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Reef rugosity, a metric of three-dimensional habitat complexity, is a central determinant
of reef condition and multi-trophic occupancy including corals, fishes and invertebrates.
As a result, spatially explicit information on reef rugosity is needed for conservation and
management activities ranging from fisheries to coral protection and restoration. Across
archipelagos comprising islands of varying geologic stage and age, rugosity naturally
varies at multiple spatial scales based on island emergence, subsidence, and erosion.
Reef rugosity may also be changing due to human impacts on corals such as marine
heatwaves and nearshore coastal development. Using a new high-resolution, large-area
mapping technique based on airborne imaging spectroscopy, we mapped the rugosity
of reefs to 22 m depth throughout the eight Main Hawaiian Islands. We quantified inter-
and intra-island variation in reef rugosity at fine (2 m) and coarse (6 m) spatial resolutions,
and tested potential abiotic and human drivers of rugosity patterns. We found that water
depth and reef slope remain the dominant drivers of fine- and coarse-scale rugosity,
but nearshore development is a secondary driver of rugosity. Our results and maps
can be used by fisheries management and reef conservations to track geologic versus
human impacts on reefs, design effective marine managed areas, and execute activities
to improve reef resilience.
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INTRODUCTION

Habitat complexity is the three-dimensional (3D) structure of the physical environment with which
organisms interact and is a key influencer of the distribution of marine biota. Habitat complexity
can affect a variety of ecological functions such as by providing prey protection from predators,
surfaces for coral settlement and growth, and different microhabitats to support a variety of species.
Habitat complexity interacts with other environmental factors such as light, temperature and wave
action to generate a wide range of ecological conditions (Sebens, 1991).

On coral reefs, 3D habitat complexity is a determinant of reef fish assemblages, where fish
abundance, biomass, and richness are often positively correlated with complexity (Cinner et al.,
2009; Graham et al., 2009). Yet the direction and strength of this relationship does vary, and studies
can also show mixed connectivity between reef complexity and fish stocks (Jennings et al., 1996;
Harborne et al., 2012). Coral cover is also often positively correlated with reef complexity (Alvarez-
Filip et al., 2009; Graham and Nash, 2012). Correspondingly, negative relationships between

Frontiers in Marine Science | www.frontiersin.org 1 February 2021 | Volume 8 | Article 631842

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.631842
http://creativecommons.org/licenses/by/4.0/
mailto:gregasner@asu.edu
https://doi.org/10.3389/fmars.2021.631842
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.631842&domain=pdf&date_stamp=2021-02-11
https://www.frontiersin.org/articles/10.3389/fmars.2021.631842/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-631842 March 16, 2021 Time: 13:6 # 2

Asner et al. Reef Complexity Across Hawaiian Islands

complexity and algal cover often exist, perhaps indirectly
reflecting the role of reef complexity in predicting reef fish
and resulting herbivory (Graham and Nash, 2012). However,
3D habitat complexity is not only driven by coral cover, but
also by benthic geomorphology at a range of scales from
small boulder and erosion-deposition zones to large subsurface
geologic structures.

The Main Hawaiian Islands (MHIs) are an important case-
in-point, varying widely in geologic age from less than a
few years old on Hawai‘i Island to more than six million
years old on Ni‘ihau (Neall and Trewick, 2008). Island age is
accompanied by stage of accretion and subsidence, processes
that generate enormous inter- and intra-island variation in
reef extent associated with benthic substrate availability (Asner
et al., 2020b). Younger islands such as Hawai‘i contain vast
fringing reefs dominated by rock substrates (i.e., lava beds,
massive boulders, rock fields) that define much of the reef
rugosity, but with embayments and coves co-dominated by
geology and coral growth. In contrast, older islands such as
Kaua‘i and O‘ahu contain reefs defined by geologic subsidence
and erosional surfaces, with broad expanses of both sandy bottom
and calcareous reef substrate.

Overlain on this geologic template, water motion and light
penetration decrease with increasing depth, and wave-sheltered
areas show the greatest Holocene reef accretion (Grigg, 1998).
Generally, optimal reef growth occurs between 10 and 20 m
depth in the MHI, reflecting a trade-off between wave-induced
stress and decreased light availability (Storlazzi et al., 2005). In
areas of greatest wave power, turf algae and crustose coralline
algae dominate due to more wave-tolerant, flatter morphologies.
On the other hand, low wave power regions are dominated
by hard corals and macroalgae with structures more vulnerable
to dislodgement (Engelen et al., 2005; Madin et al., 2014;
Gove et al., 2015).

Reef complexity varies over multiple spatial scales (Mumby
et al., 2004). Measurements of complexity aim to quantify
the vertical variation of the benthic surface in relation to the
two-dimensional (2D) surface of the same area, and therefore
complexity metrics are dependent upon the resolution of the
mapping technique. Larger grid or pixel sizes of bathymetric
maps result in complexity values describing broader geological
features in comparison to smaller pixel sizes that represent
specific coral colonies, rock outcrops and other fine-scale
features. Presently, the spatial scale at which biophysical drivers
influence fish or invertebrate assemblages is poorly known
(Purkis et al., 2008; Aston et al., 2019), and a multi-scale
assessment of reef complexity would improve our understanding
of habitat across a range of scales relevant to a wide range of
ecological processes (Harborne et al., 2006; Williams et al., 2015).

Over the past several decades, there has been a rapid
increase in the diversity of methods used to quantify 3D
habitat complexity, where various techniques are aimed at
quantifying complexity at specific scales and spatial resolutions.
Studies focusing on colony-level measures most commonly use
a chain-and-tape method to estimate rugosity, an index of
habitat complexity. Rugosity is estimated by calculating the
ratio of chain length laid across the bottom reef profile to the

linear distance of the transect (Risk, 1972). Complexity has
also been estimated visually by scoring a range of structural
variables (Gratwicke and Speight, 2005). Modern methods of
assessing habitat complexity include 3D computer models,
which are generated from images via structure-from-motion
photogrammetry, allowing quantification of complexity metrics
such as surface rugosity among fractal dimension, total surface
area and surface height (Burns et al., 2015; Figueira et al., 2015).
Field techniques, however, can be time-consuming and typically
operate over limited areas (<0.25 ha; Lechene et al., 2019).

Remote sensing methods–primarily acoustic imaging and
light detection and ranging (LiDAR)–have allowed estimations
of reef complexity over areas of much greater extent. More
than 50 years ago, sound navigation and ranging (SONAR)
revolutionized reef mapping over large areas by providing
moderate resolution information (Moravec and Elfes, 1985).
Subsequent LiDAR-derived rugosity measures of reef at 4–5 m
spatial resolution have been correlated with in situ measures of
reef rugosity (Wedding et al., 2008). However, measurements of
habitat complexity coarser than 10 m did not show significant
relationships with in situ rugosity, but they still provided relevant
information at broader geographic scales (Wedding et al., 2008).
Similarly, reef rugosity estimated though acoustic methods
showed relationships with fish at kernel sizes less than 40 m,
with the most significant relationships with species richness at
a resolution finer than 8 m (Purkis et al., 2008). More recently,
airborne imaging spectroscopy has opened up access to large-area
bathymetric and reef rugosity mapping at resolutions of 0.4 m
(Asner et al., 2020a).

Throughout the Hawaiian Islands, it is not known how
environmental and physical factors compare with human
influences in shaping 3D habitat complexity (Wedding
et al., 2018). Understanding controls over spatial patterns
of complexity is relevant to creating effective marine managed
areas, where planning can benefit fish assemblages, protect
essential fish habit and enhance recruitment (Grober-Dunsmore
et al., 2007). This is especially important for coastal communities
that heavily rely on ecosystem services from reef fish populations.
Furthermore, protecting locations with greater reef complexity
should be a management priority as they have increased
resilience to coral bleaching and enhanced recovery through
larger fish populations (Graham and Nash, 2012; Rogers
et al., 2014). Considering the wealth of research linking reef
complexity and reef fish, rapid methods that can document
rugosity at broader geographic scales are of great value.
Here we use a new airborne mapping technique to report on
how 3D habitat complexity varies at fine and coarse spatial
resolutions within and between each Main Hawaiian Island.
We undertook this study without a specific focus on live corals,
which was largely covered in Asner et al. (2020b). In that
earlier paper, we determined the geographic distribution of
live corals, but we were unable to associate live coral cover
broadly with rugosity due to extremes in island age, geologic
stage, and erosional processes. As a result, in the present
submission, we determined the geographic distribution of fine-
and coarse-scale rugosity surfaces in order to assess on the
relative importance of multiple abiotic environmental as well as
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human factors potentially affecting reef complexity at intra- and
inter-island scales.

MATERIALS AND METHODS

Bathymetric Mapping
Using data collected by the Global Airborne Observatory (Asner
et al., 2012), we mapped benthic depth at 2 m spatial resolution
throughout the eight MHI. We selected 2 m mapping resolution
as a practical trade-off between time and cost of mapping the
vast area of the MHI, while simultaneously achieving sufficient
resolution to resolve fine-scale variation in reef structure that
incorporates larger coral colonies and basaltic rock outcrops
(see Asner et al., 2020a). The GAO collected data from
multiple coaligned instruments, two of which were used for
bathymetric and rugosity mapping: a high-fidelity visible-to-
shortwave infrared (VSWIR) imaging spectrometer and a dual-
beam LiDAR scanner (Asner et al., 2012). Data from the
spectrometer were used to model benthic depth using the deep
learning methodology described, tested and validated in Asner
et al. (2020a).

The VSWIR spectrometer and LiDAR data were collected
between January 2 and February 4, 2019. To maximize data
consistency, daily airborne operations were performed from 0830
to 1100 local time. Collection location could change during each
flight day and was actively managed based on need, cloud cover,
and windspeeds to provide both the most efficient use of time
and the best conditions for spectroscopic seafloor measurements.
During flight, instrument settings were set for the planned
nominal flight altitude of 2 km above the sea surface. Flightlines
were spaced to achieve 50% overlap in VSWIR spectrometer
coverage. Aircraft ground speed was 130–140 kt. LiDAR pulse
frequency was set to 200 kHz (100 kHz per laser) and scan
frequency was 34 Hz with a field of view of 38◦, allowing 2◦
of buffer on each side of the spectrometer field of view of 34◦,
achieving a nominal pulse density of more than 4 pulses m−2.
The radiance data from the spectrometer are collected in 427
spectral channels covering the 350–2500 nm wavelength range in
5 nm increments. Using a modified version of the ATREM model
(Gao and Goetz, 1990; Thompson et al., 2017), we retrieved
ocean surface reflectance from the at-sensor radiance data. The
reflectance data for each flight line were passed through the
model described in Asner et al. (2020a) to retrieve estimated
depth in meters after masking out problematic regions (clouds,
waves, and regions of excessive solar glint) from the data. Because
water absorbs nearly all infrared light, land surface objects were
filtered from analysis using a reflectance threshold at the 890–
910 nm wavelength.

Orthorectification of the spectrometer data was a multi-step
process. During flight GPS timing data were collected during
flight by both instruments, and this timing location was used to
link the data to a precise flight trajectory built from corrected and
interpolated data from the onboard positioning and orientation
system (POS). With a LiDAR-derived digital surface model
(DSM) and a known position and orientation of the sensor at each
sample, the 3-dimensional position of each spectrometer pixel

was ray-traced to the sea surface level. However, to accurately
map the location of each pixel on the ocean floor, we needed
to account for estimated depth (d) and the refraction of light at
the ocean surface. For each pixel, observation angle from zenith
at the water surface, φa, is known and with standard refractive
indices of 1.33000 for water and 1.00029 for air, Snell’s refraction
formula can be used to compute the angle after crossing the water
surface boundary as φb = sin−1 (0.75210 sin φa). This angle can
be traced down to the ocean floor to retrieve the 3-dimensional
ocean floor location for each pixel.

We took advantage of the 50% overlap in flight lines to build
smooth depth mosaics by reducing sharp transitions between
flight lines. For each group of flight lines making up a single
region of coastline, the process for mosaicking followed these
steps:

(1) Record pixel id, flight line id, depth, and observation zenith
angle for up to 5000 (randomly sampled, if more than 5000
are available) pixels that have overlapping flightlines.

(2) For each pixel id, compute the mean and range of measured
depth across all overlapping flightlines in addition to the
view zenith angle for each flightline.

(3) Compute the mean observation zenith angle for each flight
line id and subtract this value from all angle values in the
flight line (center the values at 0).

(4) Filter out pixel ids where range > 5.0 m from analysis, as
they are likely to be affected by noisy depth retrieval.

(5) For each flight line with valid pixels in overlap area,
set up a linear regression with pixel mean depth as
dependent variable and terms for intercept, line depth, and
mean-centered line observation zenith angle. The fitted
coefficients are saved for later use.

(6) Correct all pixel values for each flight line using the linear
transformation from the regression fit.

(7) For each mosaic pixel id collect the corrected depths from
all overlapping flight lines and compute mean depth.

This was done for each coastal region for each of Ni‘ihau (one
region), Kaua‘i (four regions), O‘ahu (four regions), Moloka‘i,
Lana‘i, Kaho‘olawe (each one region), Maui (four regions),
and Hawai‘i (11 regions). These individual regions were then
hand-mosaicked into whole-island maps of depth, with the
exception of Hawai‘i which was broken into four quadrants due
to size limitations.

Multi-Resolution Rugosity
We computed island-wide maps of rugosity at two resolutions
using the “planar” rugosity metric (Jenness, 2004) on the
GAO benthic depth maps (Figure 1). Missing data of less
than two pixels in width were filled using an inverse-distance
weighted average of the three nearest neighboring pixels. Fine-
scale rugosity was computed using a 3 × 3 pixel (6 × 6 m)
moving window on the original 2 m resolution bathymetric maps
(Figure 1b). This resolution seeks high frequency changes on
the seafloor arising from coral colonies, rocks, and other bottom
features that generate local habitat variability. Coarse-scale
rugosity was computed by first down-sampling the 2 m depth
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FIGURE 1 | Global Airborne Observatory (GAO) mapping of three-dimensional (a) reef bathymetry, (b) fine-scale rugosity, and (c) coarse-scale rugosity for an
embayment along the coast of Hawai‘i Island. Water depth and fine-scale rugosity were mapped at 2 m spatial resolution. Coarse-scale rugosity was mapped at 6 m
resolution. Background provides 3D coastline terrain, vegetation and infrastructure as visual reference.

maps to 6 m resolution using a mean filter. The planar rugosity
metric was then computed using a 9 × 9 pixel (54.0 × 54.0 m)
moving window on the 6 m depth maps. Coarse-scale rugosity is
responsive to variations in larger terrain features resulting from
geologic, reef-scale accretion and subsidence processes. Previous
testing at other resolutions indicated that a 9 × 9 pixel coarse-
scale rugosity product gives the best detail for geologic features
while removing fine-scale “noise” from corals and rock boulders
(Figure 1c). These two resolutions of rugosity were computed for
each of the individual island depth maps. Because the distribution
of rugosity (r) is heavily skewed to the right because of occasional
noise pixels, and the units of the output are not meaningful,
we transformed raw rugosity values to have an approximate
uniform [0,1] distribution T by sorting the n individual values
across the map and assigning the value of transformed rugosity
T (ri) =

float(rank(ri))
n . Thus, for the island-scale fine and coarse

rugosity maps, low transformed rugosity values will be near-zero,
mid-range values will be near 0.5, and extreme values will never
be more than 1.0.

Geospatial Analyses
We assessed the spatial patterning of fine and coarse rugosity
both between and within the MHIs using empirical variograms.
To overcome computer memory and time limits, we broke the
rugosity maps for each island into a grid of 1 × 1 km cells, made
up of 500 × 500 pixels for fine rugosity and 167 × 167 pixels for
coarse rugosity. Because of the additive nature of the variogram
variances, we could compute one for each island using sample-
size weighted averages of the individual lag variances across grid
cells into a single variogram. This methodology provided the
additional benefit of generating information about the variation
in spatial patterning within each island.

For each grid cell, the associated square region was extracted
from the rugosity map along with a buffer of 500 m (250
pixels for fine-scale maps and 83 pixels for coarse-scale maps)

on all sides. The empirical variogram for each grid cell was
computed with the GeoStats package (Hoffimann, 2018) in the
Julia programming language (Bezanson et al., 2012), using 40
lag steps and a maximum lag of 500 m. A variogram model was
fit to the empirical variogram for each grid cell, with the fitting
software iterating over eight model forms to find the optimal
form as well as the associated optimal estimates for the model
parameters: sill, nugget, and range parameters. By storing the sill,
nugget, and range value for each parcel, we were able to aggregate
these into a 1 × 1 km resolution map of each parameter for each
island. The island-wide empirical variogram was computed as a
weighted average of the variograms from all grid cells, where the
weight for each cell was the number of valid rugosity observations
separated by the given lag distance within that cell.

Land-Sea Driver Modeling
We used multiple land-sea environmental maps available for the
MHI to assess the relative importance of environmental and
human factors that may contribute to the mapped distribution
of fine- and coarse-scale rugosity (Table 1). For example, reef
depth, slope, and distance to coastline vary with island geologic
stage, thereby affecting erosion, subsidence, and other factors
known to shape larger benthic structures (Fletcher et al., 2008;
Gove et al., 2015). Abiotic drivers also play a role in shaping
rugosity, either via physical impacts of waves and wind action
(Li et al., 2016), or via the impacts of temperature on calcareous
organisms like corals that contribute to rugosity (Ignatov, 2010;
Wedding et al., 2018). Finally, nearshore development may have
an effect on reef rugosity via sedimentation and/or removal of reef
structures (Center for International Earth Science Information
Network-Ciesin, 2018). We checked for driver variable co-
variance and utilized a combination of drivers each with less than
50% correlation.

While the GAO fine- and coarse-scale rugosity maps have a
resolution of 2 and 6 m, respectively, many of the environmental
maps in Table 1 are provided only at resolutions of 30 m or
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TABLE 1 | Summary statistics for the two mapped rugosity scales as well as 11 factors used in the land-sea driver modeling assessment.

Name Units Source Minimum Mean Maximum Std. Dev.

Fine-scale Rugosity – GAO (1–3) 0 0.5 1 0.29

Coarse-scale Rugosity – GAO (1–3) 0 0.5 1 0.29

Depth m GAO (1, 2) 0 7.5 19.7 4.6

Slope – GAO (1, 2) −4.74 0 6.29 0.74

Distance from coast M HI DOP† 1 46.8 208.1 37.6

Average Windspeed m s−1 NOAA (13) 0.7 5.1 6.7 1.2

Windwardness – NOAA (13) −1 0.05 1 0.67

Average Wave Power kW m−1 OTP (6, 7) 0 9.7 40.8 8.2

Maximum Wave Power kW m−1 OTP (6, 7) 0 54.1 350.6 61.9

Nearshore Development – OTP (6, 9) 0 0.04 1 0.08

Average SST ◦C OTP (6, 10) 25.1 25.4 26.1 0.2

Maximum SST ◦C OTP (6, 10) 26.1 27 28.3 0.4

Total Effluent gal km−2 d−1 OTP (6) 0 4962.4 118544.3 9957.8

These land-sea drivers were selected based on availability and known role in shaping geological and biological reef conditions. †From coastline data downloaded from
the Hawai‘i Department of Planning (https://planning.hawaii.gov/gis). GAO, global airborne observatory; OTP, ocean tipping points.

coarser. The GAO rugosity maps were therefore coarsened to
30 m resolution using a mean filter, because we determined this
resolution to sufficiently balance the finer and coarser datasets
in this analysis. Similarly, all input factors were resampled
to match this resolution, using cubic spline interpolation for
maps requiring upscaling and a mean filter for maps requiring
downscaling. These input factor maps included the GAO
bathymetry map used to compute rugosity, as well as slope
computed from the 30 m depth map.

We sought to analyze the relative importance and influence
of each of these factors on each of the two scales of rugosity
at two levels: once separately for each individual island and
once for all islands combined. By separating these analyses,
we assessed whether drivers of rugosity differ by island while
simultaneously revealing general patterns that apply to all
islands. We randomly selected 80,000 pixels from the 30 m
resampled maps for each individual island and, separately,
randomly selected 100,000 pixels across all islands. Modeling was
carried out using a Random Forest Machine Learning (RFML)
approach (Breiman, 2001) with the Scikit-Learn python package
version 0.22.1 (Pedregosa et al., 2011). Optimal settings for
the RFML metaparameters defining the number of trees in the
forest (“nest”) were discovered through a grid search approach
separately for each island (Table 2). We manually specified
several metaparameters: four as the maximum tree depth, 1 as
the minimum number of samples per leaf, two as the minimum
number of samples per split, and four as the maximum number of
features scanned at each split. All other meta parameters were left
at the default settings. The final model was a descriptive machine
learning model, fit to better understand the system rather than
be applied to any new data. Because the risk of overfitting is
negligible in these circumstances, the idea of parsimony is not
applicable and no model simplification procedure was required.
With the RF model-fitting procedure, unimportant factors are
simply not selected as splitting criteria for many of the node splits
that make up each component regression tree. Thus, these factors
will have little influence over model capacity to fit the data, and

TABLE 2 | Optimized random forest metaparameters used in each individual and
combined model from the land-sea driver modeling along with resulting fit
statistics, R-squared and Mean square error (MSE), as estimated by the
cross-validation fitting procedure.

Island Scale Num. Trees CV R2 CV MSE Full Dataset R2

All Combined Fine 2000 0.86 0.00037 0.96

Coarse 4000 0.72 0.02078 0.93

Hawai‘i Fine 3500 0.88 0.00024 0.97

Coarse 3000 0.78 0.01632 0.94

Maui Fine 2500 0.91 0.00029 0.98

Coarse 4000 0.82 0.01343 0.95

Kaho‘olawe Fine 2500 0.73 0.00607 0.93

Coarse 2500 0.84 0.00780 0.96

Lana‘i Fine 2500 0.90 0.00027 0.97

Coarse 2000 0.82 0.01272 0.95

Moloka‘i Fine 2500 0.95 0.00021 0.99

Coarse 1500 0.92 0.00066 0.98

O‘ahu Fine 2500 0.94 0.00014 0.98

Coarse 1500 0.78 0.01735 0.94

Kaua‘i Fine 2500 0.91 0.00020 0.98

Coarse 2000 0.79 0.01460 0.94

Ni‘ihau Fine 3000 0.93 0.00014 0.98

Coarse 2000 0.74 0.02038 0.93

The R-squared value after fitting the model to the full dataset is shown as baseline
R2 used in the permutation importance procedure.

this lack of influence will show as low values in any following
assessments of individual factor importance.

We assessed the importance of each variable using a
permutation-based, correlation coefficient (R2)-reduction metric.
To reduce the complexity of the permutation procedure, the
baseline R2 value used for this analysis was first obtained by re-
fitting the final model for each island and rugosity scale using the
full dataset (no train/test split) and comparing the predictions
of this full model against the map value of rugosity for all
samples in the dataset (Table 2). Next, the following permutation

Frontiers in Marine Science | www.frontiersin.org 5 February 2021 | Volume 8 | Article 631842

https://planning.hawaii.gov/gis
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-631842 March 16, 2021 Time: 13:6 # 6

Asner et al. Reef Complexity Across Hawaiian Islands

FIGURE 2 | Fine-scale rugosity of the eight Main Hawaiian Islands at 2 m spatial resolution to a depth of 22 m. Values are relative from 0.0 to 1.0. Coarse-scale
rugosity is provided in Appendix Figure A1.

importance analysis was performed for each of the island-level
models and the combined models at each scale of rugosity: For
each input variable and for each of five iterations, the values
for this variable were randomly shuffled, keeping values of all
other variables intact. During each iteration, predictions were
again obtained using the model on the full dataset containing the
permuted variable, and we retained the difference between the
original R2 and the R2 computed from this permutation. The five
difference values were averaged for each variable to get a single
importance value, where larger positive values indicate greater
reduction in R2 and, equivalently, greater variable importance.

In addition to the importance of each variable, we measured
the marginal trends between each of the input variables and
modeled rugosity values. These trends help understand why and
how the individual input variables are important, a difficult task
considering the high dimensionality of these systems. As with
the importance analysis, this analysis was done for each input
variable for each of the models in Table 2. For each model
trained with the full dataset, the predicted rugosity values for
the entire dataset were computed and stored. Next, the full
range of each input variable was split into 100 equally sized

bins based on percentiles of the input variable. For each of
these partitions, the mean model-predicted rugosity value was
computed along with the median value of the input variable
within the partition. Plotting the predicted rugosity against
median input variable values provides a view of rugosity response
relative to the variable, inclusive of all correlations with other
variables in the model. Where importance can inform as to how
strongly rugosity shifts with a variable, the marginal plots can
show whether the relationship is positive or negative and linear
or curvilinear.

RESULTS

Inter-Island Reef Rugosity
Across the MHI, the total shallow reef area mapped was
98,344 ha, covering about 95% of all known reefs to a depth of
22 m Figure 2 and Appendix Figure A1). On a whole-island
basis, Hawai‘i and Kaho‘olawe contained reefs with the greatest
3D habitat complexity, with relative rugosity values in the 0.8–0.9
range (Table 3). O‘ahu had the lowest reef complexity overall, at
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0.55 or nearly half that of the structurally most complex island-
scale reefs. Fine- and coarse-scale rugosity roughly tracked one
another at the island level.

Geospatial Variation in Reef Complexity
Despite strong inter-island differences in 3D habitat complexity,
any given local reef area displayed a wide range of rugosity
values (Figure 3 and Appendix Figure A2). Sandy areas with
low rugosity are shown in blue, while highly complex coral and
rock reef patches are expressed in yellow to red colors. Relative to
shoreline, the location and spatial distribution of high-rugosity
benthic surfaces was highly variable, although rugosity can be
seen to broadly increase with distance to shore (Figure 3).

At the individual island level, both fine- and coarse-scale
rugosity values were non-normally distributed (Figure 4).
Hawai‘i and Kaho‘olawe were highly skewed in the positive

TABLE 3 | Mean fine-scale and coarse-scale rugosity, and the total reef mapping
area, of each island in the Main Hawaiian Islands.

Island Fine-scale rugosity Coarse-scale rugosity Mapped area (ha)

Hawai‘i 0.81 0.87 13,277

Maui 0.72 0.77 13,993

Kaho‘olawe 0.85 0.88 1,408

Lana‘i 0.74 0.77 3,662

Moloka‘i 0.73 0.72 13,523

O‘ahu 0.54 0.56 29,838

Kaua‘i 0.65 0.65 14,661

Ni‘ihau 0.73 0.64 7,983

direction, indicating the widespread presence of structurally
complex benthic surfaces. Field observations indicated that these

FIGURE 3 | Zoom images from maps shown in Figure 2 demonstrating high spatial frequency variation and pattern in the fine-scale rugosity. These seven example
reefs encompass the range of conditions among high-rugosity sites. Coarse-scale rugosity is provided in Appendix Figure A2.
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FIGURE 4 | Frequency distributions of (A) coarse-scale and (B) fine-scale
rugosity by island.

areas are dominated by rock and/or coral. By contrast, O‘ahu
was largely comprised of low-rugosity substrate, with few rocks
and coral colonies, and large swaths of sand- and algal-covered
surfaces (see Asner et al., 2020b). These contrasting distributions
are both an expression of island age, size, and stage as well as how
much live coral can be found in each reef ecosystem. Notably,
Moloka‘i displayed a bi-modal rugosity distribution, with high
values dominating the windward north coast and lower values
found along the leeward south coast (Figure 2).

Reef rugosity showed a highly variable spatial arrangement at
intra- and inter-island scales (Figure 5 and Appendix Figure 3).
Variogram-range maps reveal that, on geologically older islands
such as Ni‘ihau, Kaua‘i and O‘ahu, reef rugosity mostly varied at
low spatial frequency, often more than 100 m, indicated by high
variogram-range values (Figure 5a and Appendix Figure 3a).
However, this background condition was punctuated by reef
locations with relatively high spatial frequency changes in
rugosity. By contrast, on geologically younger islands such
as Hawai‘i, Lana‘i and Maui, low variogram-range values
indicated high-frequency variability in rugosity over large tracks
of reef. Variogram-sills represent the baseline variation in

rugosity between areas on an island that are far enough
apart to lack any shared local environmental controls. Again,
geologically older islands were largely uniform (Figure 5b and
Appendix Figure 3b), whereas younger islands were far more
variable. Overall, based on island-level semi-variograms, Lana‘i
and Hawai‘i were among the most variable in terms of fine- or
coarse-scale rugosity (Figure 5c and Appendix Figure 3c).

Drivers of Habitat Complexity
Machine learning analyses revealed a heirarchical set of
contributors to the spatial variability of fine- and coarse-scale
rugosity throughout the MHI (Figure 6). Fine and coarse models
accounted for 86 and 73%, respectively, of the overall mapped
geospatial variation, indicating that the driver variables used
in the model were appropriate in assessing rugosity at both
resolutions. Water depth and reef slope exerted the strongest
influences on the spatial variation in rugosity as evidenced in
model permutation reduction R2-values of up to 0.88 and 0.69,
respectively, among all islands combined for fine- and/or coarse-
scale rugosity (Figure 6). Secondarily, nearshore development
and distance from coast exerted a detectable effect (R2 up to 0.31).
Other variables such as sea surface temperature, wind speed, total
land effluent, and substrate age accounted for far less variation in
rugosity (R2 < 0.11).

There was a wide inter-island range of influence of each
major driver on 3D habitat complexity. First, depth was far
more important than reef slope in driving fine-scale rugosity,
but depth alone ranged in relative importance from low on
Hawai‘i to extremely high on O‘ahu (Figure 6a). In contrast,
reef slope effect on fine-scale rugosity was minimal on Ni‘ihau
but much higher on Hawai‘i. For coarse-scale rugosity, slope
exerted the greatest influence on Hawai‘i and the lowest on
Ni‘ihau and O‘ahu (Figure 6b). The opposite was true for
water depth. Here we note the apparent positive relationship
between nearshore development and reef rugosity off Ni‘ihau:
Investigation of the mapping data indicated a highly localized
spatial correlation between a small area of development and reef
presence and rugosity relative to other sandy and cliff-like access
points to the coastline.

Examination of model partial dependency indicated that water
depth and reef slope had a positive linear relationship with fine-
scale rugosity at the scale of the eight MHI (Figure 7). However,
coarse-scale rugosity showed an asymptotic relationship with
depth and slope (Appendix Figure 4). Moreover, while average
fine-scale rugosity across all islands was fairly flat relative to
distance to coast and all other factors (Figure 7), distance and
wave power did show relationships with coarse-scale rugosity
(Appendix Figure 4). We note an especially poor relationship
between sea surface temperature and rugosity at either resolution.

DISCUSSION

Reef complexity, as indicated by maps of rugosity at 2 and 6 m
resolutions, revealed a nested set of 3D habitat patterns across
and within the eight MHIs. Coarse-scale rugosity was largely
driven by reef slope and secondarily by depth; the opposite was
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FIGURE 5 | Geospatial variation in fine-scale rugosity for the eight main Hawaiian Islands. Semi-variogram (a) range and (b) sill are shown at the top and bottom,
respectively. (c) Island-scale semi-variograms in the inset graph. Coarse-scale rugosity is provided in Appendix Figure A3.

true for fine-scale rugosity (Figure 6). Taken together, these
two indicators suggest that geologic stage dominates the broader
habitat structure of reefs across the archipelago. Younger islands
harbor reefs on steep basaltic slopes, often with rapid drop-offs to

extreme depths (Fletcher et al., 2008). During their formation via
lava flows, these rock-dominated reefs resemble complex canyon,
spire, tube, and spur-and-groove type patterns. As islands age,
subside and undergo surficial erosional processes, nearshore
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FIGURE 6 | Relative importance of potential contributing variables evaluated using machine learning to drive spatial variation in (A) fine-scale and (B) coarse-scale
reef rugosity throughout the eight Main Hawaiian Islands. Colored dots indicate relative importance by island, and open circles indicate relative importance for all
islands combined.

shallow (<22 m depth) slopes become smoother (Fletcher et al.,
2008), are reduced in rugosity, and show weakening relationships
with coarse-scale rugosity (Figure 6).

In contrast to coarse-scale rugosity, the distribution and
patterning of fine-scale features were far more driven by water
depth than by reef slope (Figure 6), where inter-island differences
in rugosity track differently with island age and stage. For
example, the youngest island, Hawai‘i, has the steepest nearshore
slopes, where depth has relatively little effect on fine-scale
rugosity as compared to O‘ahu. For the latter, fine-scale rugosity
tracks water depth, largely due to the prevalent role of live coral
along forereef locations in the 15+ m range (see Asner et al.,
2020b). Shallower inshore areas on O‘ahu are largely devoid
of rock or coral needed to drive fine-scale rugosity patterns.
It is notable that spatial variation in fine-scale rugosity peaks
in the middle-aged islands associated with the conglomerate
geologic structure of Maui Nui (Figure 5), comprised of the
islands of Maui, Lana‘i, Kaho‘olawe, and Moloka‘i (Price and
Elliott-Fisk, 2004). On these islands, reefs undergo large spatially
explicit swings in fine-scale rugosity, which we hypothesize
to be associated with highly variable coral habitat conditions
moderated by substrate availability, currents, depth, and other
sub-regional factors (Asner et al., 2020b). Such high-frequency
variability in fine-scale rugosity is far less prevalent on older
(Kaua‘i, O‘ahu) and younger (Hawai‘i) islands (Figure 5).

Overlain on these geologically driven patterns, there may
be an emerging set of 3D habitat conditions associated with
nearshore development and other direct human impacts, but
the signal remains variable by island (Figure 6). On islands
with developed land-based infrastructure like O‘ahu, fine-scale
rugosity appears suppressed in areas of nearshore development
(Figure 7), perhaps related to the suppression of live coral cover
in these locations (Asner et al., 2020b). On other less developed
islands like Hawai‘i, fine-scale rugosity was positively related
to nearshore development, perhaps because the relationship
between land and reef patterns has not yet been sufficiently
altered (Wedding et al., 2018). Repeat flights are required to
identify areas with changing rugosity for subsequent mitigation
actions related to nearshore development.

Beyond the drivers of reef complexity, our rugosity maps have
revealed a nested set of patterns ranging in scale from local
to archipelago. In a recent study across the MHI, the rugosity
maps presented here were a primary determinant of resource
fish, herbivore fish, and total fish biomass (Donovan et al., 2020).
They also showed that the recovery potential for reef fish was
strongly mediated by reef rugosity. These findings amplify both
the importance of high-resolution reef complexity mapping and
monitoring as well as the way that management can integrate
habitat mapping into plans and actions to protect and restore reef
fisheries (Nowlis and Friedlander, 2005; Wedding et al., 2008).
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FIGURE 7 | Partial dependence plots indicating the relationship between fine-scale rugosity and the top nine variables presented in Figure 6. Colored lines indicate
relationships by island, and thick black lines indicate relationships for all islands combined. Coarse-scale rugosity is provided in Appendix Figure A4.

Two major limits to our study involve spatial resolution and
maximum achieved depth. In our companion study describing
the methods and validation for mapping 3D habitat complexity
used here, Asner et al. (2020a) found that rugosity maps could
be generated at 40–60 cm resolution, thereby revealing the
location of smaller coral colonies and rock outcrops. These
smaller features may be key to understanding a host of other reef
patterns and processes such as fish and invertebrate dynamics,
coral larval settlement, and disease (Hata et al., 2017; Eggertsen
et al., 2020). The current study cannot resolve these ultra-
fine rugosity issues due to the practicalities of mapping an
entire archipelago at high altitude and thus lower (2 m)
spatial resolution.

Our maximum achieved mapping depth was 22 m (72 fsw).
While much of the biological diversity of Hawaiian reefs is
contained within our mappable depth range, critically important
habitat in the lower euphotic and mesophotic zones are missed
by our current approach (Rooney et al., 2010; Baldwin et al.,
2018). While we continue to push the limits of spectroscopy-
based depth and rugosity mapping, with some indications of
30 m penetrability in clear waters (G.P. Asner, unpub. data),
this is not likely to become operational in the near future due
to the limits of solar photon flux at such depths paired with
limits of our high-fidelity imaging spectrometers. While these
current spectrometer-based approaches are limited to a very
few manned aircraft platforms, the technology is downsizing
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and could become UAV (drone) based in the coming years.
Additionally, these types of high-fidelity spectrometers are being
prepared for low Earth orbit, such as the NASA Surface Biology
and Geology mission (Schneider et al., 2019). Although the
planned spatial resolution of 30 m will remain coarse for reef
applications, the quality of the spectroscopic measurement will
be analogous to the airborne capability today, perhaps allowing
for coarse-scale rugosity mapping worldwide with the ecological
fidelity proven here at an archipelago scale.

We found that water depth and reef slope are dominant
drivers of both fine- and coarse-scale rugosity, where the greatest
variation in rugosity occurred on middle-aged islands (e.g.,
Maui) in comparison to young and older islands (e.g., Hawai‘i,
Kaua‘i). Nearshore development is an emerging secondary driver
of decreasing rugosity, for example on O‘ahu, the most highly
developed island. Our rugosity maps are a tool that can be used
by fisheries management and reef practitioners to prioritize areas
for conservation and to design marine managed areas for greater
resilience and recovery potential.
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