AUTHOR=Bernal-Ibáñez Alejandro , Cacabelos Eva , Melo Ricardo , Gestoso Ignacio TITLE=The Role of Sea-Urchins in Marine Forests From Azores, Webbnesia, and Cabo Verde: Human Pressures, Climate-Change Effects and Restoration Opportunities JOURNAL=Frontiers in Marine Science VOLUME=8 YEAR=2021 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2021.649873 DOI=10.3389/fmars.2021.649873 ISSN=2296-7745 ABSTRACT=

Marine forests ecosystems are typical of temperate rocky benthic areas. These systems are formed by canopy-forming macroalgae (Laminariales, Tilopteridales, and Fucales) of high ecological value that provide numerous ecosystem services. These key species are also indicators of good environmental status. In recent decades, marine forests have been threatened by different impacts of local and global origin, putting their stability and survival in question. On a global scale, in many temperate areas of the planet, marine forests have been replaced by “sea-urchins barrens.” We present a general overview of sea-urchins’ population status in the archipelagos of Azores, Webbnesia (Madeira, Selvagens, and Canary Islands) and Cabo Verde, focusing on their role in the maintenance of the so-called “alternate stable state.” After an in-depth evaluation of the different anthropogenic and environmental pressures, we conclude that sea-urchins population explosion has been facilitated in the benthic habitats of Madeira and Canary Islands, preventing the recovery of canopy-forming macroalgae assemblages and being one of the main drivers in maintaining a stable barren state. Diadema africanum is the main barrens-forming species in Webbnesia, where it reaches high densities and strongly impacts macroalgal assemblages. On the other hand, in the most pristine areas, such as the Selvagens Islands and other Marine Protected Areas from the Canary Islands, the density of D. africanum is up to 65% lower than in the nearby Madeira Island, and macroalgal communities are preserved in good status. This information is critical for marine environmental management, highlighting the urgent need for implementation of appropriate control mechanisms and restoration actions headed to the conservation of marine forests in Macaronesian archipelagos.