow, well-oxygenated water (upto 76 m).
Another minor species is N. auris in this assemblage.

The species belonging to Assemblage I representing the
shallow locations indicate that they are positively correlated
with dissolved oxygen, temperature and Corg. The dissolved
oxygen concentration is high (>3.0 ml/l) and the organic matter
content is low (∼0.9%) with warmer temperature on the shelf.
Thus, Assemblage I represents a shallow, well-oxygenated, warm
environment with relatively high organic matter in the sediments.

Assemblage II (∼145–1,500 m)
The dominant species in this assemblage are E. exilis, B. earlandi,
F. spinosa, B. lucidopunctata, G. globosa from Cluster I and
F. spinosa, E. cassandrae, U. peregrina, R. semiinvoluta, C.
laevigata from Cluster II (Figure 11).

Eubuliminella exilis has been reported as deep infaunal
taxa (Jorissen, 1999) and an indicator of low oxygenated
environments and unchanged supply of organic matter (Caralp,
1989; Jannink et al., 1998; Schumacher et al., 2007). Amongst
the dominant species belonging to Assemblage II, F. spinosa
is a shallow infaunal species inhabiting waters upto a depth
of ∼120 m (Phleger, 1963). In the present study, F. spinosa
is abundant at depths deeper than ∼200 m, indicating less
depth dependence and a large influence of dissolved oxygen.
The relative abundance of infaunal foraminifera is controlled
by the availability of both the metabolizable organic matter and
dissolved oxygen. The infaunal foraminifera are abundant in
organic matter rich but oxygen-deficient environments (Jorissen
et al., 1995; Van der Zwaan et al., 1999). The higher relative
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FIGURE 10 | Surface distribution (relative abundance) of dominant living benthic foraminifera from Cluster IV representing Assemblage I and having a significant
positive correlation with dissolved oxygen and temperature. Nonionella labradorica, Hanzawaia nipponica, Brizalina dilatata, Ammonia tepida, and Nonionella
limbato-striata. The stations are marked by black inverted triangles. The thin black lines mark the bathymetric contours.

abundance of F. spinosa at depths >200 m within the low DO
concentration in the western Bay of Bengal, is more in line with
its infaunal nature. The species belonging to Bolivinellina have
been reported from shallow regions (Nigam and Chaturvedi,
2006; Nagendra et al., 2011; Panchang and Nigam, 2014; Gandhi
et al., 2016). Both B. earlandi and B. lucidopunctata have been
recorded from the upper slope region in the study area. G. globosa
is another dominant species in this assemblage. Generally,
rectilinear foraminifera comprising of genera like Bolivina,
Brizalina, Bulimina, Fursenkoina, and Uvigerina have previously
been reported as a common indicator of low oxygenated
environments by several workers (Gupta and Machain-Castillo,
1993; Kaiho, 1994; Murray, 2006; Nigam et al., 2009; Mazumder
and Nigam, 2014; Das et al., 2017; Verma et al., 2018). In the study
area, these species are abundant at the stations falling within a
depth range of ∼ >100 to ∼1,500 m where DO concentration
is minimum (0.5 ml/l). All the major species of this assemblage
are significantly negatively correlated with the dissolved oxygen,
suggesting that they are well adapted to low dissolved oxygen
(Suokhrie et al., 2020). The type species of E. cassandrae is
E. exilis (Revets, 1993). The ecology of E. cassandrae has been
rarely described. However, like its type species, E. cassandrae is
also abundant at the intermediate depth locations with the low
oxygenated environment. Uvigerina peregrina is also reported

from this assemblage, suggesting its preference to low dissolved
oxygen at these depths, which is in line with its reported
dominance within OMZ (Hermelin and Shimmield, 1990). It
has also been described as a shallow dysoxic-infaunal species
(Das et al., 2017). Rotaliatinopsis semiinvoluta has been well
documented as a low oxygen tolerant species reported from the
Arabian Sea OMZ at intermediate water depths (den Dulk et al.,
1998; Jannink et al., 1998; Caulle et al., 2015), and a similar
preference to low dissolved oxygen is also found in our study.
Cassidulina laevigata is another intermediate to deep-water fauna
and is a dominant species in this assemblage. Amongst the other
minor species of this assemblage, R. scottii is predominantly
infaunal (Kaminski et al., 1988) and a characteristic fauna of
muddy substrate, sometimes present in low oxygenated fjords
(Murray, 1970; Filipsson and Nordberg, 2004). The substrate
seems to be a less influential factor for this species in the
west-central Bay of Bengal. Here, R. scottii is more indicative
of low oxygenated conditions as its abundance increases at
the stations with low DO values. Bolivina spathulata has been
described as a deep infaunal and dysoxic species occurring in
high organic flux environments (Bernhard and Gupta, 1999; Das
et al., 2017). Furthermore, B. spathulata has been associated
with a more saline environment (Eris et al., 2011), as is also
seen in the study area. Brizalina spathulata is often the last
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FIGURE 11 | Relative abundance of species representing intermediate depth assemblage (Assemblage II), having significant negative correlation with dissolved
oxygen and positive correlation with organic carbon. Eubuliminella exilis, Bolivinellina earlandi, Fursenkoina spinosa, Bolivinellina lucidopunctata, Globobulimina
globosa, Fursenkoina spinosa, Eubuliminella cassandrae, Uvigerina peregrina, Rotaliatinopsis semiinvoluta, and Cassidulina laevigata. The stations are marked by
black inverted triangles. The thin black lines mark the bathymetric contours.

species to disappear before oxygen deficiency starts to inhibit any
benthic life (Jonkers, 1984). In the west-central Bay of Bengal,
B. spathulata is most common at stations between ∼120 m and
∼250 m. A significant drop in DO is observed at these depths.
Uvigerina peregrina and E. cassandrae are minor species in this
assemblage. Trochamminopsis quadriloba is more abundant at
∼2,000 m. Alve et al. (2011) reported the abundant presence of
T. quadriloba at ∼100 m. However, the depth does not seem to
significantly control its abundance (Buzas et al., 1993).

The ecology of S. semiclara is rarely described. Here, its
abundance in the intermediate waters suggests its preference for
low oxygen and relatively more saline environment. Pullenia

bulloides was earlier reported as a part of the assemblage
representing the Antarctic Bottom Water (AABW) (Corliss,
1979). In the present study, P. bulloides prefers lower levels of
oxygen, high food supply and deeper depth, as also reported
by other workers [north Atlantic-Schnitker, 1979; southwestern
Indian Ocean- Corliss, 1983; Gooday, 1994; south Atlantic-
Mackensen et al., 1995; Off Pakistan (Arabian Sea)-Schumacher
et al., 2007; southeastern Indian Ocean-Verma et al., 2013;
Arabian Sea-Caulle et al., 2015]. Although the type and
preservation status of the organic matter also matters (Nomaki
et al., 2005; Duffield et al., 2014), the organic carbon (Corg)
is a good indicator of the food availability for foraminifera.
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Some foraminifera prefer the “easily metabolizable food particles”
while the infaunal forms mainly tolerate more refractory organic
matter (Gooday, 1993; Jorissen et al., 1995). Rutherfordoides
rotundiformis was found in extremely low oxygen conditions and
in sapropelic sequences (Rohling et al., 1997; Mercone et al., 2001;
Abu-Zied et al., 2008). Rutherfordoides rotundiformis is the most
abundant at the stations with minimum DO concentration in
the present study. Chilostomella oolina is a deep infaunal species
abundant in low oxygenated environments similar to its generic
preferences (Corliss, 1991; Gooday and Rathburn, 1999; Jorissen,
1999; Schmiedl et al., 2003; Schumacher et al., 2007; Kuhnt
et al., 2013). The survival and abundance of C. oolina in low
oxygenated environment is attributed to its nitrate respiration
strategy (Kuhnt et al., 2013). Cassidulina carinata and G. globosa
are also part of this intermediate assemblage. Cassidulina carinata
is part of the assemblage preferring high food supply (Gupta and
Thomas, 1999), while G. globosa is often described as an abyssal
species (Takata et al., 2013). Bolivina earlandi have been described
as a deep infaunal and dysoxic species occurring in high organic
flux environments (Bernhard and Gupta, 1999; Das et al., 2017).
Genus Chilostomella with the characteristic unornamented and
thin-walled tests was an abundant genus among organic carbon-
rich and less oxygenated sediments (Kaiho and Nishimura,
1992). Trochamminopsis quadriloba is another minor species
in this assemblage as well as the previous assemblage. Other

minor species also include F. pauciloculata abundant in the low
oxygenated regions of the Indian waters (Mazumder and Nigam,
2014) and N. auris is an indicator of high organic carbon rich
environments (Wefer et al., 1994; Bhaumik and Gupta, 2007). In
the west-central Bay of Bengal, B. marginata is a deep infaunal
species (Jorissen, 1999). Both B. marginata and B. cf. delreyensis,
are abundant at depths deeper than ∼2,000 m, on the slope.
Although B. marginata is often used as oxygen-deficient water
proxy, we report a strong negative influence of temperature on
the abundance of both B. marginata and B. cf. delreyensis, in the
study area. Baggina irregularis is also part of the same assemblage
that prefers less oxygenated waters. This species’ ecology is not
well known, although they are reported from the Bay of Bengal
(Panchang and Nigam, 2014). In short, all the species described
above are abundant in more saline, organic matter rich and
poorly oxygenated environment.

Assemblage III (∼1,940–2,494 m)
A set of 12 species from Cluster III (B. cf. delreyensis,
B. marginata, H. guttifera, C. laevigata, G. subzelandica, C.
carinata, G. mira, N. ampullacea, P. bulloides, U. peregrina, A.
globigeriniformis, and T. quadriloba) has been clubbed together
in Assemblage III. The dominant species of this assemblage
are B. cf. delreyensis, B. marginata, H. guttifera, C. laevigata,
and G. subzelandica (Figure 12). Bulimina marginata is a deep

FIGURE 12 | Surface distribution (relative abundance) of dominant living benthic foraminifera representing deep water assemblage (Assemblage III), having a
significant negative correlation with CF and Corg/TN, in the west-central Bay of Bengal. Bulimina cf. delreyensis, Bulimina marginata, Hormosinella guttifera,
Cassidulina laevigata, and Gyroidinoides subzelandica. The stations are marked by black inverted triangles. The thin black lines mark the bathymetric contours.
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infaunal species (Jorissen, 1999). Both B. marginata and B.
cf. delreyensis, are abundant at depths deeper than ∼2,000 m,
on the slope. Although, B. marginata is often used as oxygen
deficient water proxy, the abundance of these two species at
deeper colder waters (>1,500 m) is suggestive of a strong negative
influence of temperature on the abundance of both B. marginata
and B. cf. delreyensis. The dominant agglutinating species in
this assemblage is H. guttifera, which represents deep-water
assemblages (Bernhard et al., 2009; Enge et al., 2012). C. laevigata
is a shallow to deep infaunal species (Singh et al., 2012).
Gyroidinoides subzelandica is a part of the same assemblage.
All these species are significantly negatively correlated with
the ambient temperature as the deeper waters have colder
temperature. Additionally, the species in Assemblage III are
also influenced by the type of organic matter (marine origin)
and sediment texture, evidenced from the relatively lower Corg
content in the samples at these depths.

The other minor species in this assemblage like C. carinata,
U. peregrina and P. bulloides also represent Assemblage III
indicating that these species have a wide range of abundance from
the intermediate to the deep waters in the study area. U. peregrina
is a dominant species in Assemblage III which suggests its
preference for the environmental conditions prevalent at the
intermediate waters rather than the deep waters. Gavelinopsis
mira, N. ampullacea in Assemblage III, also have a significant
preference for colder water with lower CF abundance and
marine organic matter.

CONCLUSION

The spatial distribution of living benthic foraminifera and
its comparison with the ambient parameters in the riverine
influx dominated west-central Bay of Bengal, suggests a strong
influence of multiple ecological parameters, mainly the dissolved
oxygen, CF, and temperature to some extent. The organic
carbon content is high (∼1.4% on average) at intermediate
depths (∼100–1,000 m) where bottom water dissolved oxygen
is at its lowest (∼0.5 ml/l on average). The maximum living
benthic foraminiferal abundance at these depths with limited
diversity indicates high abundance of a few opportunistic species.
The high Corg/TN suggests that Corg% is mostly of terrestrial
origin, especially closer to the river mouths. Three significant
faunal assemblages delineated from the statistical analysis give
more insight on the ecological preferences of foraminifera
in the west-central Bay of Bengal. The shallow water (∼27–
100 m) assemblage comprising of N. labradorica, H. nipponica,
B. dilatata, A. tepida, and N. limbato-striata represents well
oxygenated warmer waters with low Corg% and coarser sediment.
The intermediate water (∼145–1,500 m) assemblage comprising
of E. exilis, B. earlandi, F. spinosa, B. lucidopunctata, G. globosa,
F. spinosa, E. cassandrae, U. peregrina, R. semiinvoluta, and
C. laevigata assemblage represents poorly oxygenated, colder
waters with high Corg%. The deep water (∼1,940–2,494 m water
depth) assemblage comprising of B. cf. delreyensis, B. marginata,
H. guttifera, C. laevigata, and G. subzelandica represents high
Corg% but relatively higher bottom water dissolved oxygen

than the intermediate water depth. We also report the specific
preference of 40 dominant species each influenced by a set
of environmental parameters. The ecological preferences of
foraminiferal species and foraminiferal assemblages delineated
from this study can be utilized as proxies in sub-surface samples
to understand paleo-ecology and paleoclimatic changes from the
west-central Bay of Bengal.
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