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Coastal ecosystems are experiencing degradation from compound impacts of
climate change and multiple anthropogenic disturbances. These pressures often act
synergistically and complicate designing effective conservation measures; consequently,
large-scale coastal restoration actions become a wicked problem. The purpose of this
study was to use two different food web models in a coordinated manner to inform
resource managers in their assessment of the ecological effects of a large-scale marsh
restoration project. A team was formed that included the model developers and outside
scientists, who were asked to use available model results of the calibrated simulations
of an Ecopath with Ecosim (EwE) model and a Comprehensive Aquatic Systems Model
(CASM), both designed to describe the structure and energetics of the Barataria Bay,
Louisiana, United States food web. Both models offer somewhat different depictions of
the predator-prey and competitive interactions of species within the food web, and how
environmental conditions affect the species biomass pools and energetics. Collectively,
the team evaluated the strengths of each model and derived a common set of indicator
variables from model outputs that provided information on the structure and energy
flow of the simulated food web. Considering the different modeling structures and
calibration approaches, indicators were interpreted within and between models. Use
of both models enabled a robust determination that: (1) Detritus plays a vital role in the
energetics of the system; (2) The food web responds to spring high flow seasons by
increasing productivity through specific, dominant pathways; (3) The trophic pyramid is
truncated; (4) Compared to other estuaries, this system has redundant pathways for
energy transfer. These findings indicate that the food web appears to be resilient to
disturbance because of a detritus energy reserve, most consumer biomass consists of
low trophic level, high turnover species, and redundant energy pathways exist. This
information provides context to decision-makers for assessing possible basin-scale
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impacts on fish and shellfish resources of a proposed large-scale restoration project. The
use of multiple models in a coordinated but not overly constrained way, as demonstrated
here, provides a significant step toward co-production of knowledge for use in resource
management decisions.

Keywords: food web, ensemble model, restoration, ecosystem model, management decisions

INTRODUCTION

Coastal ecosystems are experiencing increasing degradation
from compound impacts of climate change and multiple
anthropogenic disturbances. These pressures often act
synergistically and complicate designing effective management
and conservation measures; consequently, large-scale restoration
actions can evolve into wicked problems (DeFries and Nagendra,
2017). Ecological food web modeling is a valuable approach for
helping decision-makers evaluate the range of possible ecological
responses that can occur from new (or continued) engineered
water projects or from restoration actions. Ecological modeling
is especially useful when the disturbances from the action affect
multiple, interacting species and act across trophic levels that
then leads to direct and indirect effects (e.g., De Mutsert et al.,
2017; Kaplan et al., 2019; Lester, 2019).

An evolving expansion in the use of ecological models in
resource management decisions is the practice of using multiple
models (i.e., multi-model, ensemble modeling approaches) to
evaluate various ecosystem responses (e.g., Fulton and Smith,
2004; Garcia et al., 2012; Forrest et al., 2015; Fulton et al., 2015,
2018; Tittensor et al., 2018). Ecological models are always a
simplification of the systems they represent, and different models
can capture alternative but valid views of system structure and
dynamics. Similarities of results across alternative models can
suggest robustness of those results, and differences among models
can suggest the importance of processes or model features present
in one model and absent or represented very simply in another.
Another advantage of using multiple models is the reduction in
the amplification of uncertainty that results from dependence on
the predictions from only one model (Dahood et al., 2020).

Identifying the model formulation that is optimal in terms of
complexity remains a fundamental challenge (Collie et al., 2016).
While there are extensive methods for parameter uncertainty
(Wu and Li, 2006; Saltelli et al., 2008; Ferretti et al., 2016),
there remain relatively few methods for quantitatively assessing
structural uncertainty beyond the purposeful testing of a set of
alternative models (Lindenschmidt et al., 2007; Brugnach et al.,
2008; Getz et al., 2018). Approaches range from the models
sharing all common inputs and being calibrated and validated
in a coordinated manner to the models being independently
developed and predictions compared at the end (e.g., Rose
et al., 1991a,b; Gårdmark et al., 2013; Meier et al., 2014; Scavia
et al., 2017; Kaplan et al., 2019). Multiple models offer an
approach for quantifying the structural uncertainty of responses
and the component models can complement each other to offer
additional understanding into system dynamics.

Even with the known advantages of multi-model approaches,
management agencies are often reluctant to fund development of

ensemble models at the scale of a single project or management
action. The applied nature of management questions often
involves short timelines and budget constraints discourage the
development of multiple, semi-independent modeling efforts.
Unknown risks when using a reasonable but less than optimal
single model is also a factor in the reluctance of decision makers
to use multiple models. In addition, one of the known challenges
in ecological modeling is the difficulty in model validation
and this challenge is amplified when using multiple models
for management purposes. When validation of one or multiple
models is limited by data availability, managers are often hesitant
to accept model outcomes.

There are examples of the successful use of multiple modeling
approaches to aid in resource management decisions (e.g.,
SEDAR, 2015, 2020; Xiao and Friedrichs, 2014; Kaplan et al.,
2019) and the current literature provides guidance on best
practices of selecting, calibrating, and validating ecological
models for natural resource decision-making (e.g., Schmolke
et al., 2010; Link et al., 2012; Rose et al., 2015; Heymans
et al., 2016; Fath et al., 2019). There has also been recent
momentum on the use of action science to facilitate co-
production of fisheries management strategies (Cooke et al.,
2020). Here, we present how using two food web models can
provide a broad and robust view of system dynamics, making a
considerable step toward co-production. Such a robust depiction
of the baseline system provides a solid foundation to then
examine how the food web would respond to potential operation
strategies of the proposed project on fish and fisheries. This
ongoing work in coastal Louisiana (United States) is a multi-year
collaboration between state/federal representatives and academic
scientists. We describe a recent step in the evolution of this
partnership below.

Beginning in 2013, state and federal resource managers
partnered with coastal researchers to initiate a long-term, large-
scale restoration assessment designed to address the severe
wetland losses occurring in southern Louisiana. The lower
Mississippi River, responsible for the creation of the vast wetland
system in south Louisiana, has been completely leveed (diked)
since 1941, essentially ending the natural deltaic cycle of the lower
river basin. The impact of river disconnection from its adjacent
marshes is exacerbated by the effects of sea level rise, land
subsidence, and anthropogenically altered hydrology (CPRA,
2017). Loss of wetlands has been recorded as high as 0.53 hectares
every 34 min (Couvillion et al., 2017). The Louisiana Coastal
Area Mississippi River Hydrodynamic and Delta Management
Study (LCA-MRHDM) paired scientists and managers to develop
a series of hydrodynamic, sediment, and vegetation models
to assess the potential impacts of large sediment diversions,
proposed to mitigate some of this loss. Sediment diversions
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are gated structures built into the levees that allow river water,
sediment, and nutrients to flow back into the wetlands from
which they were disconnected. The diversions thus act to recreate
the natural deltaic cycle and thereby promote the rebuilding of
wetlands. The collective modeling approaches simulated various
ways in which a select combination of the possible sediment
diversions could deliver sediments and stimulate wetland plant
growth, thereby resulting in accumulation of organic matter and
land stabilization in the receiving basins.

As part of the development of modeling tools, the Louisiana
(LA) Coastal Protection and Restoration Authority (CPRA)
supported two different food web modeling efforts to assess
the potential effects on fish and shellfish communities in the
receiving basins of the proposed diversions (Dynamic Solutions,
2016; De Mutsert et al., 2017). Adapting previously developed
models from the region, two models were developed that used
as their inputs the output from the hydrodynamic, vegetation,
and sediment models (Meselhe et al., 2013 and Baustian et al.,
2018). The simulation results of these two models were taken
into consideration by managers as the number of proposed
sediment diversions was reduced from four to two, with priority
development given to the Mid-Barataria Bay Sediment Diversion
(MBSD, De Mutsert et al., 2017).

In this paper, we show how the results from the two
developed food web models were combined to inform the
next phase of management decisions for the MBSD. We
demonstrate how the coordinated use of both models provided
a broader understanding of potential food web responses to
restoration project impacts than possible with either model
alone. Specifically, we used the calibrated versions of an Ecopath
with Ecosim (EwE) model and a Comprehensive Aquatic
Systems Model (CASM) to evaluate the structure and function
of the Barataria Bay food web under different environmental
(salinity, primary productivity, temperature) conditions. The
models represent snapshots in both time and space of the
predator-prey and competitive interactions of species within the
food web, and how environmental conditions can affect the
structure (e.g., which species dominate) and energetics (e.g.,
the pathways of energy flows within the food web). This study
combines ecological indicators estimated from CASM and EwE
to describe key features for understanding how disturbances
(including those expected from the project) could affect the
Barataria Bay food web.

MATERIALS AND METHODS

Model Descriptions
The two models used in this study were formulated as versions
(configurations) of general modeling suites (EwE and CASM) and
are described below. A more detailed overview of the versions
of the models used here can be found in the Supplementary
Material. Full descriptions of model parameterization and
algorithms can be found in the referenced studies (De Mutsert
et al., 2016, 2017; Dynamic Solutions, 2016).

EwE and Ecospace is an open-source modeling software
that was historically created to develop mass-balanced food

web models to describe aquatic ecosystems (Polovina, 1984;
Christensen and Pauly, 1992; Walters et al., 1997; Walters et al.,
1999; Walters et al., 2000). Use and applications have greatly
improved over the past 35 years of development, making EwE
the most applied ecosystem modeling tool globally (464 models
published to date1). The freely available modeling software can
be used to address marine policy questions (e.g., Hyder et al.,
2015; Chagaris et al., 2019; Vilas et al., 2020) and has been
more recently used to evaluate food web responses to changes
in abiotic factors (e.g., De Mutsert et al., 2012, 2017; Lewis
et al., 2016). EwE describes the flows of biomass among user-
defined functional groups, which represents one snapshot in time
(Ecopath). Once this base model has been developed, users can
evaluate time-dynamic simulations through a series of coupled
differential equations (Ecosim) and, furthermore, can examine
spatial-temporal dynamics with the Ecosim food web imbedded
into a 2-D (Ecospace) spatial grid (Steenbeek et al., 2013).
Along with an added habitat capacity sub-model (Christensen
et al., 2014), an Ecospace model can be used to evaluate how
populations within their food web are affected by changes in
fishing pressure and by variation in environmental factors over
both space and time.

The Comprehensive Aquatic System Model (CASM) is a
generalized and flexible aquatic food web modeling platform that
has been used to address theoretical (DeAngelis et al., 1989)
and applied (Bartell et al., 1999; Bartell, 2003; Fulford et al.,
2010; Dynamic Solutions, 2012, 2013) questions for a variety
of freshwater and coastal ecosystems. The CASM is a set of
coupled differential equations. CASM simulates daily production
dynamics of producer and consumer populations within the food
web and is also capable of simulating concentrations of water
chemistry state variables including dissolved inorganic nitrogen
and phosphorus, dissolved silica, dissolved oxygen, and dissolved
and particulate organic matter.

Simulation Results Used in This Analysis
In this analysis, we used previously developed and calibrated
versions of both models (see Supplementary Material), which
are reported in separate documents prepared by the model
developers from an earlier project done in collaboration with
state and federal agencies (De Mutsert et al., 2016, 2017;
Dynamic Solutions, 2016). The different formulations for growth,
mortality, reproduction, and predator-prey and competitive
interactions used by EwE and CASM provide a way to describe
the food web under alternative views of how the species and
environmental variables interact. In our application, EwE and
CASM shared a number of common inputs (see Figure 1)
and used similar (but not necessarily identical) values of
these common inputs in their developer-specific calibrations
(e.g., salinity, temperature, chlorophyll-a, and areal percent,
or proportion of marsh versus open water). These common
inputs were the outputs from an integrated biophysical model
that was developed within the 2012 Louisiana Coastal Master
Plan framework (Meselhe et al., 2013) and the MRHDM
Delft3D framework (Meselhe et al., 2015; Baustian et al., 2018).

1http://sirs.agrocampus-ouest.fr/EcoBase/
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FIGURE 1 | (A) Monthly salinity, (B) Chlorophyll-a concentration (µg l−1), and (C) temperature for the three years from which rebalanced EwE time slices were
extracted. (D) Climatological daily salinity, (E) Chlorophyll-a concentration (µg l−1), and (F) temperature for eight CASM polygons used as input to the calibration
simulations.

A similar list of species was represented in both models
(see Figures 2, 3) and both models were calibrated to the
same Louisiana Department of Wildlife and Fisheries (LDWF)
long-term fisheries-independent monitoring data. However,
parameter estimation and decisions about what parameters to
vary and what constituted sufficient model skill were done
separately for each model by their respective developers.

Prior to beginning the analysis for the current study, we
first considered the degree of agreement between predicted

and observed values of species biomasses over time from
each calibrated simulation. Agreement was generally high
for both models in their respective calibration simulations
(Figure 4). The Ecosim simulation generally captured the
mean and variation in the annual observed data for the key
species groups (Figures 4A–E, see Table 1 in De Mutsert
et al., 2017). The fit statistics showed variable but generally
acceptable correlation (overall average r = 0.4) and low
percent bias (average = 22%) across species groups. The
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FIGURE 2 | Species-biomass distribution of the Ecopath base model used in the calibration simulation of Ecosim (plotted on log scale). EwE plot is only displaying
adult life stages as biomasses for juveniles were calculated using von Bertalanffy (1933) growth model.

CASM daily predicted biomasses of the key species groups
(averaged over polygons) also showed an adequate fit to
the observed biomasses well (Figure 4B); the fit statistics
showed variable but generally high correlation (overall average
r = 0.4, with 50% of species having a r > 0.6) and
low percent bias (average = ± 30% for moderate to high
biomass species) across species groups (see Table 5 in
Dynamic Solutions, 2016).

For this coordinated analyses, which used both models,
we applied the results of the EwE calibrated model (Ecosim)
for June and October of 2008, 2010, and 2013 (i.e., six
food webs or balanced Ecopath models). These years were
selected because the physical-biological model (Delft3D) used
to provide driving variables (e.g., salinity, Figure 1A) to
the EwE model (Baustian et al., 2018) reflected different
hydrographic conditions in the time periods up to and
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FIGURE 3 | Comprehensive aquatic systems model (CASM) species-biomass distribution for June 15 in polygon 10 (plotted on log scale).

including each of these years. June within each year is a
period of relatively high productivity reflecting the results
of the spring increased river flow and coincides to the
month near the end of the operations of the proposed
project. October is a period of relatively low biological
productivity, as it occurs during a period of low river
input and cooling temperatures. The year 2008 can be
considered to have relatively high salinity and low chlorophyll-a

concentrations in June and October compared to the same
months in years 2010 and 2013 (Figure 1A). We used specific
years from the Ecosim simulation to ensure realism because
environmental conditions covary (typically through river flow)
together in model inputs; however, this fact also shows that
differences among years in environmental conditions are not
simply different in a single factor such as temperature or
salinity.
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FIGURE 4 | Predicted versus observed biomasses over time from selected species represented in both the Ecosim (A) and CASM (B) calibration simulations.
Observed biomasses were annual for Ecosim and daily for CASM. Both used the same monitoring data that was monthly, which were averaged for Ecosim and
interpolated for CASM. Ecosim predictions were for the entire model domain, while CASM predicts were averaged over the polygons comprising the domain of the
Barataria Bay.

To create the balanced food web models from the calibrated
Ecosim model, a plug-in to Ecosim was developed that generated
Ecopath models from these six chosen time periods. The plug-
in ran the Ecosim model up to a chosen month and year in
the calibration simulation and then output all parameters from
that snapshot in time (i.e., a time slice). For each time slice of
Ecosim (June and October of three separate years), a rebalanced
Ecopath model (a static snapshot of the ecosystem) was created so
that the ecological indicators could be generated. The rebalancing

involved adjustments to species-specific biomass accumulation
rates in each Ecosim slice. Because the biomass accumulation
rates just indicate the change in biomass from the base model
to the time slice, the adjustments did not affect the biomasses,
diets, or turnover rates within each time period. In addition, the
adjustments, when needed, were generally small in magnitude.
Thus, the rebalancing did not affect the calculations of the
indicators outputted from the Ecopath Network Analysis Plug-in
(Christensen and Pauly, 1992) used in this study.
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FIGURE 5 | Model domain in the Mississippi River Delta, United States for the EwE (outlined in blue) and CASM (numbered polygons) calibrated simulations and
location of the Mid-Barataria Sediment Diversion (red point).

The analysis of the calibrated CASM simulations used here
were the daily output for each of eight polygons within the
Barataria Bay (Figure 5, polygons 5, 10, 11, 14, 15, 16, 17, and
19). Because the environmental conditions were climatological
(i.e., averaged by day across years), a single year of daily
output was used from the sequence of repeated identical
years in the calibration simulation. The eight polygons were
selected to provide a range of environmental conditions, with
a particular focus on salinity and chlorophyll-a concentrations
(Figures 1D–F). Figure 6 shows the range of the average
annual values of salinity and chlorophyll-a concentrations of
the eight selected polygons. Use of multiple polygons allowed
calculation of indicators for various combinations of salinity and
chlorophyll (productivity) conditions within the Bay: (1) low
salinity with high chlorophyll (polygons 15, 16, and 17); (2)
intermediate salinity with low chlorophyll (polygon 19), with
intermediate chlorophyll (polygon 14) and with high chlorophyll
(polygon 10); and (3) high salinity with intermediate chlorophyll
(polygons 5 and 11).

Selection and Interpretation of Indicators
We determined during a series of modeling team workshops that
point-by-point comparisons of species group biomasses between
the two models was not informative for assessing responses to
disturbances. The strength of combining the results from the
two models was in their prediction of higher-order indicators

FIGURE 6 | Averaged annual values of daily salinity and chlorophyll-a
concentration for each of the 8 polygons used in this analysis of the CASM
calibration simulation.

of food web structure and energetics. By using a standardized
set of indicators, results from both models would provide a
robust view of the food web in Barataria Bay and provide
a basis for projecting how the food web would respond to
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TABLE 1 | The indicators and their interpretation derived from the calibration simulations of Ecopath and CASM for the Barataria Bay.

Indicator Interpretation

Biomass Structure

Shannon-Wiener The Shannon-Wiener index is a metric of the evenness of the species and is based on the Shannon entropy function (Shannon and Weiner,
1948). The more different the species are and the more equal their proportional abundance in the ecosystem, the higher the value of the
index. Maximum entropy occurs when there are many species that are all at equal abundance or biomass. In our analysis, the number of
species is fixed, as it is determined by model structure. Thus, values are not easily compared between models but do indicate how the
evenness of biomasses for a model can change under different conditions or simulations.

Species Biomass
Plots

Species-biomass plot shows the biomasses of species plotted to show which specie are dominant and the general decrease in biomass
with increasing trophic level. It is visual to accompany the more aggregated indicators of Mean Trophic Level and Lindeman Spine. Note:
The species-biomass plots from the Ecosim simulation only showed adult classes of species because the biomasses of juvenile classes
were determined from the adults. The species-biomass plot from CASM showed adult and juvenile classes because the juvenile biomasses
were determined more independently from the adult biomasses in CASM than in Ecopath. Note: CASM used the same assignment of
trophic levels to species as determined from Ecopath.

Mean Trophic Level The Mean Trophic Level is an indicator of what level biomass is accumulating in the food web and the “flatness” of the food web. It is
computed as the mean of the trophic levels of all species, with each species weighted by its biomass. If a lot of biomass is concentrated in
the producers or the food web does not include many high trophic levels, the MTL will be relatively low. A very long food web with many
trophic levels and relatively high biomasses in the upper trophic levels will have a high value of MTL.

Energy Flows

Total System
Throughput

Total System Throughput (TST) is the sum of all material or energy flows in a food web. This indicator describes the size of the energy
budget of the food web. Comparison between food web models should yield similar values if the major trophic pathways have been
consistently represented.

Flows from primary
producers (total
and consumption
only)

Flows from primary producers is a measure of total energy input into the ecosystem from living sources. This is expected to correlate with
high fisheries catches (Ware and Thomson, 2005). Comparing this value to flows at higher trophic levels reveals the ecosystem’s efficiency
of energy usage (Deng et al., 2015). A mature (efficient) ecosystem will transfer a larger proportion of total available energy to the top trophic
levels. Ecosystems with high flows from primary production but low flows at high trophic levels have inefficient vertical movement of energy.
Such an ecosystem may have more food available to herbivores. This condition is more likely to occur in ecosystems that have low trophic
levels for top predators (and shorter path lengths). Note: Flows are computed as total flows from primary producers and flows from primary
producers due to consumption.

Flows from detritus
(total and
consumption only)

Flows from detritus is a measure of total energy input into the ecosystem from non-living sources. This index will scale positively with high
rates of marine snow accumulation (e.g., typical of deltaic systems), and benthic-dominated food webs (due to high abundance of
detritivores and generalist benthic feeders such as arthropods and echinoderms). Note: Flows are computed as total flows from detritus
and flows from detritus due to consumption.

Lindeman Spines Lindeman Spines summarizes a complex food web as a simple linear food chain in which the compartments are abstract discrete steps
(Wulff and Ulanowicz, 1989). Numerical data presented in these diagrams typically shows energy or material exchange between ecosystem
components and transfer efficiency, flows to- and from- detritus, energy lost to respiration, and export from the system including fisheries
catch. Variations to the Lindeman Spine may distinguish primary production and detritus as basal energy sources. These are variations of
the Lindeman Spine; the version implemented here uses effective trophic levels (Levine, 1980; Christensen and Walters, 2004). Effective
trophic level refers to the weighted average number of trophic steps that separate a living component from the primary producers or
non-living compartments in the system (Levine, 1980; Heymans and Baird, 2000). The diagram is helpful for visualizing path length and the
presence of recycling loops, both of which relate to ecosystem maturity (Ulanowicz, 1981). The diagram is affected by the species included
in the model (i.e., degree of aggregation). Note: The Lindeman spines generated by CASM were truncated at trophic level III because
biomasses and flows became very small after that trophic level III.

Energy Flow
Diagrams

The Energy Flow diagrams show the biomasses and flows of energy among all species in the food web. In EwE, the flows are well
represented by the diet matrix, while in CASM the flows are computed and then averaged or summed. A threshold may be used to exclude
weak links; this aids in identification of important relationships and pathways. Because many species are represented in EwE and CASM, as
is typical for food web models, there are various ways to format the diagram to emphasize various features of the food web. Boxes may be
used to represent groups of similarly-acting species, and the size of the symbols (e.g., area) can be scaled to represent the relative biomass
of species. For our analysis, we use three Energy Flow Diagrams (from the Ecopath base model) to visually show the many species that rely
on primary producers and detritus for their energy source.

Energy Pathways

Ascendency Ascendency is a measure of the average mutual information in a system. That is, Ascendency is a measure of the amount of specialist
pathways and the size of a food web (Canning and Death, 2018). Ascendancy is inversely proportional to the uncertainty of where a unit of
energy will flow next in a food web. Thus, if there are few available pathways, or if few pathways contain a large proportion of the TST, then
uncertainty is low, ascendency is high, and a large part of the food web’s energy is flowing orderly toward a specific end. That end may be
at high trophic levels if the system has efficient transfer of energy, or the end may be at mid- or low- trophic levels. A high ascendency
system makes efficient use of primary production and can sustain high biomass components. A low ascendency system has many potential
(i.e., redundant) pathways of energy flow and is therefore resilient to disturbance. Note: The unit for ascendency is “flowbits”, or the product
of flow (for example, t km−2 year−1) and bits, with bits being an information unit that corresponds to the amount of uncertainty associated
with a single binary decision (Christensen et al., 2005).

Ascendency/
Capacity

Capacity represents the upper limit value for ascendency. The difference between capacity and ascendency is called system overhead.
A system with low A/C (equivalent to high overhead) has many alternative pathways for energy movement and is resilience to disturbance.
Ascendency/capacity can be compared between food web models.
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FIGURE 7 | Example Lindeman Spine diagrams from the CASM model for polygon 10 on June 15. Biomasses are t km−2 and flows are in t km−2 day−1 (Allesina
and Bondavalli, 2004).

disturbances. When taken together and consistently calculated
from both models, judicious selection of these higher-order
indicators would provide information on community structure,
the connectivity of the food web (which species are connected
to other species), and how fast and efficiently energy flows from
the primary producers and detritus up through the food web
via different pathways of connected species. Inclusion of certain
indicators would also provide qualitative information on high-
order food web properties, such as general energetic activity and
resilience (Christian et al., 2010; Canning and Death, 2018).

There are dozens of candidate indicators that could be used to
help inform natural resource managers (Borrett, 2013; Fath et al.,
2019; Safi et al., 2019). During our modeling team workshops, we
strategically selected indicators that covered the major features of
the food web, were suggested by the literature, and for which both
models produce the output needed for their calculation (Table 1).
The details of how the indicators are calculated from model
outputs are described elsewhere (e.g., Ulanowicz and Norden,
1990; Christensen et al., 2005; Heymans et al., 2016). Our focus
is on their interpretation within and across models. The selected
suite of indicators can be grouped into categories based on what
features of the food web they help to describe.

The first set of indicators (Shannon-Wiener Index, Species-
biomass plots, and Mean Trophic Level Index) summarize the

biomass structure of all species in the simulated food webs
(Table 1). Since the list of species between time or space
snapshots does not vary (i.e., species groups are fixed in
both models), changes in our Shannon-Wiener values between
snapshots (Ecopath and CASM) indicate differences in the
evenness of the biomass distributions across all species. The mean
trophic level index is a biomass-weighted average of the trophic
levels across species.

The second group of indicators focuses on how energy flows
among the species within the food web (Table 1). Using the
Ecopath base model, we illustrated how energy flows up the
food web with ecological flow diagrams that show the energy
paths from three producer groups (pelagic algae, benthic algae,
and detritus) to consumer species (see example in Figure 7).
Both models are used to summarize energy flows with additional
indicators: (1) comparison of the sum of all energy flows from
primary producers versus the sum of all energy flows from
detritus, (2) comparison of the summed energy flows from
primary producers to consumers versus summed energy flows
from detritus to consumers (3) total system throughput (TST),
and (4) reduction of the food web into a simple linear food
chain through a Lindeman Spine diagram. The first and second
indicators in this group characterize the importance of detritus as
an energy source to the food web relative to primary production;
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the second indicator specifically characterizes the importance of
detritus and primary producers to consumers (i.e., detritivory).
Total system throughput is the sum of all energy flows in the food
web and is a measure of the energy budget. The Lindeman spine
summarizes the food web by using the full food web information
to estimate the equivalent linear food chain.

The third and final group of indicators derived from
Information Theory (Ulanowicz, 1997) provides further insights
into the energy pathways by quantifying the dominance and
complexity of the pathways of how energy flows up the food
web and provides a measure of the resilience of the food web
(Table 1). These indicators are related to each other and are
termed: ascendency, capacity, the ratio of ascendency to capacity
(A/C), and overhead. Ascendency measures the efficiency of
the pathways used by energy as it flows up the food web;
high ascendency indicates that the food web makes efficient
use of primary production and can sustain high biomass. High
ascendancy usually implies a less disturbed system that is also
less resilient to future disturbances (Ulanowicz, 1997). Capacity
is the maximum value possible for ascendency. The difference
between capacity and ascendency is system overhead. Overhead
measures the complexity, where high overhead is indicative of a
system that has many alternate pathways for energy movement
and is therefore relatively more resilient, within certain bounds,
to disturbance. The ratio of ascendency to capacity (A/C) is useful
for indicating resiliency (where a low A/C is indicative of a highly
resilient system) and the ratio is comparable across models and
food webs. Overhead is calculated as 1- A/C and so varies in the
opposite direction as A/C (Ulanowicz, 1997; Canning and Death,
2018).

Generation of Indicators
All indicators were computed from the rebalanced Ecopath
models (derived from the calibrated Ecosim time slices) using
the Ecological Network Analysis Plugin and from the output
of the CASM calibration simulation. Thus, there were indicator
values for six Ecopath food web snapshots (June and October
from 2008, 2010, and 2013) and indicator values for eight
food web snapshots (different polygons under climatological
conditions) from CASM.

RESULTS

The suite of indicator values showed consistent similarities and
differences within each model and between models (Tables 2, 3)
that, when combined, provided a description of the seasonal,
interannual, and spatial variation in food web structure and
energetics of Barataria Bay. The ecosystem indicators generated
by both models showed the models were sensitive to changes in
environmental conditions. The average Shannon Weiner index
for Ecopath in June was 2.01 and 1.99 in October. For CASM,
average Shannon Weiner indices were grouped by environmental
conditions (Table 2) and were 3.00 (polygons 5, 11), 2.95
(polygons 10, 14, 19) and 3.16 (polygons 15, 16, 17), respectively.
The mean trophic level across both models was ∼2, except for
polygons 15 and 16 for CASM, which reported a mean trophic

TABLE 2 | Indicator values from the eight spatial polygons for the calibration
simulation of CASM.

Indicator Polygons

5 11 10 14 19 15 16 17

Shannon Weiner 2.99 3.02 2.84 2.93 3.09 3.18 3.16 3.16

Mean Trophic level 2 2 2 2 2 3 3 2

Total System
Throughput
(t km−2 yr−1)

4575 3616 5372 3232 1966 4710 3406 4646

Flows from PP
(consumption only)
(t km−2 yr−1)

2352 1819 2781 1662 914 2696 1934 2630

Flows from detritus
(t km−2 yr−1)

458 341 543 300 162 600 399 536

Ascendancy (flowbits) 4662.70 3570 6498 3147 1798 4732 3313 4735

Ascendency/capacity 0.31 0.31 0.29 0.31 0.31 0.32 0.32 0.31

Polygons are grouped by general environmental patterns in comparison to each
other: Polygons 5,11: exhibiting high salinity and intermediate levels of chlorophyll a;
Polygons 10, 14, 19: exhibiting intermediate levels of salinity, and low, intermediate
and high levels of chlorophyll a respectively; Polygons 15, 16, 17: exhibiting low
salinity and high chlorophyll a.

level of 3. Total system throughput (TST) was on average higher
in all June years compared to October years in Ecopath (Table 3).
CASM reported more variable TST across grouped polygons,
with the highest value of 5372 t km−1yr−1 reported in polygon
10. Productivity and flows from detritus metrics were generally
higher for all June years in Ecopath and for polygons 10, 15, 16,
and 17 (Tables 2, 3). Ascendency metrics in Ecopath are highest
in all June years compared to the October years. In CASM,
ascendency/capacity remains constant over all time periods,
while ascendency alone shows a range of values from 1798
flowbits to 6498 flowbits over all polygons. As the final step in our
modeling team workshops, participants interpreted the model
results together with the goal of using the indicators to formulate
four general findings that would provide a basis for projecting
how the food web would respond to disturbances and the
proposed sediment diversion. The findings used both similarities
and differences in the indicators between the two models and
leveraged their structural and implementation differences (e.g.,
Ecopath for seasonal dynamics and CASM for spatial dynamics).

Key Finding 1: Detritus Plays an
Important Role in the Energetics and
Functioning of the Barataria Food Web
A substantial store of decomposing material sustains high
levels of detritivory in the simulated Barataria Bay food
web and was responsible for a sizable fraction of the total
energy budget in the food web. CASM outputs indicated
that detritivory accounted for approximately 10.4% of all
flows present in the food web (i.e., calculated as flows from
detritus to consumers/total system throughput; Table 2). For
comparison, 53% of the flows were herbivory (flows from
primary producers to consumers/total system throughput).
Herbivory and detritivory together accounted for all new energy
inputs to the system. Thus, flows from detritus accounted for
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TABLE 3 | Indicator values from the Ecopath food web snapshots taken from the
calibration simulation of Ecosim.

Indicator Jun 08 Jun 10 Jun 13 Oct 08 Oct 10 Oct 13

Shannon Weiner 1.95 2.08 2.01 2.12 1.99 1.87

Mean Trophic level 2.21 2.25 2.22 2.22 2.25 2.21

Total System
Throughput
(t km−2 yr−1)

4340 4923 4297 3041 3280 3051

Flows from PP
(t km−2 yr−1)

2433 2783 2453 1713 1865 1768

Flows from PP
(consumption only)
(t km−2 yr−1)

651 735 656 505 578 584

Flows from detritus
(t km−2 yr−1)

1907 2141 1844 1328 1415 1283

Flows from detritus
(consumption only)
(t km−2 yr−1)

359 371 325 298 342 340

Ascendancy (flowbits) 5111 5815 5108 3635 3883 3612

Ascendency/capacity 0.29 0.30 0.30 0.27 0.27 0.26

Indicators were computed from the Ecopath models using the Network
Analysis Plug-in.

(10.4/(10.4 + 53)∗100) = 16% of all energy input to the food
web. This value is based on averaged annual flows over the
eight polygons; the result is robust because the contribution
of detritus relative to primary production was similar among
polygons (range from 15% to 18%). Ecopath output indicated
an even more important contribution from detritus: detritivory
accounted for 35% of flows in the food web and primary
consumption accounted for 65%. Flows from PP (consumption
only) averaged 618 t km−2 yr−1 and flows from detritus
(consumption only) averaged 339 t km−2 yr−1 (Table 3). Thus,
flows from detritus accounted for (339/(339 + 618)∗100) = 35%
of all energy input to the system, and flows from PP accounted for
(618/(339 + 618)∗100) = 65%. Similar to the spatial consistency
in CASM, the contribution of detritus relative to primary
production was similar among the six Ecopath slices (33% to
37%). Thus, both models indicated a large (16% and 35%)
portion of all energy into the food web was detrital, and this
large contribution occurred when productivity was low and high
(May and October in Ecopath) and uniformly within the bay
(polygons in CASM).

Both CASM and Ecopath results also indicated a net
production of new detritus in the system. The total annual
flow into detritus pools from summed daily allochthonous
inputs, and from daily mortality and excretion of producer
and consumer groups for CASM was computed by polygon
and then averaged over the eight polygons. The flow into
detritus was equal to 670 t km−2 y−1, while the averaged
flow out from the detritus biomass pools (Table 2) due to
consumption was lower at 417 t km−2 y−1. A daily snapshot
Lindemann Spine from a single polygon in CASM (Figure 7)
further illustrated the high net production rates of detritus
(12.53 versus about 8 t km−2 d−1 exiting). Our illustrative
Ecopath slice shows flows from consumers into detritus of 396 t
km−2 and flows out of detritus due to consumption at 346 t

km−2 (Figure 8). The higher inflow in both the CASM and
Ecopath models shows a detritus surplus because it was created
faster than it was consumed. Ecopath energy flow diagrams
provided additional evidence of the role of detritus, as many
species were receiving energy originating from phytoplankton,
phytobenthos, and detritus. The cumulative effect of these many
linkages was the large energy fluxes emanating from the detritus
pool (Figure 9).

Key Finding 2: The Barataria Bay Food
Web Shows a Response of Increased
Productivity After the Spring High Flow
Season That Is Mediated Through
Specific, Dominant Pathways
Seasonally representative output from the Ecopath food webs
indicated a greater total system throughput in June compared
to October. The average June value (over years) compared
to October was 4,520 versus 3,124 t km−2y−1 (Table 3).
Not only was the TST higher in June than in October,
but ascendency (averaged over years) was also higher [5,345
versus 3,710 flowbits (t km−2y−1∗bit)]. The mean trophic
level of the food web (computed starting with consumers
at trophic level 2) did not vary much with this seasonal
(October versus June) increase in biomass, suggesting that
the biomass increase occurred in species with a trophic level
near 2.2. CASM-generated TST and ascendancy were highest
in polygons 15, 17, 10, and 5 (Table 2), which are the
polygons with the higher primary production/bottom-up food
web support (Figure 6). The lowest TST and ascendancy values
were in the polygons with the lower primary production.
The magnitudes in the TST and ascendancy of the polygons
generally tracked the chlorophyll-a (index of productivity) in
the polygons (Table 2 and Figure 6). Therefore, the spatially
explicit CASM results, when viewed temporally (space-for-time),
represent a temporal pattern that is consistent with the Ecopath
prediction of increased productivity after the spring high flow
season.

Key Finding 3: The Trophic Pyramid of
the Barataria Food Web Is Truncated
The Lindeman spines estimated from the Ecopath and CASM
food webs indicated a large decrease in the amount of biomass
above trophic level 2 (examples of selected spines shown
in Figures 7, 8). This pattern was consistent for June and
October for all three years from Ecopath, and on an annual
basis for the eight polygons from CASM. The drop off can
be easily visualized by the species-biomass distribution plots,
which showed a decrease in biomass moving up the trophic
levels (bottom to top in the plots) even when biomasses are
plotted on a logarithmic scale (Figures 2, 3). The relatively
low mean trophic level of the food web indicated by both
models is commensurate with a truncated trophic pyramid
structure (CASM: 2.33 to 2.51 across polygons; Ecopath: 2.21 to
2.25 seasonally).
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FIGURE 8 | Example Lindeman Spine diagrams from the June 2010 Ecopath model determined from time slices from the Ecosim calibration simulation. Biomasses
are in t km−2 and flows are in t km−2year−1.

Key Finding 4: Compared to Other
Estuaries, the Barataria Bay Food Web
Has Many Potential Pathways for Energy
Transfer
The relatively low ascendency/capacity (A/C) ratio from both
Ecopath (Table 3) and CASM (Table 2) indicated low
predictability of energy flows within the food web. Both models
indicated there were many potential pathways for a unit of
energy to travel, that is, flow from producers to consumers is less
predictable. That is, there is a large number of species found in
first and second order consumers and this energy moves up the
food web through these various pathways. The overall averaged
A/C from Ecopath (28%) and CASM (31%) food webs were both
considerably lower than A/C values reported for other estuarine
food webs (e.g., Christian et al., 2005).

DISCUSSION

Use of multiple ecosystem and food web models to inform
natural resource management decisions are increasing (e.g.,
Peterman, 2004; Link et al., 2012; Townsend et al., 2014).
Our analysis of two alternative food web models for Barataria
Bay provided baseline information to help guide management
decision-making on a large-scale restoration project. The goal
was to identify how the food web might respond to changing
estuarine conditions by providing a fundamental understanding
structure and functioning of the system. The complementary
use of the Ecopath and CASM models, leveraging their
respective strengths, provided a robust view of the food web
and its general responsiveness to disturbances. This collective
approach was achieved by forming a team that included the
expert panel of scientists and model developers, with periodic
check-ins with the state and federal managers, who worked
collaboratively to synthesize model results. The results presented
here were provided to the management agencies charged
with evaluating the potential impacts of the project. Further

analyses could involve systematically perturbing the food webs
in a generalized manner (e.g., altered growth rates) in both
models to mimic anticipated changes in water quality from
project operations.

Using multiple models provides several advantages when
considering the use of model output in natural resource
management decisions. The ecosystem indicators calculated
provide only one value per ecosystem snapshot. Multiple
models can provide for ‘samples’ of ecosystem function
indicators. This ability to sample indicators is especially
important to evaluate if the representations of the ecosystem
are different under different environmental conditions. For
example, seeing higher ascendency values for both models
under higher productivity scenarios allows us to interpret a
link between productivity and ascendency. The differences in
model structure also provides a way to describe the food web
under alternate views of how the species and environmental
variables interact.

While this case study is based on one geographic location
and restoration action, the methodologies used herein can be
broadly applied. The long-term collaboration between scientists,
agencies and managers started during the initial scoping phase
of this project and continued throughout the application phase
(Beier et al., 2017; Laudien et al., 2019), making this approach
particularly compelling. This extended working relationship
lays a solid foundation for future applications of using co-
production in natural resource management decisions. The
rapport built between the government agencies and modeling
teams helped guide the science as results were collectively
discussed during workshops and conference call check-ins.
Co-production using action science methodologies is gaining
traction across the world (Gross and Hagy, 2017; Laudien
et al., 2019) and successful projects like this one make the
case for continued expansion of these practices. Therefore,
we contend this approach to using multiple models for
natural resource decision-making can be applicable in other
contexts and ecosystems.
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FIGURE 9 | Energy Flow diagrams from the Ecopath base model used in the Ecosim calibration simulation to highlight net production of detritus in the model
compared to other producer compartments. Trophic level is indicated on the y-axis; the size of the dots indicates the size of the biomass pools. Energy flow (t
km−2 yr−1) from phytoplankton (A), Benthic Algae (B), and Detritus (C) is highlighted. This figure represents the key species found in both the CASM and EwE
models.

Implications of Key Findings for
Decision-Makers
Our analysis of the indicators provided baseline information
on the structure and energetics of the Barataria Bay food web

and can be used to infer how the food web would respond to
disturbances (or changes in environmental conditions caused by
sediment diversions). Collectively interpreting the average range
of flows from detritus of 16% to 35% (Tables 2, 3), suggested that
detritus played a significant role in supporting fish and fisheries
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in Barataria Bay and that the food web has multiple pathways of
moving fresh (chlorophyll) and recycled (detritus) organic matter
into the food web. Such influence of detritus is typical of shallow
deltaic systems with high rates of production and deposition
(Odum, 1984; Kennish, 1990). Because a large part of the food
web’s total energy budget derives from the breakdown of detritus,
the modeling results indicated that there exists a short-term
energy reserve in the system that is somewhat independent of
primary production and therefore insensitive to light limitation
and other factors that may limit primary production. This
property suggests some potential uniformity in the production
rate of detritivorous species and their predators during short-
term increases in system turbidity or other disturbances that
may limit phytobenthos or phytoplankton production. Fisheries
targeting detritivorous species, such as shrimp and blue crab, may
benefit from this buffering effect.

Also noteworthy from the indicators was that the detritus-
based food web supported a different array of species than
either the phytoplankton or phytobenthos-based food webs
(Figure 9). Long-term changes in detrital inputs, composition, or
dynamics can therefore result in a shift in species composition
and changes in the structure of the food web (De Mutsert and
Cowan, 2012). Reliance on the detrital dynamics has been shown
to offer enhanced ecosystem stability (Moore et al., 2004). In
particular, the extent to which detritus is delivered by freshwater
sources or adjacent marshes (i.e., allochthonous sources) versus
produced by the decay of phytoplankton and phytobenthos (i.e.,
autochthonous sources), which can be affected by disturbances,
will also modulate the food web structure and energetics.

Seasonal inputs from rivers are important to the normal
functioning of the food web in many estuaries as they stimulate
primary and secondary production in the spring and summer
(Madden et al., 1988; Nielsen et al., 2004; Cloern et al., 2014).
These inputs fuel seasonal increases in dominant-biomass low-
trophic level species (e.g., phytoplankton, benthic algae). These
species groups serve an important ecological role as they facilitate
energy transfer to higher trophic levels. The Ecopath slices
indicated higher throughput in June for Barataria Bay that
reflected the tail end of the spring bloom and suggests that
high biomass and consumption rates were concomitant with
an increase in primary productivity (TST is positively related
to chlorophyll-a concentration in both models). The truncated
nature of the food web indicated in the Lindeman spines
(Figures 7, 8) show that the seasonal peak in biomass (June versus
October) is concentrated in a large number of species found
at lower trophic levels (i.e., TL < 3). Environmental changes,
or changes in the supply of nutrients, could therefore alter the
seasonal production of these high biomass, low trophic level
consumer groups, such as shrimp, anchovy, and menhaden.

Indicators also showed that most of the biomass within the
food web was organized at lower trophic levels, and because low-
trophic level species have high turnover rates, there is potential
for high population growth rates over short periods of time (e.g.,
1–2 years). Such turnover provides a mechanism for these species
to be relatively resilient to short-term disturbances. Changes to
environmental conditions can have large effects on the food web
because environmental conditions influence the base of the food

web, and a large portion of food web biomass is found in basal and
lower-trophic level species (Odum, 1971, e.g., phytoplankton,
zooplankton, and forage species). Due to this strong and direct
connection between the environment and biomass-dominant
groups, the food web is liable to be variable and spatiotemporally
responsive to changes in environmental conditions.

The truncated food web from both models indicated that
average trophic pathways are short, and that predatory fish
population production is unlikely to be limited by their
consumption effects on their available food. Predator populations
were kept low in simulations in part because of the assumed
high rates of fishing mortality (e.g., in Ecopath - Fishing/Total
(F/Z) mortality was 68% for menhaden, 81% for gray snapper,
45% for largemouth bass, and 27% for black drum) and other
sources of removals (e.g., migrations in CASM). High rates
of predation mortality by adults on juvenile fish might also
contribute to relatively low levels of high trophic consumer
biomasses. Short trophic pathways and an absence of substantial
predator biomass both suggest that the system is donor (bottom-
up) controlled. Low ecotrophic efficiencies (EE) in the Ecopath
models estimated from the Ecosim simulation for mid-trophic
level forage species reinforced this finding, as it also indicates
low predation rates from higher trophic level species relative to
production of forage species. Additional support was provided by
the vulnerabilities set during calibration of Ecosim that suggested
that biomass dynamics of forage fish species are not strongly
controlled by predation (i.e., top-down control is weak compared
to bottom up effects).

When viewed in comparison to other estuarine ecosystems,
our analyses indicated that Barataria Bay has a relatively high
level of resiliency because of its relatively low values of A/C.
Christian et al. (2005) compared the A/C values of 6 separate
estuarine ecosystems (with a total of 17 seasonal values) that
showed an averaged value of 43% (standard deviation of 0.05).
The lower A/C ratios generated with Ecopath and CASM
(Tables 2, 3) are indicative of large food webs with varied
consumer diets that result in many possible energy pathways
through the food web (Morris et al., 2005). Both models
represented multiple lower trophic level consumer species that
feed on a variety of prey types (detritus, benthic algae, benthic
infauna, and epifauna), and both models represented the pelagic
aspect of their food webs with multiple forage fish species such
as bay anchovy, shads, silversides, and gulf menhaden feeding
on phytoplankton and zooplankton in the water column. This
opportunistic feeding, which is typical of estuarine species (Elliott
et al., 2007), allows top and mid-level predators to switch to other
prey items when environmental conditions become unfavorable
for certain forage species, increasing the resilience of the food
web as a whole. Thus, for Barataria Bay, there is a large number
of possible destinations for an energy parcel, and lower overall
certainty of the destination of energy into the upper trophic
levels. Although high A/C systems make more efficient use of
energy to produce biomass, low A/C systems tend to have more
pathways through which energy may flow (Ulanowicz, 1997;
Canning and Death, 2018). Low A/C systems are therefore robust
to disturbance, as redundant pathways for energy flow exist
in case any single node (species or groups of similar species)
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is disturbed. Redundant food web connections (i.e., multiple
potential pathways for energy transfer) help reduce the danger
of furthering food limitation of predators even if important prey
groups are disturbed or eliminated by fisheries or disturbances.
Perturbations that occur on a limited number of species and
connections can potentially be absorbed by the food web.

Note that while the food web as a whole may be resilient,
individual species or groups in the food web can still be
affected (some being reduced), and that the degree of resiliency
and responsiveness of individual species depends on the
type (where it affects the food web and how), magnitude,
duration, and repetitiveness of the disturbance (Ulanowicz,
2018). A disturbance that broadly affects many aspects of the
bottom of the food web (phytoplankton, phytobenthos, and
detritus), and does so with high intensity for an extended time
period and repeats every year, can exceed the resilience provided
by redundant food web connections. It follows that the Barataria
food web can likely absorb a disturbance that affects only part of
the bottom of the food web and especially if the disturbance has
only small to moderate impacts that occur once or with sufficient
time between impacts.

Context for Interpretation of Indicators
We focused on June versus October for Ecopath and spatial
differences via different polygons in CASM. A more direct
analysis of model output would have evaluated the same outputs
between the models so their predictions could be directly
interpreted. Our primary purpose here was not to compare the
models to determine when and where the models agreed and
disagreed. Our purpose was to use the two models to characterize
the Barataria Bay food web and to focus on the model results
with sufficiently high enough confidence to be used to understand
the food web. In our use of the calibration simulations, we
noted several examples where both models generated similar
predictions and also situations when the two models differed in
their predictions but for valid reasons related to their alternative
views of the food web. For instance, the strength of CASM under
calibration conditions was to examine spatial differences in the
food web within Barataria Bay on an annual basis. The calibration
of Ecosim used year-to-year variation in environmental inputs
for a large spatial domain so its strength lay in examining
seasonal (rather than spatial) differences. The aim, therefore, was
to combine the results from the calibration simulations of two
models to describe the food web, and we contend this integration
is the strength of this approach. By using both models, we were
able to make statements about the average food web structure and
energetics and how it varied seasonally (June versus October) and
spatially (among polygons).

An important caveat centers on how the two models represent
species biomass removals from their domains. Both the Ecopath
and CASM models focus on the dynamics within their domains
and attempt to account for species removals. These removals can
affect the structure and energetics of the simulated food webs.
Ecopath includes fisheries harvest, which removes significant
fractions of biomass of certain species, and CASM includes
emigration and immigration (in and out of the domain) for
species. This difference is important because indicators that

show a high importance of bottom-up controls on the food
web (environmental to lower trophic levels) are conditional on
relatively low biomasses of higher trophic levels, which may be
low due to removals. Therefore, a major change in removals
that allows higher biomasses of certain species can affect the
finding that the food web during calibration conditions was being
controlled by environmental forcing acting at the lower part
of the food web.

Careful interpretation of ecosystem models is needed because
the same labels can be attached to environmental variables,
parameters, and processes even though they are used differently
within alternative models. An example is the difference in
how respiration is represented in the two models used here.
Respiration rates in CASM will be lower because its formulation
has additional loss terms to respiration (e.g., excretion) that are
included in one respiration term in Ecopath. Both formulations
are valid but one must identify this difference and look carefully
at the models when respiration losses are included as part of the
calculation of indicators.

We did not focus on using the calibration simulations to
determine how general or project-induced changes in salinity
would affect the food webs. Both Ecopath and CASM included
the effects of variation in salinity (feeding in Ecopath; growth
rate in CASM) within their calibration simulations. However,
simulations of specific salinity scenarios are likely uncertain due
to the need to specify salinity effects on multiple processes of
many species; such simulations are achievable with additional
model development and analyses. We suggest that a next step
would be to perform new simulations with the calibrated
models that vary environmental conditions (low versus high
flow years) in a systematic way so that responses of the
food web can be attributed, in a cause-and-effect manner, to
generalized types of disturbances (e.g., reduced growth) imposed
on species in the models.

The outcomes of this work resulted from a series of workshops
lead by an expert panel of ecological modelers. These scientists
worked previously with the state and federal managers to develop
the most relevant plan for use of the food web models to
support the management decision. Other participants included
the marine ecologists who developed the food web models and
representatives of the state and federal management agencies.
During the workshops it was collectively determined that the
EwE model should focus on two key months and the analysis of
the CASM simulation should focus on the spatial differences in
annual output provided by the multiple, independently simulated
polygons. During the workshop, all participants determined
which ecological indicators could be calculated with both models
or what indicators should be used specifically from one model
or the other. This systematic determination of indicators that
included periodic discussions with the government agency
representatives, allowed for a broad description of the structure,
status, and resilience of the Barataria food web under natural
variability of environmental conditions in the area. This action
science approach to management also ensured the results
provided to the interested agencies were scientifically sound and
included relevant information to evaluate the efficacy of the
restoration project.
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Finally, we offer a few more caveats. First, some of the
indicators are sensitive to the specific structure of the models.
We used indicators that were robust but if a third model was
considered or major changes were made in the use of Ecoapth
or CASM, then the indicators should be re-examined to confirm
how best to compare them across models and for project
scenarios. The indicators remain valid descriptors of the food
web; what should be re-examined are the actual values of the
indicators and how to assess differences over time and space and
between models. Second, while physical habitat is included in
both models, both models assumed no major changes in physical
habitat during the calibration simulation time period. The focus
was on food web interactions assuming stable physical habitat
conditions. Habitat suitability modeling being done separately
from these food web models will provide information on the
effects of changing habitat.

While much more can be inferred about the food web from
further analysis of these models, the calibration simulations
provided a sound foundation for the food web structure and
energetics. Such information provides a food web context
for assessing possible impacts of the proposed project. The
management agencies have also used habitat suitability index
(HSI) models to evaluate species-specific spatiotemporal
differences in habitat suitability (between 0 and 1) based on
varying salinity, temperature, water depth, proportion marsh,
and other factors, for key fisheries (e.g., shrimps, blue crab,
spotted seatrout) and wildlife (e.g., ducks, alligators) species
in Barataria Basin. The HSIs provided simpler formulaic
models for evaluating the Mid-Barataria Sediment Diversion
operational alternatives for determining potential species
impacts. The HSIs are much less complex, with modeled results,
sensitivity, and uncertainty much easier to communicate for
assessment of single species. HSIs are commonly used for
impacts analysis for environmental assessments for water
resource and restoration projects (CPRA, 2017), but multispecies
or food web models are much less common. Using the calibrated
EwE and CASM to describe the existing food web structure
and energetics in Barataria Basin under varying spatial and
temporal environmental conditions offered an expanded
understanding and explanation of potential ecosystem-level
impacts beyond HSI analysis.

CONCLUSION

Careful evaluation and testing of ecosystem models enable
understanding of their strengths and limitations. We
demonstrated how combining the results from two alternative
models (Ecopath and CASM) for Barataria Bay is a scientifically
sound and practical approach for dealing with the complexities
of food webs and how they respond to environmental variation,
resource management actions, and disturbances. There are a
wide range of ways multiple models can be used, from a high
degree of coordination during model development to complete
independence until the synthesis at the end. A key step in all
multi-model approaches is to ensure that the modeling results
are interpreted properly (Rose et al., 2015; Schuwirth et al., 2019).

We attempted to address the interpretation issue by working
with managers so that the results were presented a manner
that, as much as possible, could inform decision-making. Most
multiple model situations are somewhere between the extremes
of complete versus no coordination and thus determining the
confidence to assign to results when models agree or disagree is
challenging. Our approach presented here offers a template for
combining modeling results that leverages the strengths of the
different models by focusing on higher-order indicators (rather
than variable-by-variable comparisons) that have relatively high
confidence and also are useful to management (Fu et al., 2019).
A critical aspect of our approach was the coordination between
model developers and outside scientists, with input from natural
resource managers, all working together in a collaborative effort.
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