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Earth system models parameterize ocean surface fluxes of heat, moisture, and

momentum with empirical bulk flux algorithms, which introduce biases and uncertainties

into simulations. We investigate the atmosphere and ocean model sensitivity to algorithm

choice in the Energy Exascale Earth System Model (E3SM). Flux differences between

algorithms are larger in atmosphere simulations (where wind speeds can vary) than ocean

simulations (where wind speeds are fixed by forcing data). Surface flux changes lead to

global scale changes in the energy and water cycles, notably including ocean heat uptake

and global mean precipitation rates. Compared to the control algorithm, both COARE

and University of Arizona (UA) algorithms reduce global mean precipitation and top of

atmosphere radiative biases. Further, UA may slightly reduce biases in ocean meridional

heat transport. We speculate that changes seen here, especially in the ocean, could be

even larger in coupled simulations.

Keywords: earth system modeling, ocean-atmosphere interactions, boundary layer turbulence, upper ocean

processes, climate dynamics

1. INTRODUCTION

Ocean surface fluxes of heat, moisture, and momentum control the ocean’s impact on weather
and climate. Despite many years of field studies, data set development and parameterization
improvements, available data sets still do not close the surface energy budget (L’Ecuyer et al.,
2015) and uncertainties in fluxes are too large to detect trends (Rhein et al., 2013). The methods
used to calculate ocean surface turbulent fluxes are a significant contributor to surface energy
budget uncertainties. While the methodological contribution to observational products has been
acknowledged and fairly well-explored (e.g., Yu, 2019), the contribution to the spread of Earth
system models is not well-understood. In this study we use atmosphere and ocean model
simulations to quantify how sensitive model results are to surface flux algorithm design.

The methods used to calculate ocean surface turbulent fluxes in numerical models and global
observational products rely on bulk flux algorithms. These algorithms use “bulk” quantities—sea
surface temperature (SST) and near-surface values of air temperature, humidity, and wind speed—
which are easier to measure than direct measurements of fluxes (e.g., Edson et al., 1998), and can
be measured by remote sensing platforms. Bulk algorithms have been compared by Zeng et al.
(1998), Brunke et al. (2002, 2003), and Brodeau et al. (2016), among others. While these studies are
valuable for understanding how different aspects of algorithm design affect surface flux estimates,
they have one limitation when it comes to understanding impacts on model results: they are based
on comparison of fluxes using pre-specified bulk variables. Thus, the differences in fluxes do not
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feed back onto the bulk variables. Therefore, such studies do not
allow us to fully understand the changes that result when the
algorithms are used in ocean and atmosphere general circulation
models, in which case the flux differences do result in changes
in the bulk variables. Understanding these feedbacks is key to
assessing the full model sensitivity to algorithm choice.

A number of past studies give strong evidence suggesting that
model sensitivity to ocean surface flux calculation is significant
and important. Looking at the atmospheric response, Harrop
et al. (2018) found that tropical Pacific precipitation biases in
the Energy Exascale Earth System Model (E3SM) are reduced
by including the effects of convective wind gustiness in flux
calculations. Large and Caron (2015), building on the work of
Zeng and Beljaars (2005), showed that parameterizing diurnal
variation of SST in a global atmosphere model can affect net
ocean surface heat flux and precipitation. Polichtchouk and
Shepherd (2016) showed that the effects of changing the ocean
surface roughness formulation in a global model are apparent
across the globe and through the full depth of the troposphere.
Compared to atmosphere models, the sensitivity of ocean models
to surface flux algorithms is comparatively unexplored. However,
it has been shown (Holdsworth and Myers, 2015; Kostov
et al., 2019) that surface heat flux specification is important
for simulating the Atlantic Meridional Overturning Circulation
(AMOC). These studies providemotivation for asking what other
aspects of ocean model behavior may be sensitive to surface flux
algorithm choice.

Given the wide ranging aspects of model climate (i.e., the
main features of the simulated Earth system) that are affected
by flux calculation methods, and the large number of studies
that compare bulk flux algorithms using pre-specified bulk
variable data, it is surprising that there are not more studies
investigating the consequences of bulk flux algorithm choice in
global models—especially in ocean models. We aim to fill this
gap, and identify three major aims in doing so:

1. Identify regions where differences between fluxes are largest.
This will assist developers of parameterizations to understand
uncertainties and identify strengths and weaknesses. Given
the uncertainties in observation-based flux data sets (Găinuşă-
Bogdan et al., 2015), it is difficult to identify a “least biased”
parameterization. Instead we aim to identify where the
differences between algorithms are significant, based on the
what might be expected from internannual and longer term
variability. Regions with significant differences can then be
prioritized for more detailed regional process studies and
analysis of structural differences in the algorithms.

2. Understand how the choice of test methodology (atmosphere
vs. ocean simulations) affects the apparent outcome. Due
to their different forcing data requirements, atmosphere
and ocean simulations allow different amounts of flux-bulk
variable feedback. Strobach et al. (2018) showed that inclusion
or exclusion of such feedbacks has a large impact on ocean
model simulations, and similar issues likely affect atmosphere-
only simulations. Thus, our work will help modelers and
parameterization developers to understand how the choice of
testing framework may influence results.

3. Explore which other aspects of model climate are affected,
to help model developers understand how surface flux
parameterization may influence the perceived biases of the
overlying atmosphere and/or underlying ocean model(s).
Based on the studies mentioned above, we expect differences
in precipitation, large-scale atmospheric circulation, and
possibly in deep water formation at high latitudes. However,
changes in other quantities and/or regions are possible.

The structure of this paper is as follows: section 2 summarizes
the bulk flux algorithms, model simulations and observational
data; section 3 presents results—of both surface fluxes and other
aspects of model climate; section 4 includes further discussion
and summarizes our findings.

2. DATA AND METHODS

2.1. Bulk Flux Algorithms
Exchanges of heat, moisture and momentum between
atmosphere and ocean are calculated in global models using bulk
flux algorithms. These algorithms parameterize turbulent fluxes
based on bulk quantities: sea surface temperature (SST), near-
surface air temperature and humidity, and near-surface wind
speed. Bulk flux algorithms have sound theoretical foundations
in Monin-Obukhov similarity theory. However, many aspects of
the algorithms are empirical, relying on constants and functional
forms estimated from (a relatively small number of) ship- and
buoy-based observational campaigns. The general form of the
flux algorithms can be expressed as:

Eτ = ρCD( EUz − EUs)UB (1)

QH = ρcpCH(θz − θs)UB (2)

QE = ρLvCE(qz − qs)UB (3)

where Eτ is the wind stress, QH is the sensible heat flux, and QE

is the latent heat flux. The main differences between algorithms
lie in the calculation of the transfer coefficients CD, CE, and CH ,
but there are also differences in UB (which may simply be the
wind speed or may have a modification due to boundary layer
eddies or convective gustiness), and even in the calculation of qs
(surface specific humidity) and Lv (latent heat of vaporization).
Other terms appearing in the equations are ρ (air density),
cp (specific heat capacity of air), θ (potential temperature), q

(specific humidity), and EU (wind velocity). Subscript z refers
to a value at height z in the atmosphere (in our case, the
height of the lowest atmosphere model level), while subscript s
refers to the value at the ocean surface. The sign conventions
employed mean that Eτ is the force exerted on the ocean by the
wind, and positive values of QH and QE correspond to heat
gain by the ocean. The coefficients CD, CE, and CH have two
main dependencies: stability (turbulence is enhanced in unstable
conditions) and surface roughness (the ocean surface becomes
rougher at higher wind speeds). Many researchers have proposed
different formulations for these coefficients, and the differences
in their formulations are responsible for some of the differences
between algorithms. In addition, several seemingly more trivial
issues (e.g., reduction of surface specific humidity due to ocean
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salinity; use of constant air density) can strongly affect flux
calculations (Brodeau et al., 2016). This study uses three bulk
flux algorithms: they are described in detail in the references
given, but here (and in Table 1) we summarize some of their key
features and differences.

The first, which we refer to as “control,” is the algorithm used
in the Energy Exascale Earth System Model version 1 (E3SMv1
Golaz et al., 2019). It is based on the work of Large and Pond
(1981, 1982) and Large and Yeager (2004, 2009). The algorithm
uses two stability classes—stable and unstable. The roughness
length for momentum varies with wind speed. The roughness
length for heat takes one of two constant values depending
on stability, while that for moisture uses a single constant for
all stability cases. Surface specific humidity is calculated with
a simple formula based on temperature only and accounts for
reduction due to ocean salinity.

The University of Arizona algorithm (Zeng et al., 1998), which
we refer to as “UA,” uses four stability cases (strongly stable,
weakly stable, weakly unstable, and very unstable). Roughness
lengths for momentum, heat and moisture are continuously
varying functions of wind speed. Surface specific humidity uses
a more accurate formula than the control algorithm, based on
temperature and surface pressure. Again, the reduction due to
ocean salinity is accounted for. Similarly, UA uses a temperature-
dependent function for Lv, while the other two algorithms use
a single constant. Finally, UA includes a gustiness factor due
to large boundary layer eddies in unstable conditions, which
increases fluxes in unstable, low wind conditions.

The third algorithm is based on the COARE (Coupled Ocean
Atmosphere Response Experiment) version 3.0 algorithm (Fairall
et al., 2003) which we refer to as simply “COARE.” This uses three
stability cases (stable, weakly unstable and strongly unstable)
and roughness length functions are similar to the UA algorithm.
Surface humidity calculation uses the samemethod as the control
algorithm. COARE, like UA, includes a gustiness factor to
account for increased fluxes in unstable, low wind conditions.
The correction of sea surface temperature due to cool skin and
diurnal warm layer effects available in COARE are not used.

2.2. Model Experiments
We test model sensitivity to ocean surface flux algorithm in
a “standard resolution” version of E3SM similar to version
1 used in Golaz et al. (2019). The components of E3SM
include atmosphere, land, ocean, sea ice, land ice, and river
routing models. The atmosphere and land model horizontal
resolutions are ∼1◦ and the ocean and sea ice model horizontal
resolutions are ∼50 km. The tests performed for this study
fall into two categories: one uses active atmosphere and land
model components, with sea surface temperature and sea ice
distribution pre-specified (this configuration is referred to as
an atmosphere run); the other uses active ocean and sea ice
components, with near-surface meteorology and river discharge
pre-specified (this configuration is referred to as an ocean run).
The ocean and sea ice data used in the atmosphere runs is based
on a repeating year representative of observations in the year
2000. The atmosphere and river discharge data used in the ocean
runs is from the JRA55-do data set (Tsujino et al., 2018)—a
version of the JRA-55 reanalysis adjusted tomake it more suitable
for forcing ocean models.

For each configuration (atmosphere and ocean), three
simulations are performed—one with each of the algorithms. The
atmosphere runs are 6 years long and analysis is based on the
final 5 years. The ocean runs are 10 years long and the first year is
disregarded when calculating climatologies but is used for some
time series analysis. The ocean runs were originally intended to
be the same length as the atmosphere runs, but we took advantage
of an opportunity to extend them. Longer model runs would have
been valuable, particularly for the ocean model, which can take
hundreds to thousands of years to reach equilibrium (Li et al.,
2013; Petersen et al., 2019). However, computing resources did
not allow for such an ambitious investigation and we feel that
the present simulations can still provide a valuable perspective on
the degree of sensitivity compared to other model developments
(e.g., tuning of parameterizations).

To understand howmuch of the observed differences between
model runs may be due to internal climate variability, we use
the E3SM v1 pre-industrial control run (produced for phase 6 of

TABLE 1 | Bulk flux algorithm overview.

Algorithm Stability classes and functions Roughness lengths

Control Stable (D74); Unstable (D74) Momentum: wind dependent. Heat, water: constants

UA Very stable (Holtslag et al., 1990); Stable (D74); Unstable (D74); Very

unstable (Kader and Yaglom, 1990)

Momentum: Smith (1988), constant Charnock parameter. Heat, water:

Brutsaert (1982).

COARE Stable (Beljaars and Holtslag, 1991); Unstable (D74); Very unstable (Fairall

et al., 1996b)

Momentum: Smith (1988), variable Charnock parameter. Heat, water: Fairall

et al. (2003)

Algorithm Surface humidity

dependence

Lv dependence Gustiness Cool skin Diurnal

warm-layer

References

Control T Constant No No No Large and Pond, 1981, 1982; Large

and Yeager, 2004

UA T, p T Boundary layer free convection No No Zeng et al., 1998

COARE T Constant Boundary layer free convection No No Fairall et al., 1996b, 2003

Further details, e.g., constants, are given in the cited publications. D74 refers to the widely-used stability function formulation described in and advocated by Dyer (1974), although

earlier publications described parts of this formulation.
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the Coupled Model Intercomparison Project [CMIP6]). We use
the final 100 years of the run (model years 401–500) to quantify
internal variability.

When analyzing spatial fields, all variables are interpolated
onto a common 1◦ latitude-longitude grid. Heat fluxes and
precipitation are interpolated using an integral-conservative
method, while wind stress and sea surface height are bilinearly
interpolated. We used interpolation tools and several other data
processing tools from the netCDF Operators package (Zender,
2020). Global averages are calculated on native model grids.

2.3. Observational Data
Most of the analysis presented here is based on the above
model runs, but a few observational data sets are used to
contextualize the results. We deem uncertainties in global
gridded ocean flux products to be too large to use them
for the basis of ranking the flux algorithms (Găinuşă-
Bogdan et al., 2015; Yu, 2019). However, we use one
such product, OAflux (Yu et al., 2006; Yu and Weller,
2007), to ascertain how the estimated internal variability of
E3SM compares with observed variability in the real world.
Precipitation from the atmosphere simulations is compared with
1981−2010 long-term averages fromGPCP (Global Precipitation
Climatology Project; Adler et al., 2003, 2018), a satellite-gauge

merged observational data set. Global top of atmosphere (TOA)
radiation measurements from the Clouds and the Earth’s
Radiant Energy System (CERES) mission are used to assess
the atmosphere simulations: we use version 4.1 of the energy
balanced and filled (EBAF) monthly means (Loeb et al., 2018;
Doelling, 2019).

3. RESULTS

We first look at the differences in ocean surface fluxes between
model simulations, before looking at the effects on other aspects
of model climate in the ocean and atmosphere.

3.1. Surface Flux Changes
Changes in latent heat flux are shown in Figure 1. It is
immediately clear that there are differences in sensitivity between
atmosphere (left column) and ocean (right column) simulations.
Themagnitudes of differences are generally larger for atmosphere
simulations than for ocean simulations and the spatial patterns
differ. However, because the atmosphere simulations have both
large positive and large negative differences, there is significant
cancellation when considering the global means (Table 2). The
sensitivity as shown by the global means therefore ends up being

FIGURE 1 | Differences in annual mean latent heat flux climatology between simulations with different bulk flux algorithms. The atmosphere and ocean simulation

results are shown in left and right panels, respectively. Stippling designates regions where the absolute value of the difference is larger than the interannual standard

deviation from the E3SMv1 pre-industrial control run (shown in Supplementary Figure 2).
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TABLE 2 | Long-term annual mean surface flux components from atmosphere

and ocean simulations, averaged over global oceans.

Control UA COARE

QE (W m−2 ) atmo –107.04 –104.32 –104.43

ocn –98.35 –96.64 –95.49

Evaporation (mm day−1) atmo 3.70 3.68 3.61

ocn 3.39 3.41 3.30

QH (W m−2) atmo –13.72 –13.63 –14.36

ocn –14.13 –14.40 –14.32

Rs,net (W m−2) atmo 171.3 171.6 172.6

ocn 169.3 169.2 169.3

Rl,down (W m−2) atmo 360.6 360.3 358.6

ocn 339.0 338.9 339.2

Rl,up (W m−2) atmo –409.1 –409.4 –409.3

ocn –393.2 –393.5 –394.6

Qnet (W m−2) atmo 1.70 4.45 3.02

ocn 2.60 3.63 4.04

The sign convention for heat fluxes is positive into the ocean (i.e., positive values warm

the ocean). Evaporation is positive by definition. The flux components shown are latent

heat flux QE ; sensible heat flux QH; net shortwave radiation Rs,net; downward longwave

radiation Rl,down; upward longwave Rl,up and net surface heat flux Qnet = Rs,net +Rl,up +

Rl,down +QE +QH.

more consistent between atmosphere and ocean tests [e.g., (UA−
control) is positive for both atmosphere and ocean].

At this point we pause to note that the global means in Table 2
also show latent heat fluxes are of larger magnitude (i.e., more
evaporation) in the atmosphere runs than in the ocean runs.
However, the physical significance of this fact is doubtful, as the
values are likely to be strongly affected by the forcing data sets
(Figure 2 and Supplementary Figure 1) and initial conditions,
and may even reflect differences introduced by masking and
interpolating from different model grids. We therefore do not
dwell further on quantitative comparisons between ocean and
atmosphere simulations.

Considering the spatial patterns of latent heat flux differences
in Figure 1, a few regions stand out that have similar patterns
of sensitivity in both the atmosphere and ocean runs. Examples
include the Southern Ocean (e.g., around 50◦S, 180◦E) in
COARE − control, and the eastern tropical Pacific (around 5◦S,
120◦W) in UA−control. Several other regions, however, have
opposite changes in the atmosphere and ocean runs. For example,
around the Gulf Stream at 35◦N, 60◦W (a region of large
evaporation and therefore negative values in the sign convention
of Figure 1) in the UA−control atmosphere comparison, UA
has a positive change (less evaporation) relative to control,
while in the UA−control ocean comparison, UA has a negative
change (more evaporation). Other regions with opposite changes

FIGURE 2 | Annual mean 10-m wind speed difference between (left column) pairs of atmosphere model runs and (right column) atmosphere model runs and forcing

data used in ocean model runs. The same observation-based wind forcing is used for all three ocean model runs.
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between atmosphere and ocean runs include parts of the North
Atlantic Current (40◦N, 50◦W) and eastern tropical Pacific (5◦S,
120◦W) in COARE − control, and the Kuroshio (35◦N, 140◦E)
and Agulhas (35◦S, 15◦E) currents in UA−control.

The regional inconsistencies between atmosphere and ocean
simulations bring into question the robustness and significance
of the differences shown. We argue below that some of the
inconsistency between ocean and atmosphere sensitivity tests
arises because the different test methods probe different aspects
of the bulk flux algorithms. In the meantime, to address the
question of significance, we compare the magnitude of changes
to the interannual standard deviation of latent heat flux from
the E3SMv1 pre-industrial control run (stippling in Figure 1).
In the atmosphere sensitivity tests, large areas of the world’s
oceans exhibit significant changes. For the ocean tests, however,
only a small fraction of ocean areas has significant changes.
The chosen significance threshold (E3SMv1 interannual standard
deviation) has similar patterns andmagnitudes as the interannual
standard deviation from the OAflux observational product
(Supplementary Figure 2). An alternative significance threshold
can be calculated as the range (maximum minus minimum) of
5-year means from the E3SM control run and from OAflux.
This results in a larger threshold (Supplementary Figure 2), and
therefore would lead to smaller areas of significant changes in
Figure 1.

Evaporation differences (Table 2) largely reflect differences
in latent heat flux. Thus, global mean evaporation is generally
larger in control than in UA or COARE. However, one slight
complication in this is that UA uses a temperature-dependent
value for the latent heat of evaporation (Lv in Equation 3) while
control and COARE both use a single constant. This accounts
for the fact that UA has the largest evaporation in the ocean
simulations, despite have a smaller magnitude of latent heat flux
than control.

Compared to latent heat flux, sensible heat flux (Figure 3)
shows greater consistency between sensitivity in atmosphere
and ocean simulations. Taking the UA−control comparisons,
for example, both the atmosphere and ocean simulations show
negative changes across much of the tropics and subtropics
and positive changes in parts of the Southern Ocean and
North Atlantic. That being said, there are still clear differences.
For example, tropical changes for UA−control are smaller
(and generally not significant) in the atmosphere tests but are
significant in the ocean tests.

Comparing across algorithms, we see that similarity between
UA and COARE runs is generally greater for sensible heat flux
than for latent heat flux (especially in the ocean simulations). This
can be seen by noting that Figures 3A,C are quite similar and, to
an even greater extent, Figures 3B,D are similar. Relative to this,
the pairwise comparisons (A vs. C; B vs. D) in Figure 1 show less

FIGURE 3 | Differences in annual mean sensible heat flux climatology between simulations with different bulk flux algorithms. The atmosphere and ocean simulation

results are shown in left and right panels, respectively. Stippling designates regions where the absolute value of the difference is larger than the interannual standard

deviation from the E3SMv1 pre-industrial control run. Note that the color scale is different from that in Figure 1.

Frontiers in Marine Science | www.frontiersin.org 6 May 2021 | Volume 8 | Article 642804

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Reeves Eyre et al. Ocean Flux Algorithm Effects

similarity. This is in line with the finding of Brunke et al. (2011)
who showed that, in observational flux products, latent heat
flux uncertainties were dominated by algorithm differences, but
sensible heat flux and wind stress uncertainties were dominated
by bulk variable differences.

Despite the similarities in patterns of sensible heat flux
differences shown in Figure 3, the global averages do not paint
a clear picture. For example, in the atmosphere runs COARE
has the largest magnitude, while in the ocean runs, UA has the
largest magnitude. As a further example, for control and UA,
the ocean simulations have larger magnitude sensible heat fluxes
than for the atmosphere simulations, while for COARE, the
atmosphere simulation has the larger magnitude. It should be
noted that the differences in sensible heat flux between algorithms
can be the same order of magnitude as differences in latent heat
fluxes, even though the sensible fluxes themselves are an order of
magnitude smaller.

By changing the sensible and latent heat fluxes, bulk flux
algorithms can directly change the ocean surface net heat
flux. Further indirect net heat flux changes are possible due
to changes in radiation fluxes. In the ocean simulations, SST
changes affect upward long wave radiation, though downward
long wave and short wave are both specified by the forcing. In
the atmosphere simulations, temperature, cloud, and humidity
changes affect downward long wave and short wave radiation,

though the upward long wave is specified by the forcing (Note
that small differences occur in the forcing-specified fields in
Table 2 due to sea ice differences). These indirect radiation
changes are of similar magnitudes to the latent and sensible
heat flux differences. The combined impact of changes in all
heat flux components are relatively large, in a relative sense. For
example, the UA atmosphere simulationQnet is more than double
that of the control atmosphere simulation, and the COARE
ocean simulation Qnet is more than 50% greater than that of
the control ocean simulation. The effects of these changes on
the atmosphere and ocean model climate are discussed in the
following subsections.

We turn next to wind stress sensitivity. For zonal wind stress
(Figure 4), ocean and atmosphere tests produce qualitatively
similar results. There are, however, differences in the magnitude
of changes (especially in midlatitudes) and some regions where
sensitivity is of opposite sign in the atmosphere and ocean
simulations (mostly in the Southern Ocean, e.g., at 45◦S, 0◦E).
The effects of UA and COARE, relative to the control algorithm,
are similar in the ocean simulations: relative to control both UA
and COARE cause increased eastward wind stress inmidlatitudes
and increased westward wind stress in the tropics. Note that
this essentially corresponds to UA and COARE giving a larger
wind stress than control for any particular wind speed. While the
same general pattern holds for the atmosphere simulations, the

FIGURE 4 | Differences in annual mean zonal wind stress climatology between simulations with different bulk flux algorithms. The atmosphere and ocean simulation

results are shown in left and right panels, respectively. Stippling designates regions where the absolute value of the difference is larger than the interannual standard

deviation from the E3SMv1 pre-industrial control run.
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COARE−UA atmosphere comparison reveals that their patterns
are subtly different enough to result in significant differences.

Finally, for meridional wind stress (Figure 5) ocean and
atmosphere tests produce very different results: in atmosphere
tests, most of the regions with significant differences are in
midlatitudes, while in ocean tests, the significant differences are
almost entirely equatorward of 30◦. Nonetheless, a few regions
show consistent changes across both ocean and atmosphere tests.
For example, in the UA-control comparisons, several subtropical
marine stratocumulus regions (off the coasts of California, Chile,
Namibia, Western Australia) have consistent changes between
atmosphere and ocean simulations. The same holds to a lesser
degree for the COARE-control comparisons.

3.2. Atmosphere Model Sensitivity
The analysis above is mostly concerned with the changes
that occur at the ocean surface when using different bulk
flux algorithms. We next consider what changes occur in
the atmosphere model. We start with precipitation, as this is
one of the most important outputs of Earth system models
and previous studies (Brunke et al., 2008; Harrop et al.,
2018) have demonstrated sensitivity to ocean surface flux
parameterization methods.

Figure 6 shows that the precipitation changes induced by
the change of flux algorithm have a rather noisy pattern. In
general, the largest differences occur in the tropics, where the
largest precipitation amounts occur. Some coherent regions of
changes occur in and around the Intertropical Convergence
Zone (ITCZ) and in monsoon regions (south and southeast
Asia, west Africa). In the case of the Asian monsoon systems,
the precipitation changes are likely related to moisture source
evaporation reductions (for UA and COARE relative to control)
in the Arabian Sea, Bay of Bengal, South, and East China Seas
(Pathak et al., 2017; Hu et al., 2021), despite the likelihood of
accompanying circulation changes (Harrop et al., 2019). In the
case of the West African monsoon, the picture is less clear
due to the presence of evaporation decreases in the Gulf of
Guinea (∼0◦N, 0◦E) and increases in the tropical North Atlantic
around 10◦N, 20◦W(for UA and COARE relative to control). We
conjecture that theWest African westerly jet (Lélé et al., 2015; Liu
et al., 2020) can provide a causal link between the tropical North
Atlantic evaporation changes and Sahelian precipitation changes,
but this merits further investigation.

Regional precipitation changes further poleward consist
of a patchwork of small (though significant) precipitation
changes, without any obvious pattern. This may be because
precipitation changes in these regions occur due to differences

FIGURE 5 | Differences in annual mean meridional wind stress climatology between simulations with different bulk flux algorithms. The atmosphere and ocean

simulation results are shown in left and right panels, respectively. Stippling designates regions where the absolute value of the difference is larger than the interannual

standard deviation from the E3SMv1 pre-industrial control run. Note that the color scale is different from that in Figure 4.
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FIGURE 6 | Differences in annual mean precipitation climatology between simulations with different bulk flux algorithms (left column) and annual mean precipitation

biases relative to GPCP (right column). Stippling designates regions where the absolute value of the difference is larger than the interannual standard deviation from

the E3SMv1 pre-industrial control run.

in both circulation and moisture source region evaporation,
with different processes dominating in different seasons.
Seasonal analyses (not shown) support this to some extent.
For example, summer precipitation in UA and COARE,
relative to control, show a dipole with less precipitation in
northwest Europe and more in the Iberian peninsula. Such
a dipole has been linked to Atlantic multi-decadal Gulf
Stream SST variability (e.g., Palter, 2015) so it is possible
that the algorithm-induced Gulf Stream heat flux changes
in our study have the same effect as the multidecadal SST
variability-induced heat flux changes seen in observations.
Meanwhile, in winter, a different and roughly opposite
precipitation change occurs — wetter over the United Kingdom
and drier in southwest Europe. A similar pattern occurs
in the northwest Pacific between Alaska and California.
Observational evidence (e.g., Wills et al., 2016; Wills and
Thompson, 2018) suggests that these changes could be caused
by circulation changes related to Gulf Stream and Kuroshio
heat flux changes, but more detailed study is needed to better
understand this.

Also shown in Figure 6 are biases relative to the GPCP long-
term mean. The biases are generally larger than the differences
between simulations, and therefore have very similar patterns for
all three atmosphere simulations. While the spatial patterns of

biases do not offer a clear differentiation between algorithms, the
global mean statistics do. For the global mean bias, COARE has
the lowest (+0.32mmday−1), followed byUA (+0.37mmday−1)
then control (+0.38 mm day−1). For the root mean square error
(RMSE), COARE again has the lowest (0.98 mm day−1), while
control and UA have very similar values (1.02mm day−1). These
global annual mean figures obscure more nuanced regional and
seasonal patterns, making selection of a “best” algorithm even
more challenging.

The largest precipitation biases in Figure 6 occur in the
tropics, and especially in the warm pool of the Indian and Pacific
oceans. This region is examined more closely in Figure 7, which
shows distinct patterns of zonal mean bias in different seasons.
All seasons share the feature that the model simulations generally
have an exaggerated double maximum compared to GPCP. This
is a widespread and long-standing problem in Earth system
models (e.g., Zhang et al., 2015) and so it is interesting to note that
algorithm choice makes some notable differences. In particular,
UA has a markedly lower bias north of the equator in boreal
summer (JJA) and COARE has the most realistic results in boreal
spring (MAM). However, no single algorithm has the best results
in all seasons. This point is reinforced by the precipitation RMSE
for this sub-region: UA has the lowest in JJA and SON; COARE
has the lowest in MAM; control has the lowest in DJF.
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FIGURE 7 | Zonal mean, seasonal mean precipitation from the three atmosphere simulations and GPCP observational data: (A) December to February; (B) June to

August; (C) March to May; (D) September to November. The zonal sector considered is 60◦E to 180◦E. GPCP data were bilinearly interpolated to the same 1◦ grid as

the other data before calculating. Text in each panel shows the area-weighted root mean square difference, in mm day−1, between each model and the GPCP data,

calculated from gridded data rather than from the zonal means.

TABLE 3 | Long-term annual mean near-surface meteorology from atmosphere

simulations, averaged over global oceans, unless otherwise indicated.

Control UA COARE

Precip (mm day−1) 3.33 3.31 3.24

Precip (global)a 3.08 3.07 3.01

T2m (◦C) 16.63 16.55 16.46

q2m (g kg−1) 11.09 11.02 10.81

U10m (m s−1) 7.52 7.14 7.20

(T2m − Ts) (◦C) –1.05 –1.12 –1.18

Variables are total precipitation; 2-m air temperature T2m; 2-m specific humidity q2m; 10-m

wind speed U10m; and difference between T2m and surface temperature TS.
a For land and ocean combined.

Table 3 shows that, relative to control, both UA and COARE
have lower global (land and ocean combined)mean precipitation.
This is in line with the evaporation changes shown in Table 2,
demonstrating that, at least in a global sense, there is a general
balance between evaporation and precipitation changes.

We next look at other aspects of near surface meteorology
affected by choice of bulk flux algorithm, bearing in mind that
the method of forcing the atmosphere model with specified sea
surface temperatures strongly constrains some fields. Mean 2 m
air temperature over the oceans is highest in control, followed
by UA, with COARE the lowest. The differences at first glance
appear modest (< 0.2◦C between control and COARE), but
when reformulated as a difference between surface and 2 m
temperature (also shown in Table 3), they seem somewhat more
significant. The same is true of 2m specific humidity: the absolute
values appear similar but, considering that the differences arise
just 2 m above surfaces of identical temperature, the size of
the differences is more surprising. Finally, and arguably most
importantly, the 10 m wind speed is reduced in both UA and
COARE compared to control. This result is significant as it
suggests that some of the atmosphere simulation flux changes,
discussed above, occur due to changes in wind speed rather than
changes in stability and roughness formulations.

Other changes in model climate higher in the atmosphere
also occur. We briefly mention a few (and refer to relevant
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figures in the Supplementary Material). Coherent patterns of
zonal wind changes occur throughout the full depth of the
troposphere (Supplementary Figures 3, 4). These changes bear
some resemblance to changes induced by a decrease in surface
roughness in Polichtchouk and Shepherd (2016), though in our
case the changes are smaller and mostly limited to the winter
hemisphere. The global mean temperatures at several different
pressure levels (Supplementary Figures 5, 6) are reduced in both
UA and COARE, relative to control. We suggest that this is a
result of the net heat flux changes, though this interpretation is
slightly complicated by net heat flux changes over land, which
we do not consider here. Likewise, we suggest that changes
in precipitable water (reduced in UA and COARE, relative to
control; not shown) are due to reduced ocean evaporation in UA
and COARE.

There are also differences in certain metrics that governmodel
simulations of variability and climate change. Arguably most
important is the net top-of-atmosphere (TOA) radiation. Control
has the smallest, at +0.58 W m−2, followed by UA (+1.05
Wm−2) then COARE (+1.54Wm−2). While the absolute values
from our relatively short sensitivity tests may not be especially
meaningful due to large internannual variability (e.g., Loeb et al.,
2018), the differences are important, especially considering the
magnitude of biases seen in Golaz et al. (2019) who reported
TOA imbalance smaller than observed in both the coupled
(model minus observations = −0.54 W m−2) and AMIP (model
minus observations = −0.71 W m−2) simulations. Noting that
those simulations used the control algorithm, and based on the
differences between the three algorithms, UA therefore does best
at correcting this bias, while COARE slightly overshoots. The
differences arise from a combination of changes in clouds and
clear-sky longwave emission.

High quality satellite observations from CERES-EBAF v4.1
data allow calculation of mean biases and root-mean-square
differences (RMSD) for several TOA radiation quantities
(Table 4). In most quantities, UA is intermediate between
COARE and control. This means that the smallest bias usually
occurs with control (e.g., TOA net longwave) or COARE (e.g.,
TOA net shortwave). This does, however, conceal a number
of more complicated regional biases. For example, compared
to control, COARE seems to reduce the mean bias in net
cloud radiative effect, but part of this improvement comes from
COARE’s increased bias in subtropical stratocumulus shortwave
cloud forcing. Similarly, we see that UA has the smallest net cloud
forcing RMSD, despite the fact that COARE has the smallest net
cloud forcing mean bias. We also note, in reference to the above
discussion of net TOA radiation, that UA has the smallest bias
and RMSD in that quantity.

3.3. Ocean Model Sensitivity
Changes in the ocean model are, like changes in the atmosphere
model, constrained by the forcing dataset. In fact, for the ocean
model the forcing is a stronger constraint because the wind
speed—arguably the biggest factor in the atmosphere model
changes seen above—is prescribed. Nonetheless, we do see ocean
model responses due to the subtle changes in net heat flux,
evaporation and wind stress. These are described here.

TABLE 4 | Global mean and global root-mean-square (RMS) of annual mean

differences between model and observations.

Bias RMSD

Control UA COARE Control UA COARE

Precipitation

(mm day−1)

0.38 0.37 0.32 1.02 1.02 0.98

TOA net radiation

(W m−2)

–0.34 0.13 0.64 8.19 7.97 8.38

TOA net shortwave

(W m−2)

–1.43 –1.36 –1.05 9.63 9.70 9.77

TOA net longwave

(W m−2)

–0.96 –1.36 –1.55 5.71 6.20 6.07

Net cloud forcing

(W m−2)

–6.98 –6.84 –6.37 11.16 10.94 11.00

Shortwave cloud

forcing (W m−2)

–3.64 –3.57 -3.14 10.17 10.18 10.25

Longwave cloud

forcing (W m−2)

–3.34 –3.26 -3.23 6.51 6.75 6.55

Precipitation is compared to GPCP observations. TOA radiation quantities are compared

to CERES-EBAF v4.1 observations.

TABLE 5 | Ocean simulation global mean statistics.

Control UA COARE

SST (◦C) 18.23 18.28 18.42

SSS (PSU) 34.58 34.58 34.55

1SSH (cm)a 38.27 30.99 70.06

1OHC (1022 J)b –10.51 –1.254 +3.763

|SSS restoring| (m PSU yr−1) 12.5 12.2 12.4

|u| (cm s−1) 7.87 8.30 8.21

|v| (cm s−1) 4.05 4.24 4.18

Statistics are long-term annual averages unless otherwise indicated. Variables are sea

surface temperature SST; sea surface salinity SSS; sea surface height SSH; ocean heat

content OHC; SSS restoring; eastward surface current component u; and northward

surface current component v. For SSS restoring, u and v, the absolute value is taken

before applying spatial and temporal averaging.
aAverage SSH over model year 10 relative to initial condition.
bOHC in December of model year 10 relative to initial condition.

The SST in the ocean simulations is able to vary, though it is
strongly constrained by the air temperature in the forcing. The
differences seen in Table 5 are therefore reflecting the different
algorithms’ preferred (T2m − Ts) values, shown in Table 3:
COARE has the highest (Ts − T2m) and therefore the highest
Ts, followed by UA, then control. While the SST is not able
to respond fully to the differences in net heat flux, the ocean
heat content (OHC) is able to respond more. We therefore see
that changes in OHC (denoted 1OHC) over the course of the
ocean simulations do reflect the differences in net heat flux:
the algorithms are ranked control, then UA, then COARE, in
increasing order for both SST and1OHC. It should be noted that
the differences in1OHC betweenmodel runs are of a comparable
magnitude to observed decadal variability and trends, and are
therefore physically meaningful.
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Changes in evaporation could, in principle, affect both ocean
salinity and sea level. However, surface salinity is subject to
salinity restoring (the model field is relaxed to observational
climatology; see Petersen et al., 2019 for further details) and
this effectively cuts any link between evaporation changes and
ocean salinity changes. It is therefore not surprising that all three
ocean simulations have very similar surface salinity (Table 5).We
can however, look at the magnitude of salinity restoring that is
required to stop the model drifting away from observations. The
mean absolute values are similar for all three simulations: UA has
the lowest value, followed by COARE.

The changes in sea surface height (1SSH in Table 5) over
the course of each ocean simulation are all of unrealistically
large magnitude, likely due to a systematic imbalance between
precipitation in the forcing data set and evaporation calculated
in the model. However, differences (between ocean simulations)
in the sea level change (Table 5) do reflect the evaporation
differences seen in Table 2: UA has the largest evaporation and
therefore the smallest sea level rise, while COARE has the smallest
evaporation and the largest sea level rise. The remainder of the
sea surface height changes include thermosteric effects, i.e., the
expansion of sea water as it warms. The thermosteric component
is isolated by subtracting the global ocean mean change due to
evaporation. Thus, the difference between two algorithms can be
expressed as:

1SSHA−B
thermosteric

= (SSHA
year10 − SSHA

initial)

− (SSHB
year10 − SSHB

initial)+ (
∑

time

[EA − EB])

(4)

where A and B denote the two algorithms being compared, EA,B
are the global mean evaporation rates and the summation gives
the cumulative evaporation difference. The spatial patterns of
differences (between different bulk flux algorithms) are shown in
Figure 8. Relative to control, UA and COARE result in similar
changes, albeit with larger magnitudes for COARE. The changes
are fairly symmetric about the equator, with the following
key features: small changes of both signs for most regions
equatorward of 15◦; larger negative changes in the tropical east
Pacific; relatively large increases between 15◦ and 45◦; and large
decreases poleward of this, especially in the Southern Ocean. This
all suggests that much of the extra heat content of the UA and
COARE simulations, caused by the larger net heat flux with these
algorithms compared to control, ends up being “stored” in the
subtropics and midlatitudes.

Ocean surface velocity is strongly constrained by the wind
field specified in the forcing data. However, differences in velocity
component magnitudes do occur (Table 5). We see that UA has
the highest velocities, followed closely by COARE, and control
has the lowest by a considerable margin. Note that this is the
reverse of the pattern seen in the atmosphere 10 metre wind
speeds seen in Table 3. Both of these changes are consistent with
the fact that, for a particular wind speed, UA gives the largest
wind stress, followed by COARE then control. Such differences
were also found (at least for moderate wind speeds) in Zeng et al.
(1998; their Figure 3C). This means that, where wind speeds are

FIGURE 8 | Differences in model year 10 sea surface height between

simulations with different ocean surface bulk flux parameterizations. The

changes in sea surface height due to evaporation differences have been

removed as in Equation (4).

specified (in the ocean simulations) UA gives the largest wind
stress and therefore the highest ocean surface velocities. On the
other hand, when the wind speed can vary but the surface velocity
is fixed (in the atmosphere simulations), UA results in the lowest
wind speeds while giving similar wind stress.

A number of other variables are affected by the choice
of bulk flux algorithm, though the changes are relatively
minor. The Atlantic Meridional Atlantic Circulation (AMOC)
is unrealistically weak in all three simulations (as has been
noted in other E3SMv1 simulations; Golaz et al., 2019; Petersen
et al., 2019) and there are only minor differences between them.
However, AMOC is slightly stronger in UA and control than
in COARE (Supplementary Figure 7). Possibly related to this

Frontiers in Marine Science | www.frontiersin.org 12 May 2021 | Volume 8 | Article 642804

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Reeves Eyre et al. Ocean Flux Algorithm Effects

FIGURE 9 | Mean global meridional ocean heat transport (positive northwards) from ocean simulations. Also shown is a reanalysis-based observational estimate from

Trenberth and Caron (2001): shading represents ±1 standard error, based on their error analysis using assumed uncertainties in derived surface fluxes.

are changes in wintertime ocean mixed layer depths in the
North Atlantic Deep Water formation regions (not shown) and
changes in the global meridional heat transport (MHT; Figure 9).
However, global MHT integrates more processes than just the
AMOC (e.g., Forget and Ferreira, 2019), and it is in fact the
tropical maxima of MHT (shallower circulations more directly
linked to surface fluxes) that are changed most—generally of
slightly larger magnitude in UA than in control and COARE. As
with the AMOC, the MHT differences do not have large enough
impacts to significantly reduce the model’s background biases.
Even so, we suggest that the sensitivity of ocean circulation to
algorithm choice deserves longer model runs and further study,
beyond the more directly affected quantities discussed here.

4. CONCLUSIONS AND FURTHER
DISCUSSION

We have performed sensitivity tests of three ocean surface flux
parameterizations in the atmosphere and ocean components of
E3SM. Spatial patterns of heat flux and wind stress sensitivity
differ significantly between ocean and atmosphere simulations,
with largermagnitudes of changes in the atmosphere simulations.
This is not surprising given that wind speed—which strongly
affects surface fluxes—can vary in the atmosphere simulations
but is specified by the forcing data in ocean simulations. What
is perhaps more surprising is the degree of consistency (between
ocean and atmosphere simulations) of the global mean latent heat
flux and net surface heat flux sensitivity.

The impact of wind speed-flux feedbacks on the atmosphere
simulation sensitivity highlights the central role of wind speed
in determining fluxes. Thus, the ocean simulations (with fixed
wind speeds) tell us more about the theoretical aspects of

algorithm design (e.g., the functional forms of stability and
roughness formulae) while at the same time revealing how
the ocean may respond to flux changes. On the other hand,
the atmosphere simulations (where wind speed can vary)
tell us about the combined effects of theoretical changes
and resultant wind speed differences. Thus, our results show
that, relative to the control algorithm, COARE has greater
theoretical differences, but when wind speeds are allowed to
vary, UA has a greater overall effect. A regional example of
this is shown in Figure 10 for the Gulf Stream, where both
COARE and UA have lower magnitude of annual mean latent
heat flux than control (Figure 1). Figure 10 shows that, for
wind speeds greater than about 12 m s−1, both COARE and
UA have lower magnitude latent heat fluxes than control.
However, it is also clear that the distribution of wind speeds
are shifted, with UA having the lowest speeds, followed by
COARE and then control having the highest. Another illustration
of the importance of wind speed changes in the atmosphere
simulations is the degree of correspondence between the latent
heat flux changes (Figure 1, left column) and the wind speed
changes (Figure 2, left column): patterns of negative wind
speed differences match closely with positive latent heat flux
differences (i.e., due to the sign convention, negative flux
magnitude differences).

An important caveat to this interpretation, however, is that
some of the impacts of the UA algorithm are tempered by its
use of temperature-dependent Lv (latent heat of vaporization).
Thus, although UA has larger differences (relative to control) in
latent heat flux and net heat flux, COARE has a larger difference
in evaporation, and therefore a larger impact on precipitation.
This can have other important consequences for modeled global
energy and water cycles, as was seen in the ocean simulations:
compared to control, UA simulates a sea level fall and OHC
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FIGURE 10 | (A) Latent heat flux quantiles, as functions of 10-m wind speed, and (B) 10-m wind speed distributions, for the three atmosphere simulations in a region

around the Gulf Stream (60−70◦W, 35−42◦N). The quantiles and wind speed distribution are calculated from 3-hourly model output from the winter season

(December, January, and February) over model years 2−6 of each simulation, binned into 1 m s−1 bins. (C) December to February multi-year mean latent heat flux

difference between UA and control atmosphere simulations, with the region used in (A,B) shown by the green box. Note that the heat flux sign convention in (A) is

opposite to that used in (C): positive values correspond to evaporation. The colors shown in the legend of (B) also apply to (A).

increase, while COARE simulates sea level rise andOHC increase.
Of course, the comparison with control is somewhat arbitrary
and does not have any physical significance when interpreting
any single model simulation. It does however, underscore that the
algorithms give different portrayals of the links between global
energy and water cycles. This point is particularly important for
coupled Earth systemmodeling, where conservation of water and
energy are important constraints in model realism. The effects of
flux algorithm choice in this respect are the subject of ongoing
coupledmodel development and testing within the E3SMproject.

It is worth noting that the absolute values (from any
single simulation) of quantities like 1OHC are not physically
meaningful. Instead, they are a product of the disequilibrium
between the forcing data and initial conditions [see Strobach
et al. (2018) for a thorough exploration of such disequilibrium
conditions]. Nonetheless, the differences between algorithms in
their responses to this disequilibrium are meaningful: these
kind of differences are exactly what may yield variations in
estimates of transient climate response to greenhouse gas and
other anthropogenic climate forcing.

We finish by revisiting our aims for this study and
summarizing the key results for each:

1. Our atmosphere sensitivity tests suggest that parts of the
tropical Indo-Pacific region (∼20◦N−20◦S, 60◦E−150◦W),
along with western boundary currents, are hotspots of
algorithm differences, as might be expected from the fact that
these regions are the continued focus of ocean-atmosphere
interaction research (e.g., Edson et al., 2013). In addition,
our ocean sensitivity tests highlight the tropical east Pacific
and the Southern Ocean as regions of uncertainty, worthy
of further study. It is interesting to note that these regions

include a number of “edge cases” recognized in recent
ocean-atmosphere interaction research. The Indo-Pacific
warm pool can exhibit strong diurnal SST warming (Fairall
et al., 1996a) and gusty winds in thunderstorm cold pools
(Zeng et al., 2002). Western boundary currents and the
eastern tropical Pacific are both domains of strong gradients
with complex wind-wave-current interactions which are not
well-understood (Villas Bôas et al., 2019). The Southern
Ocean features consistently strong winds and extreme wave
conditions. These cases lead to uncertainties in fluxes and
differences between the algorithms, both by design and due
to insufficient direct flux observations to constrain bulk
algorithm formulation.

2. We find that the choice of test methodology seems to highlight
different aspects of the algorithms’ differences. Atmosphere
simulations, by allowing a wind speed-flux feedback cycle,
show the highest absolute magnitudes of flux differences
between algorithms. This has the advantage of allowing
investigation of changes in wind speed distribution due to
differences in algorithms’ surface roughness formulations.
However, it has disadvantages in that changes in any particular
location may be influenced by remotely forced atmospheric
circulation changes (e.g., tropical forcing of midlatitude
circulation), and that changes may be due to model internal
variability (i.e., chaotic differences in weather patterns). Our
significance testing is intended to address this, but the
relatively short simulations used here are certainly a minor
limitation of this study.

3. Finally, we have demonstrated that impacts of algorithm
choice are seen throughout the atmosphere and oceanmodels.
Of particular importance in the atmosphere simulations are
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the systematic circulation changes and differences in global
mean precipitation and TOA radiative effects. There are also
important regional changes— for example in heat fluxes in the
seas adjacent to the Asian Monsoon system, with associated
precipitation changes over land. In the ocean, we see small
but notable impacts on meridional overturning circulations
and meridional heat transport. It is interesting to speculate
that the changes seen in these quantities in a coupled model
setup (where the larger magnitude flux changes seen in the
atmosphere simulations might be imposed on the ocean)
could be larger than seen in our ocean simulation results.
This possibility, along with the differences in global energy
and water cycle responses discussed above, are good reasons
to pursue coupled Earth system model sensitivity testing in
future studies. Indeed, such efforts are already underway in the
E3SM project.

In the absence of a definitive observational basis to rank
algorithms by flux biases, these other changes offer a way to
inform algorithm choice. In particular, both UA and COARE
improve on the control algorithm in global mean precipitation
and TOA radiative metrics, though there are some important
regional changes that should also be considered. In the
ocean, UA seems to reduce biases slightly (in comparison to
control) in the Atlantic meridional overturning circulation
and meridional heat transport.
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