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The inadequate spatial resolution of altimeter results in low identification efficiency of
oceanic eddies, especially for small-scale eddies. It is well known that eddies can
not only induce sea surface signal but more importantly have typical vertical structure
characteristics. However, although the vertical structure characteristics are usually used
for statistical analysis, they are seldom considered in the process of eddy recognition.
This study is devoted to identifying eddies from the perspective of their vertical signal
derived from the 18-year Argo data. Due to the irregular and noisy profile pattern, the
direct identification of eddy core from Argo profile is deemed to be a challenge. With the
popularity of artificial intelligence, a new hybrid method that combines the advantages
of convolutional neural network (CNN) with extreme gradient boosting (XGBoost) is
proposed to extract the representative vertical feature and identify eddy from a profile.
First, CNN is employed as a feature extractor to automatically obtain vertical features
from the input profile at the bottom of the network. Second, the obtained high-
dimensional feature vectors are inputted into the XGBoost model, combined with other
profile features for classifying profiles that are outside altimeter-identified eddies (Alt
eddy). Finally, extensive experiments are implemented to demonstrate the efficiency
of the proposed method. The results show that the classification accuracy of CNN-
XGBoost model can reach 98%, and about 36% eddies are recaptured. These eddies,
dubbed CNN-XGB eddies, are benchmarked against Alt eddies for the vertical structure
and geographical distribution, demonstrating a similar or even stronger vertical signal
and a prominent eddy belt in the tropical ocean. Within the proposed theory framework,
there are various potentials to obtain a better outlook for eddy identification and in situ
float observations.

Keywords: oceanic eddy identification, Argo profile, convolutional neural network, extreme gradient boosting,
eddy core

INTRODUCTION

Ocean eddies are omnipresent and play a significant role in transporting water mass, heat, and
nutrients since their capacity of trapping fluid parcels and generate vertical movements within
their cores, effectively impacting the ocean’s circulation, large-scale water distribution, and biology
(Bryden and Brady, 1989; Chelton et al., 2011a,b; Faghmous et al., 2012; Zhang et al., 2014;
Amores et al., 2018).
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Oceanic eddy detection is a key step in promoting the
development of eddy science, which has been widely studied
based on the variety of remote sensing data. The current
mainstream eddy recognition method based on an automatic
algorithm from gridded maps of sea level anomaly (SLA)
is proved to be an effective method (Chelton et al., 2011b;
Faghmous et al., 2015; Le Vu et al., 2018). Although the merged
dataset is enabling observational studies of mesoscale features
[with a spatial resolution of (1/4)◦ and a temporal resolution of
daily] that were not previously possible using altimetry data (e.g.,
∼315 km at the equator of the TOPEX/Poseidon), the limitation
of satellite altimeter dataset in spatial resolution is still proven to
be too large to resolve the two-dimensional of oceanic eddies (Fu
et al., 2010), especially the oceanic eddies with a diameter smaller
than 50 km. Amores et al. (2018) concluded that eddy recognition
method based on sea surface height is largely underestimating the
density of eddies; capturing only between 6 and 16% of the total
number of eddies due to the limited resolution of the altimeter
gridded products is not enough to capture the small-scale eddies
that are the most abundant. Besides, some studies have tried
to identify eddies from other sea surface characteristics. For
instance, Gonzalez-Silvera et al. (2004) effectively identified and
tracked 18 eddies in the tropical Pacific Ocean using 5 months of
SeaWiFS and AVHRR data. D’Alimonte (2009) used sea surface
temperature (SST) data to iterate the SST isotherm for automatic
eddy detection. However, eddy detection using SST is prone to
false positives because many other ocean phenomena also impact
the sea surface temperature and surface ocean color (chlorophyll
concentration) (Du et al., 2018). While the eddy detection based
on the SAR principle has a high resolution and a small coverage
area that can identify submesoscale or even small-scale eddies,
it is easily affected by the wind field on the sea surface. Besides,
many studies have shown that eddies also sometimes present as
subsurface phenomena that are not noticeable by snapshots from
satellite altimetry or other satellite sensors, leading to detecting
uncertainties (Jeronimo and Gomez-Valdes, 2007; Andrade et al.,
2014; Zhang et al., 2014; Gordon et al., 2017).

The sign of temperature/salinity anomalies inside individual
eddies occurs due to geostrophic uplift and depression of the
background pycnocline vertical profiles associated with eddies
(Dong et al., 2012). Compared with 1–30 cm amplitude of the
sea surface caused by eddies, the ∼1,000 m seawater anomaly
amplitude below the sea surface caused by them cannot be
ignored. The main part of the eddy should be considered as the
underwater position where the largest seawater density anomaly
occurs or in other words, the eddy core. It is more stable than
the eddy features mapped to the sea surface and is not limited by
the spatial resolution of satellite remote sensing. Its strength and
depth directly determine the eddy energy and is the key to the
study of eddy dynamics and thermodynamics. In this way, eddies,
especially small eddies, weak eddies, subsurface eddies, etc.,
which cannot be detected by remote sensing, can be identified
by their three-dimensional structure characteristics. With the
development of the Argo global network, studies on the vertical
structure of eddy have been enriched and developed. Recently,
it has been effectively proved that we can derive the vertical
distribution caused by eddies as criteria for anticyclonic eddies

(AE)/cyclonic eddies (CE) identification through a training–
learning process using concurrent altimeter-Argo measurements
at a given location and then scanning all Argo profiles outside
altimetrically derived eddies according to the setup criteria to
locate missing eddies (Chen et al., 2020). However, the shape of
an eddy’s vertical structure is complex, regionally susceptible, and
polarity controlled. For example, by collocating historical records
of Argo profiles and satellite altimetry data, Chaigneau et al.
(2011) reconstructed the mean 3-D eddy structure in the eastern
South Pacific Ocean and suggested that the core (maximum
temperature and salinity anomalies in the vertical direction) of
CE is centered at ∼150 m below the surface, while the core of
AE is centered at ∼400 m. Dong et al. (2012) shed light on three
types of eddies’ vertical shapes: bowl shaped (with the largest
radius at the surface), lens shaped (with the largest radius at the
middle), and cone shaped (with the largest radius at the bottom)
based on high-resolution numerical model product. Pegliasco
et al. (2015) analyzed different eddy vertical shapes by using
clustering analysis in four major Eastern Boundary Upwelling
Systems. These existing studies have a common conclusion, that
is, the vertical shapes of oceanic eddies are not spatially and
timely uniform, and the eddy cores of AE and CE are asymmetric
even if they are in the same region. Moreover, these eddy
structures were obtained through the composite superposition or
multiprofile averaged, which were relatively smooth and regular.
But in general, an original eddy profile will present a more
irregular and noisy profile pattern making it a challenge to seek
out the eddy core directly. Consequently, the application of
artificial intelligence will be the expecting method to extract the
representative feature of each profile for eddy identification.

Deep-learning algorithms, which learn the representative and
discriminative features hierarchically from the data, have been
becoming a hotspot and have been introduced into the geoscience
community for big data analysis. Considering the low-level
features as the bottom level, the output feature representation
from the top level of the network can be directly fed into a
subsequent classifier for pixel-based classification (Zhang et al.,
2016). Convolutional neural network (CNN) is an efficient deep
learning model with hierarchical structure to learn high-quality
features at each layer. Since the model can reduce the complexity
of network structure and the number of parameters through local
receptive fields, weight sharing, and pooling operation, and can
actively extract high-dimensional features from big data as well,
it is a suitable model that can be used to extract profile feature
information. Although CNN has been recognized as one of the
most powerful and effective mechanisms for feature extraction,
traditional classifiers connected to CNN cannot fully understand
the extracted features (Ren et al., 2017). Boosting is one of the
most prominent classification techniques in the state-of-the-art,
providing the best accuracy levels at many problems. However,
the most known boosting algorithm, AdaBoost, has already been
proven to be sensitive against noise. Since Chen’s proposal of the
extreme gradient boosting (XGBoost) model (Chen and Guestrin,
2016), the theory and application of the decision tree method
have developed significantly. This model is proven to be the
most robust algorithm in both binary and multiclass datasets
for its strong resolution of data noise, fast calculation speed,
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and high accuracy and has been widely employed in various
classification applications. Inspired by the above facts, we aimed
to develop a novel hybrid CNN-XGBoost model for fully learning
the profile features. This composite model can provide more
accurate classification results by regarding CNN as a trainable
feature extractor to automatically obtain features from the input
profile and XGBoost as a recognizer and combined with other
remarkable profile features in the top level of the network to
produce results.

This paper aims to propose a new perspective to identify
eddies from vertical structure characteristics with deep learning
architecture. The objective of this paper is mainly twofold: one is
the hybrid CNN-XGBoost architecture construction for vertical
characteristics extraction, and the other is the comparison and
verification of the obtained eddy dataset. This is a significant
step forward compared to previous studies that focused only
on “sea surface characteristics of eddies” for identification.
Such an unprecedented improvement in state-of-the-art spatial–
temporal sampling and coverage of the Argo project allows
us to obtain a unique and massive dataset of subsurface T/S
records. The rest of the paper is organized as follows: In
Data, we describe the two datasets (altimetry and Argo data)
used in this work, and the eddy identification algorithm based
on satellite data is briefly presented. Methods introduces the
methods, including the dataset preprocessing principles, CNN
model, and XGB model principles and architecture along with the
experimental environment. The results are presented in Results.
The global eddy vertical structure characteristics are described
in Global Eddy Vertical Structure Characteristics. Model Training
Process explains the training process and accuracy evaluation
of the model. In Eddy Identification Based on CNN-XGBoost
Model, both the vertical structure and geographical distribution
characteristics of identified eddies by our method are analyzed in
detail. Additionally, a concise result on the relationship between
eddy property and its vertical structure is presented in Vertical
Structure of CNN-XGB Eddy. Finally, Conclusions contains a brief
discussion and our conclusions.

DATA

Satellite Altimeter Data
The sea level anomaly (SLA) data used in this study is
delayed time products generated by Archiving, Validation,
and Interpretation of Satellite Oceanographic (AVISO) from
a combination of T/P, Jason-1, Jason-2, Jason-3, and Envisat
missions. The SLA dataset spanned 18 years, from January 2002
to October 2019, and had a daily temporal resolution and a
(1/4)◦ × (1/4)◦ spatial resolution. In the present analysis, a
four-step scheme has been optimized for eddy identification
based on our earlier work by Liu et al. (2016). First, a high-
pass filtering is applied to the global SLA data using a Gaussian
filter with a zonal radius of 10◦ and a meridional radius of
5◦ before seed points are effectively determined. Second, the
global SLA fields are divided into regular blocks with a zonal
spacing of 45◦ and a meridional spacing of 36◦. Third, SLA
contours are computed with a 0.25-cm interval, and eddy

boundaries corresponding to maximum geostrophic velocity are
subsequently extracted. Finally, all blocks are merged seamlessly
into a global map with duplicated eddies eliminated. Following
the identification schemes, a comprehensive eddy dataset has
been created for the global ocean, which is available at http:
//coadc.ouc.edu.cn/tfl/ and http://data.casearth.cn/ (Data ID:
XDA19090202), and relevant technical details (including models
and procedures) can be found in Liu et al. (2016), Sun et al.
(2017), and Tian et al. (2020).

Argo Floats
The Array for Real-time Geostrophic Oceanography (Argo) data
also spanned from January 2002 to October 2019. The Argo
project is the first global observation system for the subsurface
ocean and is one of the best sources for in situ temperature
measurements. Argo floats observe large temporal (seasonal
and longer) and spatial (thousand kilometers and larger) scale
subsurface ocean variability worldwide (Roemmich et al., 2009).
At present, Argo is collecting ∼12,000 data profiles each month
(∼400 a day). This greatly exceeds the amount of data that can
be collected from below the ocean surface by any other method.
By September 21, 2020, there are as many as 3910 active floats
disseminated around the global ocean spacing nominally at every
3◦ of longitude and latitude. In this analysis, the Argo floats data
are provided by the Coriolis Global Data Acquisition Center of
France through their website: www.coriolis.eu.org. The quality
control and processing of Argo data are conducted automatically
by the Argo data center, and only profiles flagged as “good” or
“probably good” are downloaded. Meanwhile, additional data
filtering is applied to profiles with first measurement shallower
than 10 m and last measurement deeper than 1,000 m and
meanwhile having at least 30 valid data points within the
0–1,000 m depth range. Finally, linear interpolation with an
interval of 1 m is carried out for all edited high-quality profiles
in the global ocean.

Since density is a combination of temperature and salinity,
it can comprehensively evaluate the vertical structure anomalies
caused by eddies. Therefore, in this paper, the potential density
anomaly (PDA) is chosen as the property to represent the vertical
structure of eddies for eddy identification. After preprocessing
and filtering the profile data, the potential density is calculated
based on International Thermodynamic Equation of Seawater
2010 from Argo T/S profile data using the Gibbs Seawater
Oceanographic toolbox (McDougall et al., 2009), and anomalies
of every profile are computed by removing climatological profiles.
Here, the climatological T/S profiles are obtained by interpolating
the CSIRO Atlas of Regional Seas to floats’ positions and times
(Dunn and Ridgway, 2002; Ridgway et al., 2002).

MATERIALS AND METHODS

Data Preprocessing for Different Types
of Eddies
We established our dataset starting from the Argo profiles data.
Based on the positions and times of eddies and Argo floats, Argo
profiles are classified into three categories depending on whether
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the floats are inside the effective boundaries (i.e., the outermost
enclosed contour of SLA surrounding the eddy centroid) of
the altimeter recognized eddies (Alt eddy) or outside eddies.
The numbers of profiles that fall inside anticyclonic eddies
(Alt AE) or cyclonic eddies (Alt CE) in this study are 343,802
and 328,936, respectively, and 1,271,784 profiles are outside Alt
eddies. Figure 1 shows the geographical distribution of Argo
profiles. In general, the patterns of these figures are determined
by the locations where the Argo floats are gathered such as the
Kuroshio extension, the Arabian Sea, and the North Atlantic.
However, compared with Figures 1b,c, it can be found that the
Argo profile inside Alt eddy only accounts for about one-third of
the total profile (Figure 1b). Two-thirds of profiles are outside the
Alt eddy (Figure 1c). However, whether these profiles are actually
outside the eddy or actually inside the eddy but just not captured
by the altimeter needs to be determined by their vertical structure
characteristics.

There is a part of the eddies that are identified by the altimeter
as cyclonic (anticyclonic) eddies, but there are negative (positive)
PDA; that is, their positive and negative polarities of the eddy
core are opposite to the polarity detected by the altimeter (Chen
et al., 2020). Therefore, before performing eddy recognition, we
first need to purify the profile data within the eddy and pick
out abnormal eddies to ensure the data quality. Theoretically,
the CE (AE) should have a positive (negative) anomaly, so we
calculated the sum of the CE (AE) profile from 20 to 1,000 m
(the near-surface layer depth is set to −20 m to reduce the effect
of noise near the ocean surface), and eliminated the profiles with
negative (positive) values. At present, there is no clear definition
of which profiles are determined outside eddies. But generally,
we suppose the profiles that are located outside the effective
eddy boundary identified by the existing altimeter resolution and
causes weak vertical structure signal to have a great probability
of actually being outside eddies. Therefore, based on our research
foundation and in order to keep a balance of the sample dataset,
the out eddy profiles (OEs) dataset is established for the profiles
that are outside the effective boundary of eddies and cause 15%
of the weakest vertical structure signal in every 5◦ × 5◦ grid.
After data preprocessing, the numbers of profiles inside AE or
CE as the modeling dataset are 207,798 and 188,809, respectively.
The datasets of these profiles are randomly sampled and divided
into a training dataset (60%) and a testing dataset (40%). The
statistical results of the training and testing datasets are shown
in Table 1, including the total numbers of sample profiles and the
mean± standard deviation of the PDA values in each dataset.

Models
In this paper, a new hybrid model that combines the advantages
of convolutional neural network (CNN) and extreme gradient

TABLE 1 | Sample statistics of training and testing datasets.

Sample
datasets

All
samples

Training
samples

Test
samples

Training mean
(kg/m3)

Testing mean
(kg/m3)

AE 207,798 124,679 83,119 −0.128 ± 0.178 −0.129 ± 0.180

CE 188,809 113,285 75,524 0.083 ± 0.147 0.082 ± 0.149

OE 183,841 110,305 73,536 −0.0004 ± 0.062 −0.0003 ± 0.062

boosting (XGBoost) is proposed. The proposed model is
combined with two parts: feature extraction and classification.
CNN is used to extract and select the features of the profile
data at the bottom of the network, and the obtained high-
dimensional feature vectors are inputted into the XGBoost
model for profile classification. The experimental environment
of model building is performed on a computer with an Intel
i7-9700F CPU @3.00 GHz with 32 GB memory, Windows
10 OS, and Anaconda 3. Python is the main programming
language, and CNN is implemented under the neural network
framework Pytorch 1.5.1.

Convolutional Neural Network
A supervised CNN model is proposed to extract features from
profiles. CNN model goes through a training process with
inputted training profiles, and the cross-entropy loss is computed
for back propagation to optimize the model parameters. The
detailed process of the model is described as follows.

For our dataset with m profiles and k-dimensional vertical
features, let pl

train = (d20, d21, d22, . . . , dk−1, dk, k = 1, 000) be
an input vector of the CNN, where dz represents the PDA at the
depth of z (m). The features extracted by the first hidden layer can
be described as Equation (1).

Z1 =W1 ⊗ Pl
train + b1 (1)

where
⊗

represents the convolution process. W1 and b1 are the
weight and bias of the first hidden layer, respectively, and Z1 is
the output of the first hidden layer.

Then, other hidden layers can be described as Equation (2).

Zi =Wi ⊗ Zi−1 + bi−1, i = 2, ..., n (2)

where n is the number of the hidden layer. Suppose
q
(
f1, f2, , fj,, j = 64

)
= C(pl) is the obtained feature vector

from CNN, the process of XGBoost model can be defined
as P = X(q, featuresvertical), where P represents the output
probability of XGBoost model, which is computed by softmax
function. featuresvertical represents the additional vertical
structure features (see details in CNN-XGBoost Model).
Therefore, the proposed model can be defined as Equation (3).

P = X
[

C(pl
train)

]
(3)

The cross-entropy loss is defined as Equation (4).

L = −
c∑

a=1

ya log Pa (4)

where ya is the real label, Pa is the probability of class
a, and c is the class number. The training process finished
when the loss convergence. Then, the testing dataset [pl

test =

(d20, d21, d22, . . . , dk−1, dk, k = 1, 000)] are inputted into the
model to evaluate accuracy.

Extreme Gradient Boosting
XGBoost is a highly effective scalable machine learning model
developed by Chen and Guestrin (2016), which has been widely
used in many fields to achieve state-of-the-art results on data
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FIGURE 1 | Global geographic distribution of Argo profiles during 2002–2019 under 1◦ × 1◦ grid. (a–c) Cumulative number of all profiles, profiles inside Alt eddies,
and profiles outside Alt eddies, respectively.

challenges. It is greatly improved and optimized on the traditional
Gradient Boosting Decision Tree, mainly including using the
second-order Taylor expansion and introducing the regular term
to prevent overfitting, which greatly promotes the accuracy,
efficiency, and flexibility of the model. After the training of CNN
model, a 64-dimensional feature vector is obtained and inputted
into the XGB model. The principle of the XGBoost model is
described as follows. For a dataset with n samples and m features
D =

{(
xi, yi

)} (
|D| = n, xi ∈ Rm, yi ∈ Rn), ŷk

i is the predicted
result of xi in round k. A tree boosting model output ŷk

i with K
trees is defined as follows:

ŷi =

K∑
k=1

fk (xi) , fk ∈ F (5)

where F =
{

f (x) = wq(x)

} (
q : Rm

→ T, w ∈ RT) is the space
of regression or classification trees, w is the weight of the leaf
child nodes of the regression tree, and q is the structure of the

regression tree. T is the number of leaf nodes. In order to learn the
parameters of this model, it is necessary to minimize the objective
function:

Obj =
∑

i

l(ŷi, yi)+
∑

k

�(fk) (6)

where l in Equation (6) is a training loss function that measures
the distance between the prediction ŷi and the object yi. The
second term in Equation (6) is defined as follows, which
represents the penalty term of the tree model complexity.

�
(
ft
)
= γT +

1
2
λ

T∑
j=1

ω2
j (7)

where γ is the regularization term (based on the number of leaves
of the tree and the scores of each leaf), and T is the number
of leaves. λ is the L2 regularization parameter, and the final
prediction by summing up the score in the corresponding leaves
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is given by ω. XGBoost is a forward step-by-step algorithm, that
is, in the round t iteration, adding a new model ft needs to
minimize the following target function:

Obj(t)
=

n∑
i=1

l
(

yi, ŷi
(t−1)
+ ft(xi)

)
+�(ft) (8)

XGBoost algorithm uses second-order Taylor expansion for
optimization. After the second-order Taylor expansion, the
following formula is obtained:

Obj(t)
=

n∑
i=1

[
l
(

yi, ŷ(t−1)
i

)
+ gift (xi)+

1
2

hif 2
t (xi)

]
+�

(
ft
)
(9)

Denote Ij =
{

i|q (xi) = j
}

as the instance set of leaf. Where
gi = ∂ŷ(t−1) l(yi, ŷ(t−1)), hi = ∂2

ŷ(t−1) l(yi, ŷ(t−1)) are first- and
second-order gradient statistics on the loss function. After
substituting gi, hi, and into Equation (9), the formula can be
rewritten as:

Obj(t)
=

T∑
j=1

[
Gjwj +

1
2
(
Hj + λ

)
w2

j

]
+ γT (10)

where Gj =
∑

i∈Ij
gi, Hj =

∑
i∈Ij

hi. For a regression tree with

a specific structure, the solution weight w∗j =
Gj

Hj+λ
is used to

evaluate the quality of the tree structure by deriving wj. A greedy
algorithm is used to determine the tree structure that starts from a
single leaf and iteratively adds branches to grow the tree structure.
Whether adding a split to the existing tree structure can be
decided by the following function:

Osplit =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

−
G2

H + λ

]
− γ (11)

where IL and IR are the instance sets of the left and right nodes
after the split and I = IL ∪ IR.

CNN-XGBoost Model
In this paper, the specific structure CNN-XGBoost model is used
for eddy identification. Figure 2 visualizes the architecture of
the model. We use six CNN building blocks with convolutional,
batch normalization, activation layers, and a pooling layer.
Because of the strong feature expression ability of CNN,
the accuracy of the model will decrease with the increase
in convolution layer, but restricting the depth of the model
may reduce the classification accuracy. Therefore, we adopt a
doubleconvpool structure. Doubleconvpool structure includes
two convolution layers, two batch normalization layers, and
one pooling layer. That is, there is no pooling layer between
two consecutive convolution layers to realize the retention and
transmission of feature information and balance between the
high-dimensional characteristics of profile and model depth.
Meanwhile, the model uses batch normalization and dropout to
avoid overfitting. Then, the ReLU activation function is set after
convolution to add nonlinear factors to increase the expression
ability of the model. Each profile is inputted into the model

as a one-dimensional feature vector (the depth range is 20–
1,000 m). After six layers of CNN learning, a 64-dimensional
feature vector is obtained and input into the XGB model. For
the XGBoost classifier, in addition to the profile feature vector
learned through the CNN model, the input features also include
the spatiotemporal features of the eddy (location: longitude and
latitude, month in which the eddy is recognized) as well as
the vertical structure characteristics of eddy (including profile
minimum, maximum and its corresponding depth, integral area
of the entire profile, integral areas of 300 m interval, extreme
values of 300 m intervals, and the corresponding depth) to
comprehensively evaluate the characteristics of the eddy profile.
After training and verifying the XGBoost model, the outputs are
the probabilities of the classes “AE,” “CE,” or “non-eddy.”

RESULTS

Global Eddy Vertical Structure
Characteristics
The vertical PDA profiles of Alt eddy are shown in Figure 3. The
thick lines in Figure 3A represent the global average profiles over
the entire time series. The thin lines are two randomly selected
profiles in Alt eddy without smoothing. They show notable eddy
vertical structures and accompanied by large noise and burr
signal. Meanwhile, there is a dual-core in the AE (thin red line
in Figure 3A). Even if the anomaly caused by the lower eddy core
is smaller, the main eddy core should be located here with a wider
eddy core. For CE (thin blue line in Figure 3A), obviously, in
addition to a small anomaly in the sea surface, this eddy presents
a single core structure with a depth ranging from about 50 m to
nearly 400 m. The seasonal mean profiles from 2002 to 2019 are
shown in Figure 3B, suggesting that the position and intensity
of the eddy core will change along with the change in seasons,
which is a reason that we add months as a feature to the model.
Figures 3C,D present the latitude average vertical structure of the
eddy PDA to show the variation in the depth and intensity of the
eddy core on the latitude zone. On the whole, the eddy intensity
in the northern hemisphere is stronger than that in the southern
hemisphere, and the intensity of AE is stronger than that of CE.
Along with the increase in latitude, the depth of the eddy core
gradually increases, and a dual-core structure may appear in mid-
latitude regions. Regarding the eddy intensity, we take about
200 m as the boundary. With the increase in latitude, the PDA
intensity above 200 m becomes weaker and below 200 m becomes
stronger. From the latitude-averaging profiles, we can see the
general change trend of the eddy core, but for different small
areas, the pattern of the eddy profiles will be greatly different (see
Figure 6 for details). Thus, it is essential to consider the location
(longitude and latitude of the eddy) when determining whether a
float is located inside the eddy.

Model Training Process
In order to reveal the effectiveness of the CNN-XGB hybrid
model, we test the accuracy of CNN model, XGB model, and the
hybrid model for profile classification. The input feature of CNN
and XGBoost model is the PDA profile vector, and softmax is
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FIGURE 2 | Convolutional neural network with extreme gradient boosting (CNN-XGBoost) architecture.

used as the classifier. The running time, accuracy, and sensitivity
assessment of these three models are summarized in Table 2.
Note that the sensitivity assessment refers to the proportion of
a kind of eddies that are mistakenly classified into the other
two types (i.e., AE is misjudged as CE or OE), so as to evaluate
the specificity of the proposed algorithm to eddies in different
polarity. It can clearly reflect that the classification accuracy of
CNN-XGBoost model is better than that of CNN or XGBoost
alone, and the accuracy can be improved by ∼4 and ∼6% on
CNN and XGBoost model, respectively. The specificity analysis
of the three models shows that the probability of AE being
misjudged is less than that of CE. The reason for this result is that
compared with the PDA induced by AE, CE is weaker (see Table 1
and Figure 3 for the mean PDA values and profiles of AE and CE,
respectively). This result is also consistent with the conclusion
that the proportion of abnormal CE is larger (see Chen et al., 2020
for details). In addition, AE (CE) is more likely to be judged as OE
than CE (AE). It is comprehensible that eddies with weak signals
are easier to be judged as OE (for its critical PDA signal close to
zero) rather than the classification of the opposite polarity.

To train CNN-XGBoost model, the first is the training of the
CNN model. We used cross-entropy as the loss function, and
the optimization algorithm of the training process adopts Adam
algorithm. A 3 × 3 convolution kernel size is used in every
convolutional layer, and the stride is 5. Furthermore, maximum
pooling using a kernel of size 2× 2 is added to prevent overfitting.
We choose different learning rates (0.0005, 0.001, 0.003, 0.005,
and 0.01) to experiment on the dataset. It shows that when
the learning rate is 0.0005, the convergence speed is the fastest,

and the loss function is the smallest when it converges, so this
experiment uses 0.0005 as the value of the learning rate. After
100 epochs of training, the test accuracy of the CNN model can
achieve ∼94%. Figure 4 presents the accuracy and loss variation
on validation sets, showing that the loss and accuracy of the
model have been well converged.

For the XGBoost classifier, the Bayesian optimization is
applied to obtain the best configuration of the hyperparameters.
This optimization method is obtained from a Gaussian process
prior and constantly updates the prior knowledge by considering
the previous parameter information, whereas a conventional
grid search or random search considers no prior parameter
information. In addition, the Bayesian optimization process uses
a small number of iterations and has a rapid running speed,
allowing it to optimize algorithms with multiple parameters
such as XGBoost. After parameters optimization, we select the
best parameters including the eta, gamma, max_depth, and
min_child_weight values of 0.4, 0.8, 10, and 1, respectively. The
other parameters are set to the default values. The objective
function is softmax for multiclassification, and the multiclass
error rate is selected for the evaluation metric. After the 100
iterations’ training of XGBoost model, the CNN-XGB model
accuracy reaches 98%.

Eddy Identification Based on
CNN-XGBoost Model
The CNN-XGBoost model is used to learn and classify almost
120 million profiles that are not in the Alt eddy. It took only
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FIGURE 3 | Vertical profiles of the potential density anomaly of Alt eddy. (A) Global average profiles from 2002 to 2019 (thick lines). The thin red (blue) line is the
original eddy profile inside Alt anticyclonic eddies (AE) [cyclonic eddies (CE)], and the buoy number is 1901621 on March 26, 2018 and 1901817 on October 9,
2018, respectively. (B) Global average profiles in different seasons. (C) Latitudinal average profiles in the Northern hemisphere and (D) latitudinal average profiles in
the Southern hemisphere.

∼17 min to classify the entire dataset, and then, we got the
profiles that are outside Alt eddy but inside the eddy identified by
the CNN-XGB method (CNN-XGB eddy). Recently, we proposed
a methodology to effectively combine the vertical structure
signals and sea surface topological structure of eddies based
on a mathematical PDA algorithm (PDA eddy, Chen et al.,
2020). Compared with this method, the CNN-XGB model has
two significant advantages. First is higher computing efficiency.
Based on the CNN-XGB method, we can scan the global profiles

in < 20 min, while the mathematical method takes several days or
even longer to complete the calculation, which reflects the unique
advantages of AI model. Second is better spatial continuity. In
order to take into account both the regional characteristics of
eddy vertical structure and the number of training samples,
we use 5◦ grid as the unit for eddy identification in the PDA
algorithm, which limits the resolution of the algorithm to 5◦.
However, The AI model is not limited by the spatial grid and thus
has stronger spatial continuity. In this section, we compare eddy
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TABLE 2 | Comparison of three different models.

Model Running time Accuracy Sensitivity and specificity

AE (ϕ CE/ϕ OE ) CE (ϕ AE/ϕ OE )

CNN 138 min 93.8% 0.43% 0.98% 1.12% 2.88%

XGBoost 43 min 92.1% 0.65% 1.56% 1.62% 3.19%

CNN-XGBoost 221 min 98.3% 0 0.06% 0 1.41%

FIGURE 4 | Accuracy and loss variation on validation sets of convolutional
neural network (CNN) model.

features identified by the CNN-XGB model with those captured
by the altimeter and obtained based on mathematical PDA
methods, so as to verify the effectiveness of our model algorithm.

Vertical Structure of CNN-XGB Eddy
We first examined the vertical signals of the obtained CNN-XGB
eddies. Figure 5 reflects the global average vertical structures of
Alt eddy (short dashed line), PDA eddy (long dashed line), and
CNN-XGB eddy (solid line). By and large, the global mean CNN-
XGB eddy profiles have very significant PDA signals, which are
much stronger than those of the Alt eddy and are almost as
strong as PDA eddy signals, implying that the eddy identification
based on CNN-XGB model is effective and robust. We can find
out in detail that for these profiles, the anomaly increases with
depth from the sea surface, reaches its maximum at ∼90 m
and decreases thereafter. Although they present a similar depth
position of eddy core, the magnitude of eddy core intensity varies
greatly. For Alt eddy, the magnitude of maximum anomaly is
∼−0.18 kg/m3 for AE and only ∼0.08 kg/m3 for CE, while a
maximum anomaly inside CNN-XGB AE (CE) is ∼−0.33 kg/m3

(∼0.20 kg/m3) for centered at ∼72 m (∼93 m). The eddy
core intensity of CNN-XGB eddy is almost equal to PDA eddy
(∼−0.32 kg/m3 for PDA AE and ∼0.21 kg/m3 for PDA CE,
respectively) and present a slightly shallower eddy core depth

FIGURE 5 | Global mean potential density anomaly profiles for different types
of eddies from 2002 to 2019. The short dashed line is the profile of Alt-eddy.
The long dashed line is the profile of potential density anomaly (PDA) eddy
and the solid line is the vertical structure that is inside eddies through the
convolutional neural network with extreme gradient boosting (CNN-XGBoost)
model but not recognized by the altimeter. Red lines represent anticyclonic
eddies (AE), and blue lines are cyclonic eddies (CE).

compared to PDA eddy, which may due to the fact that the CNN-
XGB model can find more eddies in the equatorial region where
eddy cores are shallower (see Figure 7). The anomaly intensity
of CNN-XGB eddy is almost twice as strong as Alt eddy, while
the eddy core depth is close to each other, proving that some
of the Argo profiles that are not captured by the altimeter show
typical eddy vertical structure signals, which can be successfully
extracted by the CNN-XGB algorithm.

Since the vertical structure of eddies will have obvious
inconsistencies with regional and latitudinal differences, we
randomly selected four small areas in different latitude zones
(white boxes in Figure 6) as well as the corresponding latitude
zones (banded colors in Figure 6) to compare the vertical
structures of the Alt eddy, PDA eddy, and CNN-XGB eddy to
further verify the reliability of our results. Examining each panel,
an overall impression is that CNN-XGB eddies show a stronger
vertical signal than Alt eddies and a close signal with PDA eddies,
which further proved that our eddy identification model is not
only globally fitted but also regionally sensitive. The geographical
distribution at the top of Figure 6 shows the location of the
selected grid points and the division of latitude zone. Areas A and
B are within the latitude range of 20N–20S (L1), which is covered
by the light blue area. In area A, the signal at the eddy core
(∼120 m) of CNN-XGB eddy is much stronger than that of Alt
eddy, displaying a maximum of ∼−0.76 kg/m3 (∼−0.19 kg/m3)
of CNN-XGB (Alt) AE and∼0.66 kg/m3 (∼0.08 kg/m3) of CNN-
XGB (Alt) CE. Area B locates in the Arabian Sea where the
characteristics of the eddy core are consistent with Figure 7
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FIGURE 6 | Mean potential density anomaly profiles of four areas in different latitude zones and average profiles of the different latitude zones. The white boxes
marked with capital letters in the geographic distribution map represent the location of the corresponding areas, and the bands of different colors represent the
corresponding latitude zones. (A,B) Average profiles in areas A and B in latitude 1 (L1: 0−20N and 0−20S), (C) Average profiles in area C in latitude 2 (L2: 20−40N
and 20−40S), and (D) Average profiles in area D in latitude 3 (L3: 40−60N and 40−60S). The short dashed red (blue) lines are the profiles of Alt anticyclonic eddies
(AE) [cyclonic eddies (CE)], long dashed red (blue) lines are the profiles of potential density anomaly (PDA) AE (CE), and the solid red (blue) lines are the profiles of
CNN-XGB AE (CE).

in de Marez et al. (2019), showing that eddy-induced ocean
anomalies in this area are mainly confined in the upper 300 m.
The shift increases rapidly for both AE and CE, and the AE
anomalies are slightly greater than those of CE. Looking at the
mid-latitude, ranging from 20N–40N to 20S–40S (L2), which is
covered by the green area, the eddy core goes deeper, and a double
core structure may appear. A similar conclusion can be found
in area C, which can be compared with the eddy structure in
Pegliasco et al. (2015). Results show that the maximum PDA
inside composite Alt CE is 0.08 kg/m3 at ∼170 m, while that
inside the Alt AE is −0.09 kg/m3 at ∼240 m. In the CNN-
XGB eddy profiles, a stronger PDA appears; the maximum inside

the AE is ∼−0.13 kg/m3 and the maximum inside the CE is
∼0.1 kg/m3. A similar pattern is also found in the mean PDA
profile of the latitudinal zone (L1–L3). Along with the increase
in latitude, the magnitude of maximum anomaly remarkably
decreases, but the signal of CNN-XGB eddy is always stronger
than that of Alt eddy.

The vertical structure can intuitively reflect the strength of the
eddy signal of the two identification methods. We suppose that
such a large proportion of profiles with strong vertical structure
signals are not recognized by the altimeter and may mainly
include three aspects. First, a considerable part of CNN-XGB
eddies is found distributed at the equator where the altimeter

Frontiers in Marine Science | www.frontiersin.org 10 May 2021 | Volume 8 | Article 646926

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-646926 May 3, 2021 Time: 17:1 # 11

Chen et al. Eddy Identification With Profiling Argo

FIGURE 7 | Global geographic distribution of profiles inside Alt eddy and convolutional neural network with extreme gradient boosting (CNN-XGBoost) eddy during
2002 to 2019 under a 1◦ grid. (a,b) The frequencies of Argo profiles in Alt eddy and CNN-XGBoost eddy occurrence with respect to all Argo profiles within the same
grid, respectively. (c,d) Corresponding zonal distributions of Panels (a,b).

sampling interval is the largest (see Figure 7) so that even a part
of eddies having notable sea surface characteristics is missing.
Second, a part of the floats inside Alt eddy is relatively far away
from the eddy center, which makes the vertical structure signal
weaker because the vertical structure of the eddy weakens with
the increase in the distance between the float and the eddy center.
Third, even if the sea surface signal of the eddy is too small to be
distinguished by the altimeter in higher latitude, it will have an
evident vertical signal, and the existence of subsurface-intensified
eddy that lacks strong surface signals cannot be eliminated.

Geographical Distribution of CNN-XGB
Eddy
Another perspective to validate the effectiveness of eddy
recognition is its global distribution characteristics. Figure 7
shows the global geographic distribution (left column) and the
corresponding zonal distribution (right column) of Alt eddies
and CNN-XGB eddies. In order to eliminate the influence of Argo
floats location on the geographical distribution, the percentage of
floats per 1◦ grid is calculated and shown. The percentage refers
to the profiles falling into eddies divided by the total number

of profiles in the corresponding grid. Comparing Figures 7a,b,
the complementarity between the Alt eddy and CNN-XGB eddy
is remarkable, showing that almost 50% of the profiles are
inside eddies but are missed by the altimeter in the tropical
ocean. The equatorial low latitude area is also the area where
altimeter sampling is relatively sparse, and more eddies may not
be detected. With the increase in latitude, the percentage of the
profiles in Alt eddy increases gradually, while that in CNN-XGB
eddy decreases. Since the geographic distance corresponding to
the 1◦ spatial distance on the earth decreases with the increase
in latitude, the spatial resolution of an altimeter with the same
orbital spacing near the equator is much lower than that of high-
latitude regions. The space distance of 1◦ latitude on the earth
drops from about 111 km at the equator to about 55 km at the
poles; that is, the corresponding geographic scale in the equatorial
region is larger, and the spatial resolution of the altimeter is
lower than that in the middle and high latitudes, so more eddies
are missed. Through the vertical structure of the eddy, a large
number of eddies in the equatorial region have been identified
where the spatial resolution of the gridded altimetric products
is not enough to capture the small-scale eddies. In addition, the
geographical distribution of profiles inside CNN-XGB eddy has a
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FIGURE 8 | Global geographic distribution of Argo profile density per 1◦ × 1◦ grid during 2002 to 2019. (a) Distribution of numbers of Argos in Alt anticyclonic
eddies (AE) minus the numbers of Argos in Alt cyclonic eddies (CE) in the corresponding grid. (b) Same as Panel (a) but is the Argos in CNN-XGB eddies. (c,d) The
frequencies of Argo profiles in Alt AE and CNN-XGB AE occurrence with respect to all Argo profiles within the same grid, respectively. (e,f) same as Panels (c,d) but
for CEs.

consistency with that of the short-lived eddy proposed by Chen
and Han (2019). It is also proved that eddy properties such as
amplitude, vorticity, and kinetic energy are positively correlated
with the eddy’s lifetime, and this can further confirm that there
are plenty of eddies with a smaller radius and lower energy
in the tropical equatorial region that can hardly be captured
through the altimeter.

Further, both Alt eddies and CNN-XGB eddies are classified
into AEs and CEs, as shown in Figure 8. Figures 8a,b are
the difference between the Alt (CNN-XGB) AE and Alt (CNN-
XGB) CE. Both of these two figures show a strip distribution of
alternating positive and negative values, which further imply that
our model has no eddy polarity preference. A belt of maximum
in the tropical ocean also appears for both CNN-XGB AE and
CE where altimeter eddy identification is known to be ineffective
(Figures 8d,f). Figures 8c,d show the percentage of Alt (CNN-
XGB) AE. It is obvious that in addition to picking up a large
proportion of eddies in low latitudes, more missing AEs are found
in AE accumulation areas such as the Kuroshio area, eastern
Australia, and Southwest Atlantic. CE is the same, seeing in the
South Pacific and North Atlantic for example (Figures 8e,f).

Table 3 summarizes the global average profile rate picked
up by Alt eddy and CNN-XGB eddy. For the Alt eddy, the

percentage of Argo captured is about 34.60%. After the CNN-
XGB algorithm, the percentage of Argo inside eddy is increased
by 36.04%, and the remaining 29.36% of Argo is indeed outside
eddies. We further confirm the percentage inside CNN-XGB AE
and CE for 18.69 and 17.35%, respectively, increases by ∼1%
compared with Alt eddy.

Relationship Between Eddy Property and
Its Vertical Structure
At present, we have realized the recognition of the eddy missed
by the altimeter through artificial intelligence and the vertical
structure of the eddy but only the recognition of the eddy point.
It is well-known that an eddy is not only a vertical profile point
but also a body with a certain radius and can cause the amplitude

TABLE 3 | Comparison of the statistics of Argo floats identified by altimeter and
CNN-XGB.

Identify rate of Argo floats AE CE ALL

Alt eddies 17.68% 16.92% 34.60%

CNN-XGB eddies 18.69% 17.35% 36.04%

Outside eddies – – 29.36%
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FIGURE 9 | Scatter diagrams of eddy property versus potential density anomaly intensity during 2002–2019. (A) Radius, (B) amplitude, and (C) eddy kinetic energy
(EKE). The color bars denote eddy numbers. The black dashed curves depict the most likelihood of eddy properties with respect to potential density anomaly
intensity.

of the sea surface with a certain kinetic energy. Thus, the next
step is to predict the surface characteristics of the eddy based on
deep learning regression analysis, such as the radius, amplitude,
and kinetic energy. Scatter diagrams of eddy radius, amplitude,
and eddy kinetic energy (EKE) as a function of PDA intensity
are illustrated in Figure 9. Basically, the three properties all
have the most likelihood line in terms of data density, which
displays a slowly increasing trend with PDA intensity: from
∼100 to ∼130 km for radius (Figure 9A), from ∼1 to ∼15 cm
for amplitude (Figure 9B), and from ∼0 to ∼300 cm2/s2 for
EKE (Figure 9C). This result proves that there is an intrinsic
correlation between the eddy surface properties and its vertical
structure. It is feasible and reliable to invert the eddy surface
parameters through the vertical structure characteristics.

CONCLUSION

In this paper, a new hybrid model that combines the advantages of
CNN and XGBoost is proposed to achieve oceanic eddy detection
from 18-year Argo profiles. The major conclusions of the study
can be summarized as follows.

First, the proposed CNN-XGBoost model has promising
performance in extracting eddy vertical profile features. The
CNN model has a design of six convolution layers, and a
doubleconvpool structure is applied to improve the accuracy and
efficiency of feature extraction. Moreover, the method can get
the highest convergence when the learning rate is 5 × 10−4.
Furthermore, the 64-dimensional feature vectors learned from
CNN are inputted into the XGBoost model combined with the
profile position, date, and profile features. After 100 iterations,
the final model is obtained, with a classification accuracy of 98%.
Compared with CNN or XGBoost, the accuracy is improved by
4 and 6%, respectively. We further measured the sensitivity of
the proposed model by calculating the erroneous judgment of
AE and CE. Results show that compared with AE, CE is more
likely to be misjudged (1.41 versus 0.06%) since the abnormal

signal caused by CE is smaller than that of AE. Nevertheless,
the CNN-XGBoost model presents the lowest error percentage
among the three models with the highest misclassification rate of
<2% (see Table 2 for details). The results provide an insight that
the proposed deep learning method can be used as an effective
methodology for eddy identification.

Second, vertical profiles of CNN-XGB eddies show a
remarkable consistency with that of the Alt eddies. After carrying
out the global average, latitudinal average, and grid average, we
found that these eddies’ mean vertical shapes are homologous,
and the vertical anomaly signal of the CNN-XGB eddy is similar
or even stronger than that of the Alt eddy. For the global
average, the magnitude of the maximum anomaly of Alt eddy
is ∼−0.18 kg/m3 for AE and only ∼0.08 kg/m3 for CE, while
the anomaly intensity of the CNN-XGB eddy is almost twice
as strong as that of the Alt eddy, indicating ∼−0.33 kg/m3

for AE and ∼0.20 kg/m3 for CE. The reason why such a
large proportion of profiles with strong vertical structure signals
are not recognized by the altimeter may due to the larger
sampling interval of the altimeter at the equator, the farther
distance between the float and eddy center, and the existence of
subsurface eddies.

Third, among Argo profiles from 2002 to 2019, ∼34.6% of
the profiles are captured by Alt eddies, and about 36% of the
profiles (∼19% for AE and ∼17% for CE) are actually inside
eddies but missed by the altimeter and captured through our
eddy identification method; the other ∼29% profiles are indeed
outside eddies. The geographical distribution of the profiles
inside CNN-XGB eddies is complementary to that inside Alt
eddies. A prominent eddy belt with more than 50% of the profiles
inside the CNN-XGB eddies is found in the tropical ocean. There
is also the area abundant in short-lived eddy, which further
proved that weak and small eddy may be lost with a greater
probability. Consequently, the vertical profile datasets can be
extended to improve the identification ability of the altimeter.

The present research shows that there is a positive correlation
between eddy properties (e.g., radius, amplitude, kinetic energy)
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and the abnormal strength of eddy’s vertical structure. Therefore,
based on the deep learning method, the inversion of eddy
properties from its vertical structure should be further studied, so
as to establish a more complete Argo-eddy identification dataset.
In the spirit of reproducibility, the Python code will be available
at https://github.com/, and we will also share the training and
testing data used for this work to encourage competing methods
and, especially, other deep learning architectures.
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