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Technological innovation in underwater acoustics has progressed research in marine
mammal behavior by providing the ability to collect data on various marine mammal
biological and behavioral attributes across time and space. But with this comes the
need for an approach to distill the large amounts of data collected. Though disparate
general statistical and modeling approaches exist, here, a holistic quantitative approach
specifically motivated by the need to analyze different aspects of marine mammal
behavior within a Before-After Control-Impact framework using spatial observations is
introduced: the Global-Local-Comparison (GLC) approach. This approach capitalizes
on the use of data sets from large-scale, hydrophone arrays and combines established
spatial autocorrelation statistics of (Global) Moran’s I and (Local) Getis-Ord Gi∗ (Gi∗) with
(Comparison) statistical hypothesis testing to provide a detailed understanding of array-
wide, local, and order-of-magnitude changes in spatial observations. This approach was
demonstrated using beaked whale foraging behavior (using foraging-specific clicks as
a proxy) during acoustic exposure events as an exemplar. The demonstration revealed
that the Moran’s I analysis was effective at showing whether an array-wide change in
behavior had occurred, i.e., clustered to random distribution, or vice-versa. The Gi∗

analysis identified where hot or cold spots of foraging activity occurred and how those
spots varied spatially from one analysis period to the next. Since neither spatial statistic
could be used to directly compare the magnitude of change between analysis periods,
a statistical hypothesis test, using the Kruskal-Wallis test, was used to directly compare
the number of foraging events among analysis periods. When all three components of
the GLC approach were used together, a comprehensive assessment of group level
spatial foraging activity was obtained. This spatial approach is demonstrated on marine
mammal behavior, but it can be applied to a broad range of spatial observations over a
wide variety of species.

Keywords: spatial autocorrelation, hypothesis testing, Before-After Control-Impact, marine mammal, spatial
change, GLC approach
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INTRODUCTION

Studies investigating marine mammals in the wild have
historically relied on human observers (Mann, 1999; Acevedo-
Gutierrez and Parker, 2000). Visual surveys are often conducted
from land (Piwetz et al., 2018), or boats which limits the types of
animals (e.g., coastal, amphibious) and/or behavioral states (e.g.,
hauled-out, surface-feeding, migrating, surface-swimming, etc.)
that can be studied due to the limited range in which an observer
can see an animal (e.g., distance from shore, at or near the surface
of the water, etc.).

Over the past few decades, technological advancements have
led to the ability to track animals further at or near the water’s
surface, at a wider range of depths and distances, in remote
locations, and over longer periods of time than previously
possible (Costa, 1993). Technological developments have been
used to enhance the study of marine mammals, including drones
(Torres et al., 2018; Landeo-Yauri et al., 2020; Frouin-Mouy
et al., 2020), telemetry devices and other biologgers (Fedak
et al., 2002; Hart and Hyrenbach, 2009; Bograd et al., 2010;
McIntyre, 2014; Joyce et al., 2020; Barlow et al., 2020), and
gliders fitted with acoustic receivers (Johnson et al., 2009;
Baumgartner et al., 2013; Kowarski et al., 2020). Passive acoustic
technology has also exploded with innovation (e.g., acoustics
tags, autonomous acoustic receivers, towed hydrophone arrays)
providing information at a range of scales on acoustically active
marine mammals (Miller and Tyack, 1998; Wahlberg, 2002;
Carstensen et al., 2006; Giraudet and Glotin, 2006; Madsen et al.,
2006; Wiggins and Hildebrand, 2007; Miller et al., 2008; Barlow
et al., 2008; Tyack et al., 2011; Southall et al., 2012; Gassmann
et al., 2013; Rettig et al., 2013; Sousa-Lima et al., 2013; Mate
et al., 2016; DiMarzio et al., 2018, 2019; Giorli and Goetz, 2019;
Caruso et al., 2020a,b; Kates Varghese et al., 2020; Malinka
et al., 2020, and countless more). Consequently, the potential
to assess more challenging and complex questions related to
marine mammal behavior and population level impacts has also
increased. For example, several U.S. Navy range hydrophone
receiver arrays exist for tracking underwater vehicles (Moretti
et al., 2016; DiMarzio et al., 2019) that house 10’s of hydrophone
receivers spread over a couple thousand square kilometers. These
large arrays have been used to study the foraging behavior of
groups of beaked whales during naval training exercises with
mid-frequency active sonar (MFAS) and other noise-generating
activities (McCarthy et al., 2011; Henderson et al., 2014, 2019;
Manzano-Roth et al., 2016; Moretti et al., 2016; DiMarzio et al.,
2019; Jacobson et al., 2019; Kates Varghese et al., 2020).

With the ability to ask new and more complex questions
related to marine mammal acoustic behavior comes the need
to be able to analyze data collected to answer previously
intractable questions. The goal of this work was to demonstrate
a quantitative and comprehensive approach for examining
and comparing group level marine mammal spatial behavior,
the Global-Local-Comparison (GLC) approach. This approach
was specifically developed for utilizing the spatial information
derived from large-scale hydrophone receiver arrays and passive
acoustic monitoring systems that receive, detect, and classify
sounds emitted by marine mammals (e.g., Ward et al., 2000;

Jarvis et al., 2014). This is not the introduction of a novel
statistical method. Rather it is a novel bundling of existing
and established statistical methods for an assessment of
group level marine mammal spatial behavior. This approach
includes a global (e.g., array-wide) and local (e.g., hydrophone)
assessment, as well as an order-of-magnitude comparison of
spatial observations across distinct analysis periods through the
use of spatial-autocorrelation statistics (Moran’s I, Getis-Ord Gi∗)
and hypothesis testing (Kruskal-Wallis).

The GLC approach was applied to 10 simulated pattern data
sets to provide examples of the utility, limitations, and benefits of
the approach. Datasets from large spatial arrays, like those from
navy ranges, set within a Before-After Control-Impact (BACI)
framework, provided ideal empirical examples upon which to
demonstrate this multi-faceted approach for assessing spatial
change across analysis periods. Thus two BACI studies, McCarthy
et al. (2011) and Manzano-Roth et al. (2016) assessing beaked
whale foraging with respect to MFAS on U.S. Navy hydrophone
ranges were used. Spatio-temporal data from these studies were
visually extracted from heat map images produced in the original
studies and the GLC approach applied.

While the aforementioned BACI studies incorporated coarse
spatial modeling (i.e., edge vs. inner hydrophone comparison),
the focus of the original studies was on the temporal
analysis of beaked whale foraging behavior. The GLC approach
fills a need for a more comprehensive and quantitative
approach for assessing the spatial aspects of group level marine
mammal behavior. Other quantitative spatial methods have
been used to examine specific study population attributes—e.g.,
local decrease/increase of populations (McCarthy et al., 2011;
Manzano-Roth et al., 2016), or spatial re-distribution assuming
no change in population numbers (Scott-Hayward et al., 2014)—
but the three analyses combined in the GLC approach bring a
comprehensive perspective to assessing spatial change in group
level marine mammal observations.

MATERIALS

This spatial analysis approach to assessing changes in marine
mammal behavior capitalizes on the spatial detections
representing a specific behavioral state of the study population –
referred to here as group level behavior—across distinct time
periods. Group, here, refers to a number of animals (typically
10 s of animals as opposed to a few individuals) of one species
that occupy a local area. Group is used rather than population
(Hammond, 2002), as sufficient knowledge of what portion of a
larger population a group of marine mammals represents is often
lacking. However, the use of group level does not exclude the
study of an entire population, where that knowledge exists.

To demonstrate the GLC approach, spatial detections of
acoustic signals consistent with foraging, or Group Vocal Periods
(GVPs), were used as a proxy to assess beaked whale foraging
behavior. A GVP is a vocal event of at least one, up to
several, animals foraging together in close proximity to one
another. During a GVP, beaked whales echolocate to find prey,
producing several hundred species-specific echolocation clicks. If
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the animals are foraging within a sufficiently spaced hydrophone
array, such as the U.S. Navy hydrophone arrays, there is a
high probability that at least some of the thousands of highly
directional echolocation clicks will be received on at least one
hydrophone. Using detection and classification algorithms (e.g.,
Ward et al., 2000; Jarvis et al., 2014; DiMarzio et al., 2018)
these clicks can be grouped into GVPs and assigned to a central
hydrophone (e.g., the hydrophone that received the most clicks
for a given timestamp) for the event, providing the basis of
a GVP time series with associated spatial location information
(McCarthy et al., 2011; Manzano-Roth et al., 2016; DiMarzio
et al., 2019). The GLC approach does not provide detail for how
to process hydrophone data but instead assumes the availability
of such a data set prior to undertaking this protocol. In addition,
some level of uncertainty exists with regards to the automated
detection of species-specific GVPs and their corresponding
assignment to a central hydrophone. It was assumed that the
probability of detection of a GVP was constant over time and
equal for all hydrophones.

Two types of data were examined: (1) simulated GVP data
representing specific spatial patterns, and (2) extracted GVP
data from two previously published exemplar marine mammal
behavior studies (McCarthy et al., 2011; Manzano-Roth et al.,
2016). For each data type, the total number of GVPs were
summed by hydrophone for each analysis period. The total
number of GVPs per hydrophone served as the feature of interest
for the spatial analysis, and the hydrophone location served as
the spatial data of the feature. This information provided the
necessary input for the spatial analysis.

GVPs were analyzed here, but the approach is not limited
to the study of marine mammal foraging behavior. Any spatial
feature could be studied assuming both a feature value and
its spatial location information are available. In addition, the
spatial layout of the observation array must be conducive to an
examination of that feature. For example, a specific array with
fixed and coarsely spaced acoustic recorders may be appropriate
for studying certain features over others, i.e., high frequency
acoustic signals vs. lower, or vice-versa.

METHODS

The GLC approach entails calculating two spatial statistics,
Moran’s I and Getis-Ord Gi∗ for each analysis period, along
with a data appropriate hypothesis test for comparing all analysis
periods. The Moran’s I statistic provides a global view of the
spatial behavior over the entire region under study, i.e., the
hydrophone receiver array, while the Getis-Ord Gi∗ statistic
provides a more localized view of spatial behavior and spatial
use, i.e., hot spots and cold spots of activity, within the array
that would not otherwise be captured through the global statistic.
Due to inherent differences in distributions and variances
of observations across analysis periods, the spatial statistics
cannot be directly compared across analysis periods. Thus, the
statistical hypothesis test is required to provide insight about
order-of-magnitude differences across analysis periods in the
feature of interest.

Global Behavior/Spatial Autocorrelation
The Moran’s I statistic is used to assess the global spatial pattern
of the feature of interest, i.e., number of GVPs, over the entire
array. The Moran’s I statistic (Equation 1) characterizes spatial
patterns by measuring the overall spatial autocorrelation of
a data set, producing a single value. The spatial correlation
coefficient is normalized by the sum of the variance of the
data so that the values of I range between (–1, 1) (Goodchild,
1986; Odland, 1988). A value of negative one corresponds
to perfect dispersion, where very different values are found
next to one another (Figure 1, left). A value of positive one
corresponds to perfect clustering, where similar values are
found next to one another (Figure 1, right). A value of zero
represents no spatial autocorrelation and describes a perfectly
spatially random distribution of values (Figure 1, middle).
The variance of the expected value of Moran’s I, under an
assumption of a random spatial distribution (Goodchild, 1986;
Odland, 1988), is calculated to test for statistically significant
clustering or dispersion.

The Moran’s I statistic is given by the formula (Goodchild,
1986; Odland, 1988):

I =
N
W

∑
i
∑

j wi,j(xi − x)(xj − x)∑
i (xi − x)2 (1)

where W =
∑n

i = 1
∑n

j = 1 wi,j, wi,j is the weighting between
the ith and jth spatial units, and w represents the weighting
matrix with i rows and j columns. xi refers to the ith feature
value, [e.g., the total number of GVP of the ith spatial unit (e.g.,
hydrophone)], and x is the mean of all of a feature’s values (e.g.,
the mean number of GVP across all hydrophones).

The weighting matrix (w) is a contiguity matrix representing
the relationship between each pair of spatial units, e.g.,
hydrophones (the ith row and jth column). The weighting (wi,j)
determines the contribution that each set of hydrophones (the
ith and jth) makes to the final spatial autocorrelation value. For
example, a “Queen’s case” (Figure 2) contiguity weighting scheme
considers all hydrophones (j) that are directly perpendicular,
horizontal, and diagonal to a particular hydrophone (i) to
be adjacent neighbors to that hydrophone, while the other

hydrophones are not, i.e., wi,j =

{
1, if j adjacent i

0, if j not adjacent i
. Those

hydrophones that are not adjacent neighbors therefore do not
contribute (wi,j = 0) to the Moran’s I statistic. The “Bishop’s case”
(Figure 2) only considers hydrophones that are directly diagonal
to be adjacent neighbors, while the “Rook’s case” (Figure 2) only
considers hydrophones directly perpendicular or horizontal to
be adjacent neighbors. In open ocean beaked whale habitat, it
was not expected that there would be any restrictions in how
a whale would move so the “Queen’s case” was determined to
be the most realistic representation of hydrophone adjacency
and was employed when testing both the simulated pattern and
exemplar data sets. The use of this specific criterion also assumes
that the hydrophones are omnidirectional and therefore able to
fully capture this expectation. To ensure the Moran’s I values
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FIGURE 1 | Spatial depiction of ideal Moran’s I values: left- perfect dispersion, Moran’s I value = –1; middle- perfect randomness, Moran’s I value = 0; right- perfect
clustering, Moran’s I value = +1.

FIGURE 2 | Three examples of contiguity weighting schemes for generating
weighting matrices. “Queen’s case” (left) was used in this study, while
“Bishop’s case” is in the middle, and “Rook’s case” is on the right. Colored
arrows indicate which hydrophones would be considered an adjacent
neighbor to the same colored hydrophone. Notice: not all hydrophones will
have the same number of neighbors.

fall within the (–1, +1) scale, the weighting matrix is row-
standardized by dividing each row value by the row sum so that
the sum of values in each row totals to one.

To determine if the observed spatial pattern deviates
significantly from random (i.e., I = 0) the Moran’s I statistic
is converted to a z-statistic (zI)

(
Equation 2

)
with a standard

normal distribution upon which significance is determined. The
formula for this is given by:

zI =
I − E[I]
√

V[I]
(2)

where E [I] = −1
(n−1) is the expected value for a spatially random

distribution and V [I] = A−B
C is the variance of the expected

value. Note that the variance of Moran’s I can be calculated based
on an assumption of normality, or randomization (Goodchild,
1986; Odland, 1988). The former is appropriate when data follows
a normal distribution, but in cases where the distribution is
not normal or is unknown, the less restrictive randomization
assumption can be used. For skewed data—as is often the case
with marine mammal detections and was true in this study—
the randomization assumption is more appropriate. This should
be reconsidered for the specific application of this statistic.
The formula for variance when normality is assumed can be
found in Odland (1988). The variance under the randomization
assumption is calculated by the following set of equations
(Goodchild, 1986; Odland, 1988) (Equations 3–8):

A = n[S1(n2
− 3n+ 3)− nS2 + 3W2

] (3)

B = D[S1(n2
− n)− 2nS2 + 6W2

] (4)

C = W2(n− 1)(n− 2)(n− 3) (5)

D =
∑n

i = 1 (xi − x)4

(
∑n

i = 1 (xi − x)2)
2 (6)

S1 =
1
2

n∑
i = 1

n∑
j = 1

(wi,j + wj,i)
2 (7)

S2 =

n∑
i = 1

(

n∑
j = 1

wi,j +

n∑
j = 1

wj,i)

2

(8)

A p-value is obtained by matching the z-statistic to a standard
normal distribution look-up table for the designated level of
significance. A 5% significance level (95% confidence level) was
used here. The analysis conducted with the Moran’s I statistic
is a hypothesis test, where the test hypothesis is that the spatial
distribution of the observations is no different from “perfectly”
random (I = 0). If the p-value associated with the Moran’s I
statistic is less than 0.05, then the distribution is interpreted as
statistically different from random: either significantly clustered
(I = +1) (Figure 1, right), or significantly dispersed (I = –1)
(Figure 1, left).

In the demonstration of the GLC approach, a change in
significance of the Moran’s I z-statistic from one analysis period
to another is interpreted as a change in mammal behavior
globally—e.g., from spatially random to spatially clustered.
However, no change would be detected if, for example, all
mammals were on the east side of the array as in Figure 1 (right)
at time t1 and moved to the west side at time t2. Hence, a coupled
analysis of behavior at a local scale is necessary.

Local Behavior/Spatial Autocorrelation
The Getis-Ord Gi∗ statistic (Getis and Ord, 1992) is used to
identify pockets of high spatial association, e.g., clustering of
similar feature values, or in this demonstration, the number of
GVPs. For the remainder of the paper this analysis will be referred
to as Gi∗. The Gi∗ z-statistic is computed for each spatial unit, or
hydrophone, using the following formula (Getis and Ord, 1992):

G∗i =

∑n
j = 1 wi,jxj−X

∑n
j = 1 wi,j

S

√
n
∑n

j = 1 w2
i,j−(

∑n
j = 1 wi,j)

2

(n−1)

(10)
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where S =

√∑n
j = 1 x2

j
n − (X)

2 and X =
∑n

j = 1 xj
n and all other

variables are as described for the Moran’s I statistic. Note that
the use of the Gi∗ statistic assumes that the data examined
are asymptotically normal (i.e., as the number of observations
increases the distribution approaches normality) (Getis and Ord,
1992). When using a binary adjacency weighting, such as the
queen’s criterion used here, “as long as the distance is not too
small and the weights are not too uneven, approximate normality
is a reasonable assumption” (Ord and Getis, 1995). Thus in
using a contiguity weighting scheme, it is recommended that
the number of adjacent sites per feature location be eight or
more (Ord and Getis, 1995). This was achieved for interior
hydrophones in the array.

Using a two-tailed test, a p-value is determined and used to
identify and interpret areas of either high and/or low feature
values, e.g., number of GVPs. In particular, a significant hot
spot—a non-random cluster of high feature values–will be
identified if any hydrophone has a very high z-statistic ( >+1.96,
or 2 standard deviations) and associated p-value ≤ 0.025, while
a significant cold spot –a non-random cluster of low values–will
be identified if any hydrophone has a very low z-statistic ( < –
1.96, or 2 standard deviations) and associated p-value ≥ 0.975.
Clusters of high and low feature values are used to track
how spatial behavior changes on the array through subsequent
analysis periods.

Examining locational changes of areas of clustering from one
analysis period to the next, provides insight into spatial behavior
not captured by the global Moran’s I result. In the exemplars, if
all mammals move from the east to the west from one period to
the next, as described earlier, a clear change in the location of hot
and cold spots would be observed which would not have been
detected by using only the global Moran’s I statistic.

Comparison Analysis
Each spatial statistic takes into account the distribution and
variance of only a single set of observations from one unit of time,
or analysis period. Since the distribution and variance of a feature
(e.g., number of GVPs) can change across analysis periods, it is
not appropriate to compare the spatial statistic (i.e., Moran’s I
or Gi∗) values across analysis periods (i.e., a comparison of a
Moran’s I value of 0.2 for one period to a Moran’s I value of 1.2 in
another period is meaningless if the distribution and variance of
each period is different). In addition, the Gi∗ z-statistic is scale-
invariant (Ord and Getis, 1995), meaning the same results may
occur for a similar pattern despite a different range of feature
values for two or more analysis periods. For example with beaked
whale foraging behavior, neither Moran’s I nor Gi∗ will detect
that there has been a substantial change if there are two analysis
periods where the hot spot cluster remains in the western corner
of the array. But if one cluster has 30 GVPs, while in the next
analysis period the cluster only has one GVP, a substantial change
has occurred. This would be detected by comparing the order-of-
magnitude across analysis periods. A comparison test is necessary
for determining if the number of observations across analysis
periods has changed (i.e., do the two samples come from a

similar population or not). It is recommended that statistical test-
specific assumptions be evaluated to decide the most appropriate
statistical hypothesis comparison test to use for a specific data set.

Here, the non-parametric Kruskal-Wallis test (Kruskal and
Wallis, 1952) was used to compare the data sets of spatial
observations (i.e., the number of GVPs per hydrophone) in the
different analysis periods. The test hypothesis in the Kruskal-
Wallis test is that the samples come from similarly shaped
distributions (Kruskal and Wallis, 1952). However, the test does
not assume that the data are normally distributed, which is the
primary driver for its use here. The distribution of the number
of GVPs per hydrophone was skewed, with many hydrophones
having zero observations. One other assumption of the Kruskal-
Wallis test is that the samples compared are independent (i.e.,
both in and across analysis periods). The exemplar data sets
were assumed to be independent as both temporal and spatial
autocorrelation were tested and found to be low or non-existent
in the original studies (McCarthy et al., 2011; Manzano-Roth
et al., 2016).

The Kruskal-Wallis test works by ranking the observations
in each analysis period and comparing the mean ranks of
each (Kruskal and Wallis, 1952). A significance level is used
to statistically identify the compatibility between the observed
data and what is expected under the test model and its
assumptions (Greenland et al., 2016). For ease in interpretation,
a 5% significance level (α = 0.05) was used here. A p-value
smaller than 0.05 suggests that the data are rare under the
model, in other words, that the samples come from different
distributions, while a p-value larger than 0.05 suggests the data
are not unusual under the model, or that the samples come
from similar distributions. If differences in the number of spatial
observations (i.e., number of GVPs) across analysis periods are
detected, a post-hoc multiple comparison test is used to determine
which analysis periods are different from one another. Here,
Tukey’s honest significant difference criterion was used due
to its effectiveness with data of equal sample sizes (i.e., there
were 89 observations, one for each hydrophone, per analysis
period) (The MathWorks Inc, 2020). A significance level of
5% was used again to interpret which analysis periods differed
from one another.

Finally, difference plots are generated to show the relative
change (e.g., increase, decrease, or no change) in the number
of observations on a per hydrophone basis between consecutive
analysis periods. It is worth noting that the difference plots are
based on binary rather than continuous values; a hydrophone that
has a change of positive 1 between two periods will be represented
the same as a hydrophone that has a change of positive 0.1 from
one period to the next. Thus, these plots, as well as visualizing
the original data, are only used to aid in the interpretation of the
spatial statistics.

Note that the choice of statistical hypothesis test and post-hoc
test may vary depending on the nature of the data. For example,
if the data follow a normal distribution and satisfy the other
assumptions of a parametric test, a test such as the analysis of
variance (ANOVA) can be more powerful, although Andrews
(1954) found the Kruskal-Wallis test to have a power efficiency
of 0.955 relative to the parametric ANOVA’s F-test.
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Data
Simulated Data Sets
Several patterned GVP data sets were created and tested to
reveal how this approach would perform on known types of
spatial distributions. The types of spatial distributions tested were
chosen because they represent simple but realistic patterns of
what might be expected of marine mammal foraging. This was
conducted on a mock 50 “hydrophone” (10 row by 5 column)
equi-spaced array. The simulated GVP data sets included seven
patterned data sets (Alternate, Diagonal, Striped, Steep Grade,
Graded, Cluster, and Graded Cluster) and three randomly
generated data sets (Random 1–3). The ten simulated data sets
tested are shown in Figures 3, 4, column 1. These figures will
be introduced in full in the Results section. The Alternate,
Diagonal, Striped, and Cluster pattern data were all generated
using hydrophone values of zero (to represent a low value) or
ten (to represent a high value) only to ensure the pattern was
clear and not confounded by varying degrees of low and high
values. For the Alternate pattern, every other hydrophone was
either a zero or a ten so that no two hydrophones next to
one another in the horizontal or vertical direction would have
the same number, though they would diagonally. The Diagonal
pattern consisted of three diagonal rows of zeros while the values
of the remaining hydrophones were ten. The Striped pattern
consisted of five alternating columns of ten hydrophones with a
value of either zero or ten. The Steep Grade pattern consisted of
five columns with values of ten, seven, four, zero, five, moving
from left to right, while the Graded pattern consisted of five
columns with values of ten, nine, eight, seven, eight, from left
to right. The Cluster pattern consisted of a set of three by
three hydrophones each with a value of ten in the center of the
array and zeros for the remaining hydrophones. The Graded
Cluster pattern included the same cluster pattern in the center
of the array with a surrounding ring of hydrophones around
this cluster with value of five and the remaining hydrophones
with value zero. The three random data sets were randomly
generated integer values between zero and ten for each of
the 50 hydrophones.

Specific to the Moran’s I statistic, the Alternate design was
hypothesized to represent a scenario of dispersed foraging (i.e.,
I < 0), while the remaining simulated patterns were hypothesized
to represent different configurations of clustered foraging (i.e.,
I > 0). The random data sets were hypothesized to show spatial
patterning no different from random (i.e., I = 0). The Gi∗ results
were hypothesized to statistically identify the areas of high and
low GVP activity (hot and cold spots, respectively) intentionally
designed into each of the simulated spatial patterns. For example,
it was expected that the Diagonal pattern, consisting of low values
in a diagonal pattern across the array would lead to a diagonal
pattern of cold spot hydrophones in the same location as the
low GVP values. It was expected that the cluster of high values
in the center of the Cluster and Graded Cluster patterns would
be identified as a cluster of hot spots in the Gi∗ analysis. It was
also hypothesized that there would be a noticeable difference in
the resulting Gi∗ values and significance, for the Steep Grade vs.
the Graded patterns, as well as the Cluster vs. Graded Cluster
patterns due to differences in grading, despite the similar overall

pattern within these two sets of patterns. The random patterns
were expected to show no significant hot or cold spots.

Exemplar Studies
The data from two previously published marine mammal
behavior studies were extracted and tested to demonstrate how
the GLC approach performed on empirical spatial behavior data.
One study assessed Blainville’s beaked whale foraging behavior
during mid-frequency active sonar (MFAS) Naval exercises in
2007 on the Atlantic Undersea Test and Evaluation Center
(AUTEC) in the Bahamas (McCarthy et al., 2011). The AUTEC
study compared foraging intensity Before, During, and After
MFAS activity on an 82 hydrophone array. The second study
involved the same species and MFAS exposure between 2011
and 2013 on the Pacific Missile Range Facility (PMRF) off of
Hawaii (Manzano-Roth et al., 2016). The PMRF study compared
foraging intensity Before, During Phase A, During Phase B,
and After Navy sonar activity on a 62 hydrophone array.
The difference between the two During phases of the PMRF
study was that Phase A only included submarine-on-submarine
activity without MFAS, while Phase B used surface ship MFAS,
sonobuoys, and dipping sonars (Manzano-Roth et al., 2016). The
length of and timing between analysis periods of the two studies
was on the order of hours to days. For more specific details
on the activities and characteristics of the analysis periods in
these studies, see the respective publications (McCarthy et al.,
2011; Manzano-Roth et al., 2016). In both studies, the authors
performed a visually quantitative spatial assessment generating
the heat maps of GVP activity reproduced in Figure 5. The
intention in using the McCarthy et al. (2011) and Manzano-Roth
et al. (2016) data was not to serve as a reanalysis of those efforts,
but rather specifically to demonstrate the GLC approach on an
empirical data set. If one is explicitly interested in the effect of
MFAS on beaked whale behavior, the McCarthy et al. (2011) and
Manzano-Roth et al. (2016) papers should be reviewed.

Since the original data from the McCarthy et al. (2011) and
Manzano-Roth et al. (2016) studies were not available for use
in this study due to military data access, foraging intensity
values were visually extracted from the heat maps (Figure 5).
Note that both studies display the foraging intensity, but the
AUTEC metric units (McCarthy et al., 2011) were GVPs per
hour, whereas the PMRF metric units were GVPs normalized
by the total hours of effort (Manzano-Roth et al., 2016). Thus,
there was an order of magnitude difference between the data
values of the two studies. In this study, white grid lines were
overlaid on the AUTEC and PMRF data images (Figure 6),
and the value at each grid intersection was visually extracted.
Values at the white grid locations indicated by a yellow “x”
were ignored to achieve a similar number of hydrophone
observations as the original studies (Figure 6). These grid
patterns were designed to provide a representative sampling
of the original study area. However, the heat maps in the
original studies were generated using interpolation between
hydrophones, so the extracted values do not necessarily align
with the hydrophone data values of the original studies. The
extracted values were then associated with a mock hydrophone
array with 84 hydrophones for the AUTEC exemplar (Figure 6,
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FIGURE 3 | Visualization of the Gi* results for the Alternate, Diagonal, Striped, Steep Grade, and Graded Patterns (top to bottom). From left to right: first column:
average GVP per hour with color bar ranging from 0 (dark blue) to 10 (red); second column: Gi* z-statistic with color bar ranging from –3.5 (dark blue) to 3.5 (dark
red); third column: 95% confidence level, where red indicates a significant hot spot and blue indicates a significant cold spot, while green is not significant. For ease
in displaying, individual hydrophone values were rounded to the closest number on the color bar for columns one and two. The numbers provided on Figure 3C
correspond to hydrophones discussed in the Results. Letters associated with each plot are used for ease in referencing individual plots in the text.

top) and 62 for the PMRF exemplar (Figure 6, bottom).
The mock arrays were designed to mimic the original array
designs, with staggered rows and a similar number of rows
and columns to the original hydrophone arrays. The actual
layouts of the AUTEC and PMRF hydrophone arrays deviate
from this simplified design. Rather than matching the precise
layouts of the AUTEC and PMRF arrays, the simplified designs
were chosen because the purpose of this study was a proof-of-
concept and demonstration of the GLC approach rather than
definitively quantifying the spatial behavior of beaked whales on
AUTEC and PMRF during those studies. The extracted data and
neighbor-weighting matrices generated for both the AUTEC and
PMRF exemplars can be found in the Supplementary Material.
It was hypothesized that for the AUTEC exemplar, the Moran’s

I analysis would show spatial clustering for all three periods
(Before, During, After), but that the Gi∗ analysis would reveal
a cluster of hot spot hydrophones in the southwest corner of
the array Before, a cluster of cold spot hydrophones in the
middle of the array During, and a hot spot cluster again in
the southwest corner of the array After Navy MFAS activity.
For the PMRF exemplar, it was hypothesized that the Moran’s
I analysis would show spatial clustering for all four analysis
periods (Before, Phase A, Phase B, After), but that the Gi∗
analysis would reveal a change in where the clustering took
place on the array. In particular, During Phase B and After the
hot spot of activity would shift southward on the array, and
a cold spot of activity would be located in the center of the
array During Phase B.
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FIGURE 4 | Visualization of the Gi* results for the Cluster, Graded Cluster, Random 1, Random 2, and Random 3 patterns (top to bottom). From left to right: first
column: average GVPs per hour with color bar ranging from 0 (dark blue) to 10 (red); second column: Gi* z-statistic with color bar ranging from –3 (dark blue) to 7
(red) for the Cluster and Graded Cluster patterns and from –3 (dark blue) to 3 (red) for the random arrangements; third column: 95% confidence level, where red
indicates a significant hot spot and blue indicates a significant cold spot, while green is not significant. For ease in displaying, individual hydrophone values were
rounded to the closest number on the color bar for columns one and two. Letters associated with each plot are used for ease in referencing individual plots in the
text.

RESULTS

Simulated Data Sets
The Moran’s I analysis results including the Moran’s I value,
z-statistic, and p-value are shown for the seven patterns and
three randomly generated data sets in Table 1. The Diagonal,
Steep Grade, Graded, Cluster, Graded Cluster, all exhibited
significant spatial clustering as expected. In addition Random
2 was also significantly clustered, contrary to expectation, while
Random 1 and Random 3, as expected, could not be statistically
differentiated from a random spatial distribution. The Alternate
and Striped patterns were statistically no different from random,
which was also not expected.

Despite some of the unexpected Moran’s I results, with all ten
simulated data sets the Gi∗ analysis corroborated the findings
of the Moran’s I analysis (Table 1) and provided further insight

into the results. The spatial pattern of the Gi∗ z-statistics and
significance results (Figures 3, 4, columns 2 and 3) matched
intuitively to the values in the original pattern. For every clustered
pattern, clusters (i.e., several hydrophones next to one another)
of hot spots and/or cold spots were identified, while for every
random pattern only a few or no hot/cold spot hydrophones were
detected. As an example, in the graded patterns (i.e., Steep Grade
and Graded) the highest number of GVPs were on the western
hydrophones and lowest were on the eastern hydrophones of
the array. The Gi∗ analysis identified a column of hot spots
in the western-most column and cold spot hydrophones in the
eastern-most two columns.

The results of the Gi∗ analysis of the Alternate and Striped
patterns provided further insight into the unexpected result
of the Moran’s I analysis that showed these patterns had a
random distribution. These patterns had low z-statistic variability
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FIGURE 5 | (A) Reproduced from Figure 6 in McCarthy et al., 2011, which shows the foraging intensity, as the average GVP per hour, of Blainville’s beaked whales
on the AUTEC hydrophone array Before, During, and After MFAS activity. Red circles indicate positions of the hydrophones in the McCarthy et al., 2011 study.
Colorbar values and label have been rewritten for legibility from original figure. (B) Reproduced from Figure 3 in Manzano-Roth et al., 2016, which shows the
foraging intensity in GVP per hours of effort of Blainville’s beaked whales on the PMRF array Before, during Phase A, during Phase B, and After Naval sonar activity.
Color bar label has been added and was not present in original figure.

with values that deviated little from the mean (Figures 3B,H,
respectively). Because of the narrow range of z-statistic values,
both patterns were non-significant and no hot or cold spots were
identified (Figures 3C,I). The lack of z-statistic variability can
be explained by the fact that each hydrophone was surrounded
by roughly the same number of high and low value neighbors
and there was no variability in what those high and low values
were (either ten or zero). The exception to this was the middle
column in the Striped pattern that was surrounded by high
values on either side thereby producing a larger z-statistic for the
middle hydrophones of the pattern. A random result for Moran’s
I and non-significant result for the Gi∗ analysis suggest that
the observable patterns in these examples were not sufficiently
pronounced to be detected statistically with this analysis.

The spatial distribution of the hot/cold spot hydrophones
in the simulated patterns that were identified by the spatial
analysis as clustered (i.e., Diagonal, Cluster, Graded Cluster,
Steep Grade, and Graded) generally overlapped the designed
observable pattern (e.g., a diagonal pattern of cold spot
hydrophones was indeed present on the hydrophone array in
the Diagonal example). However, with each pattern there were
a few exceptions. For example in the Diagonal pattern, there was
a cold spot cluster of hydrophones almost entirely overlapping
the area of the zero-valued diagonal pattern (Figure 3F), with the
exception of two perimeter hydrophones (hydrophones 3 and 48)
which were not identified as cold spots, despite being a part of the
original diagonal pattern. As another example, the entire cluster

plus the two middle hydrophones on the lateral edges of the
cluster (hydrophones 5 and 45) were identified as significant hot
spots in the Cluster pattern (Figure 4C). There were similar cases
of this in the other clustered patterns where some hydrophones
were or were not identified as being significant hot/cold spots,
despite what one may expect based on visual expectation. This
was an effect of the neighbor-weighting aspect of the Gi∗
z-statistic calculation. Edge hydrophones generally have fewer
neighbors, meaning the value of those neighbors has a greater
weight in comparison to the neighbors of hydrophones in the
center of the range and therefore a different contribution to the
z-statistic calculation.

The matching Gi∗ spatial distribution of hot and cold spots for
the Steep Grade and Graded patterns (Figures 3L,O) exemplified
the scale-invariant nature of the Gi∗ analysis. There were
no obvious differences between the two patterns upon which
the magnitude difference between the two patterns could be
differentiated, supporting the need for the comparison analysis
when comparing two data sets or analysis periods.

For the three random patterns the spatial distribution of
the Gi∗ z-statistic values appeared random, except for Random
2 which had a more graded pattern with high Gi∗ z-statistic
values toward the south and southeast corner and a row of
low values along the northern perimeter of the hydrophone
array (Figure 4K). As a result, two hot spot hydrophones were
identified in Random 2 near the southeast corner of the array
and three cold spot hydrophones were identified along the
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FIGURE 6 | Schematic of how the data were extracted from the heat maps in the original studies (left figures) –AUTEC (top) and PMRF (bottom)—and mapped
onto the mock hydrophone arrays (right figures). For this study the white grid lines were added to each of the analysis period data images in Figure 5. The values at
the grid intersections were extracted to create the exemplar data sets. Gridlines marked by a yellow “x” indicate values that were not extracted. Each circle on the
right represents the location of a hydrophone on the mock arrays. The numbers in the left figures correspond to the same number in the right figures and show where
the value on the heat map was extracted from and to. In addition, the right figures provide examples of adjacent neighbor assignments for each of the hydrophone
array layouts. Red arrows point to hydrophones that would be considered an adjacent neighbor to the respective hydrophone centered within the arrows.

northern perimeter of the array (Figure 4L). There were no
hot or cold spot hydrophones identified in Random 1 or 3
(Figures 4I,O, respectively), matching the Moran’s I result that
these patterns were random.

To further explore the likelihood of the Random 2 results, an
ad hoc simulation test was run to compute the Moran’s I analysis
on 1,000 randomly generated data sets. On average, the Moran’s
I value was 0.1283, the z-statistic was 2.0583 (SD = ± 0.88), and
the p-value was 0.0587 (SD =± 0.09). Based on a 5% significance
level, a random data set would, on average, not result in statistical
significance and therefore would be interpreted as no different
from random. However, implicit in the use of a significance level

to detect statistical significance, is the acceptance that there may
be times when the data do not match the underlying model. Thus
on an array of 50 hydrophones and a 5% significance level, it is
acceptable that 5%, or 2.5 hydrophones, may be identified as hot
or cold spots despite an underlying random distribution, which
the Random 2 pattern demonstrates.

Exemplar Studies
Atlantic Undersea Test and Evaluation Center
Exemplar
Visual interpretation of the GVP data (Figure 7, column 1)
indicated that Before MFAS activity the most GVPs occurred
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TABLE 1 | Moran’s I analysis results by exposure period for the patterns and
random data sets, including Moran’s I value (I), the z-statistic (zI ), and the
associated p-value.

Exposure
period

Moran’s I (I) Z-statistic (zI) p-value Spatial
distribution

Alternate 0.053 0.9818 0.1635 Random

Diagonal 0.583 8.0393 <0.001 Clustered

Striped –0.222 –2.687 0.9803 Random

Steep grade 0.638 8.7665 <0.001 Clustered

Graded 0.705 9.6615 <0.001 Clustered

Cluster 0.494 6.8501 <0.001 Clustered

Graded Cluster 0.773 10.5593 <0.001 Clustered

Random 1 0.0459 0.8823 0.189 Random

Random 2 0.241 3.4836 <0.001 Clustered

Random 3 0.039 0.7852 0.218 Random

on hydrophones in the southwest corner of the array. During
MFAS activity there were very few GVPs on the array compared
to the Before period and the few GVPs that were present appeared
highest along the edges of the array. After MFAS activity the
level of activity appeared to match the Before period, with a shift
toward the south-center of the array.

The Moran’s I, z-statistic, and p-value component of the GLC
approach for Before, During, and After in the AUTEC study
are listed in Table 2 below. The Moran’s I values all suggest
clustering of GVP activity on the array in each analysis period.
From an array-wide perspective, there was no clear change in
global foraging behavior.

The Gi∗ portion of the GLC analysis corroborated the results
of the Moran’s I test since both hot and cold spot hydrophone
clusters were found in all analysis periods. In particular, a
cluster of hot spot hydrophones were identified by the Gi∗
analysis in the southwest of the array for each analysis period
(Figures 7C,F,I). The exact location and number of hot spot
hydrophones did vary from period to period, but drawing upon
the results of the simulated patterns, some variation is expected
due to the neighbor-weighting component of the analysis. The
GLC approach consistently identified a cluster of hot spot
hydrophones in the southwest of the array that accords with
a visual assessment, suggesting that the animals continued to
forage predominantly in the same area throughout all analysis
periods. The significance test of the Gi∗ analysis also revealed a
cluster of cold spots in each of the analysis periods, which clearly
changed location on the array from one analysis period to the
next. Before, there were only a few cold spot hydrophones along
the northern perimeter of the array; During, there was a large
cluster of cold spot hydrophones in the center of the array; After
there was a large cold spot cluster in the northeastern corner of
the array (Figures 7C,F,I). In both the During and After periods
there were roughly double the number of cold spot hydrophones
compared to the Before period. These cold spots were also all
clustered together, unlike in the Before period where they were
more spaced out along the northern perimeter (Figure 7C). The
results of the Gi∗ portion of the GLC approach suggest there was
a change in where GVP activity was absent on the array During

MFAS activity. It also shows that there was an increase in the
number of hydrophones upon which no GVP activity took place.

As discussed, the Moran’s I and Gi∗ statistics alone do not
confirm the change in overall activity. Hence the ability to detect
changes in the global level of activity through the comparison
test is an integral part of the GLC. The Kruskal-Wallis test
showed that there was a difference across the mean ranks of
the analysis periods [H(2) = 48.48, p = 2.97 × 10−11]. The
post-hoc test showed that there were fewer (p < 0.001) GVPs
on the array During MFAS activity than Before or After. So
although the location on the array with the highest foraging
activity (i.e., hot spot cluster) relative to a particular analysis
period did not change, the absolute number of foraging events
within a period did change. The difference plots supported this
finding; there was a decrease in the number of GVPs on most of
the hydrophones from Before to During and an increase or no
change in the number of GVP from during to After (Figure 8).
Due to the scale-invariant nature of the Gi∗ statistic and the
global nature of the Moran’s I analysis, this overall understanding
about the spatial behavior and magnitude of change was not
completely realizable through the spatial statistics alone. This
emphasizes the importance of considering each of the three parts
to the GLC approach in interpreting and understanding spatial
behavior change.

Pacific Missile Range Facility Exemplar
A visual analysis of the PMRF exemplar revealed that the most
GVP activity appeared in the top part of the southern half of the
array. During Phase B and After, there was a shift southward in
where the most activity occurred in comparison to the earlier
periods (i.e., there was also high GVP activity along the bottom
southwest edge of the array). The least amount of GVP activity
appeared to be along the southern edge of the array Before, but
then shifted to the northern edge of the array during Phase A,
and then to the center of the array during Phase B and After
(Figure 9, column 1).

The Moran’s I values, associated z-statistics, and p-values for
Before, Phase A, Phase B, and After are listed in Table 3. For
all analysis periods of the PMRF study, the Moran’s I results
suggested significant spatial clustering of GVP activity, or lack
of activity, on the array. From the Moran’s I analysis alone there
was no indication that the beaked whales changed their global
foraging behavior on the array.

The Gi∗ analysis provided further insight about the clustering
result of the Moran’s I portion of the GLC approach analysis.
There were clusters of hot and cold spot hydrophones identified
in each of the analysis periods. In all four periods there was
a large cluster of hot spot hydrophones that spanned across
nearly all columns in the southern half of the array (Figure 9,
column 3). However, the Phase B period was the only period
in which hot spots were identified on some of the southern
perimeter hydrophones. Though there were differences in the
exact hydrophones that were identified through the GLC analysis
as hot spots, based on this information alone, there was no
compelling reason to suggest these differences were outside of the
variation expected due to natural variation in behavior, or due to
the sensitivity in the GLC analysis, discussed previously.
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FIGURE 7 | Visualization of the Gi* results for the AUTEC exemplar: Before, During, and After, from top row to bottom row, respectively. From left column to right: 1)
the average GVP/ hour with colorbar ranging from 0 (dark blue) to 0.5 (red) GVP/hour, 2) the Gi* z-value with colorbar ranging from –4 (dark blue) to 6 (red), and 3)
hot (red) and cold spots (blue) at a 95% confidence level. Note: For ease in displaying, individual hydrophone values were rounded to the closest number on the
color bar for columns one and two. Letters associated with each plot are used for ease in referencing individual plots in the text.

Overall the Gi∗ z-statistic plot for each period had a similar
appearance: lower values dominated the northern half of the
array (Figure 9, column 2), suggesting this area was consistently
not used for foraging. There were subtle differences in how
far this low-value space extended. In particular, it was confined
mostly to the northern half of the array Before (Figure 9B),
but extended further south in Phase B (Figure 9H). In terms
of significance, the GLC approach identified five or fewer
hydrophones as cold spots in the first three analysis periods,
while in the After period a more substantial cluster of 11 cold
spot hydrophones was identified. In addition, the cold spots
moved from the southern perimeter of the array Before to a more
northern location during Phase A, and a more central location of
the array during Phase B and After. These results closely matched
the visual assessment and suggest that the animals may not have
used the middle of the array as widely during these periods as
they did Before.

Using the spatial statistics of the GLC approach alone, it was
difficult to tell whether the small changes in location of hot
spots were an actual change in spatial behavior over the array or
within the natural variation to be expected in marine mammal
behavior. It is also possible that the resolution of the hydrophone
spacing was not fine enough to fully capture the potential
spatial behavior change—a danger present in all spatial studies.
However, the comparison analysis provided further insight. The
Kruskal-Wallis test revealed that there was a difference in the

mean ranks of the four analysis periods [H(3) = 9.53, p = 0.0231].
The post-hoc test showed that there were fewer GVPs on the array
overall during Phase B compared to Phase A (p = 0.043) and
After (p = 0.035). This finding was also corroborated visually in
the difference plots which showed the center of the array had
an overall decrease in GVP activity from Phase A to Phase B,
but had an increase again from Phase B to After (Figure 10).
The results of the comparison portion of the GLC approach
provided support that a change in spatial behavior did occur.
There were fewer animals foraging and the location of foraging
shifted southward during Phase B. This exemplar of the GLC
approach further highlights the value of using all three analyses of
the GLC approach together to fully understand group level spatial
behavior change. It also draws attention to the importance of
having the correct spatial resolution to be able to identify spatial
behavior patterns.

TABLE 2 | Moran’s I analysis results by analysis period for the AUTEC exemplar,
including Moran’s I value (I), the z-statistic (zI ), and the associated p-value.

Exposure
period

Moran’s I (I) Z-statistic (zI) p-value Spatial
distribution

Before 0.77 12.37 <0.001 Clustered

During 0.7 11.24 <0.001

After 0.83 13.28 <0.001
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FIGURE 8 | Spatial layout of mock AUTEC hydrophone array, where the circles represent the hydrophones of the array, and the color represents the change in the
number of GVP on each hydrophone from one analysis period to the next: blue = decrease, red = increase, black = no change. Left- the change from Before to
During MFAS activity, and Right- the change from During to After MFAS activity.

FIGURE 9 | Visualization of the Gi* results for the PMRF exemplar: Before, Phase A, Phase B, and After, from top row to bottom row, respectively. From left column
to right: (1) the average GVP/ hour standardized to total time where the colorbar ranges from 0 (dark blue) to 3.5 (red) GVP/hour the Gi* z-value with colorbar ranging
from –3 (dark blue) to 6 (red), and 3) hot (red) and cold spots (blue) at a 95% confidence level. For ease in displaying, individual hydrophone values were rounded to
the closest number on the color bar for columns one and two. Letters associated with each plot are used for ease in referencing individual plots in the text.

DISCUSSION

The results of the spatial analysis for the simulated data sets
offered unique insight into how the GLC approach performed
and provided guidance on how to interpret the more complex

results of the empirical exemplars of group level marine mammal
spatial detections representing foraging behavior. The results of
the exemplar data sets conveyed the importance and necessity of
using all components of the GLC approach together to achieve
a comprehensive understanding of spatial behavior patterns.
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Moreover, the weakness of examining individual statistics in
isolation of the others was demonstrated. When the underlying
mechanism of the spatial pattern is not known, the insight
gained in this three-pronged approach, along with knowledge
of the context, can help support or refute potential hypotheses
explaining the observations.

Several instances arose within the simulated data sets where
edge hydrophones were either non-intuitively identified or not
identified as being significant by the Gi∗ analysis of the GLC
approach in comparison to the visual assessment of the original
data. For example, the Gi∗ analysis of the Diagonal pattern
did not identify some perimeter hydrophones that made up
the diagonal pattern as significant, while in the Cluster pattern
some hydrophones outside of the cluster pattern were significant.
This is because edge hydrophones have fewer neighbors than
center hydrophones, so the contribution of each neighbor in
the edge hydrophone case, has a larger weight in the Gi∗
statistic calculation than in the case of a center hydrophone
(Ord and Getis, 1995). This has important implications in
analyzing hydrophone arrays that are long and narrow rather
than square or circular. This is also an important aspect to keep
in mind when choosing the number of hydrophones in the array.
For example, in a square array of only four hydrophones the
weighting contribution of all neighbor hydrophones would be the
same, but in a square of 16 hydrophones, all but the center four
would be considered “edge” hydrophones. The edge hydrophone
effect will occur with any of the contiguity weighting schemes
shown in Figure 2. However, if the weighting scheme is more
constrained (i.e., choosing “Rook’s” over “Queen’s”), the edge
hydrophone calculation will be different (i.e., a more constrained
neighbor scheme means less neighbors and less neighbors equates
to a higher weight for each neighbor in the overall calculation)
in comparison to a center hydrophone, than if the weighting
is less constrained (i.e., “Queen’s” over “Rook’s”) (Ord and
Getis, 1995). This is an important aspect of the calculation
to consider when interpreting the outcome of the GLC Gi∗
significance test using an adjacent neighbor weighting scheme.
When using a similar weighting scheme it is recommended
that the general area of hot/cold spot hydrophone clusters be
compared rather than scrutinizing differences between individual
hydrophones. Alternatively, a distance weighting scheme can be
used, where every pair of hydrophones within some distance of
the hydrophone of interest is represented in the Gi∗ calculation
for that hydrophone. As the distance from the hydrophone of
interest increases, the contribution of other hydrophones (i.e.,
the weighting coefficient) toward the Gi∗ value decreases. It is
therefore possible to minimize the edge effect (i.e., ensure all
hydrophones have the same number of neighbors) using this
scheme, since the number of weights is no longer a function of
edge vs. non-edge hydrophone, but rather a function of distance.
Whether this is realized would depend on the exact parameter
(i.e., distance threshold) and array layout used. A distance
weighting scheme is especially appropriate for observations that
change on a gradient. This was not assumed to be the case for
beaked whale foraging behavior, which is strongly linked to–often
patchy and heterogeneous–prey distributions (Benoit-Bird et al.,
2013; Southall et al., 2018).

TABLE 3 | Moran’s I analysis results by analysis period for the PMRF exemplar,
including Moran’s I value (I), the z-statistic (zI ), and the associated p-value.

Exposure
period

Moran’s I (I) Z-statistic (zI) p-value Spatial
distribution

Before 0.60 8.3 <0.001 Clustered

Phase A 0.65 8.9 <0.001

Phase B 0.66 9.09 <0.001

After 0.73 10.03 <0.001

The type of neighbor-weighting rule can also have significant
implications on the overall outcome of the Moran’s I statistic.
The Moran’s I analysis of the simulated pattern data sets revealed
that it was difficult to attain a perfectly dispersed pattern (i.e.,
I = –1). The only pattern for which a negative Moran’s I
value was achieved was the Striped pattern, though it was not
statistically different from random. This is understandable given
the “Queen’s case” neighbor-weighting rule, which takes into
account all adjacent hydrophone values. The more hydrophones
that are considered a neighbor to a particular hydrophone, the
more dependence the result for that particular hydrophone will
have on surrounding values. To achieve a truly dispersed pattern
a particular hydrophone either has to have less dependence
on neighboring values, which can be achieved with a more
constrained neighbor-weighting rule (i.e. “Rook’s” or “Bishop’s”),
or the array needs to be larger so that similar values are more
separated. The array sizes used in the exemplars were already
quite large, rare in reality, and resource intensive. Given these
challenges, the ability to detect perfect dispersion (I = –1) may
not be possible without modifying certain parameters of the GLC
approach, such as the neighbor-weighting rule. However, the
neighbor –weighting rule should be chosen based on the specific
assumptions of the research question. In the exemplars, the
“Queen’s case” most accurately described hydrophone adjacency
with respect to beaked whale foraging. If, for example, the more
restrictive “Rook’s case” neighbor-weighting rule was used for the
Alternate pattern it would have likely elicited a dispersed Moran’s
I result. The hydrophones in only the perpendicular directions
would have been considered adjacent neighbors to a particular
hydrophone. This would have resulted in adjacent neighbors
with a value that was always opposite to the center hydrophone,
characteristic of a dispersed pattern.

In the case of beaked whale foraging, these animals have
been shown to consistently forage in the same areas where
aggregations of their prey exist (Henderson et al., 2016; Southall
et al., 2018; Baird, 2019). Hence a clustered distribution for
beaked whale foraging was expected, and any change from
this was seen as a deviation from typical behavior. When
looking for a spatial change using the Moran’s I analysis with
the parameters described here, one is primarily testing to see
whether the distribution shifts from clustered to random between
analysis periods, or vice-versa. Despite the limitation in detecting
dispersion, it would have been possible to detect a change in
global (i.e., array-wide) behavior, should there have been any.

Many marine mammals forage on organisms, such as fish
and plankton, that tend to aggregate either based on favorable

Frontiers in Marine Science | www.frontiersin.org 14 October 2021 | Volume 8 | Article 625322

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-625322 September 28, 2021 Time: 18:0 # 15

Kates Varghese et al. Global-Local-Comparison Approach

FIGURE 10 | Spatial layout of PMRF hydrophone array, where the circles represent the hydrophones of the array, and the color represents the change in the number
of GVP on each hydrophone from one analysis period to the next: blue = decrease, red = increase, black = no change. Left- the change from Before to Phase A,
Middle-the change from Phase A to Phase B, and Right- the change from Phase B to After.

environmental conditions (Quetin et al., 1996; Davis et al., 1999),
or as a survival mechanism (Castro et al., 2002). Marine mammal
foraging behavior is often closely associated with the distribution
of these aggregations (Piatt and Methven, 1992; Bowen et al.,
2002; Maxwell et al., 2011; Benoit-Bird et al., 2013), so a clustered
distribution to describe foraging behavior seems probable.
However, marine mammals employ diverse foraging strategies
(e.g., in groups vs. individually) and/or social strategies (e.g., may
demonstrate site fidelity) that regardless of prey distribution may
lead to different patterns in global spatial behavior than as seen
in these examples with foraging beaked whales. Hence a critical
part of extending the GLC approach to other species, and/or
other behaviors is a thorough understanding of the behavioral
strategies employed by the species under study, research-specific
assumptions, and an appropriate choice of a contiguity rule based
on those assumptions.

For hydrophone arrays that are regularly spaced, the binary
neighbor-weighting rules (e.g., Queen’s, Bishop’s and Rook’s),
which do not require a distance measure, is appropriate.
However, a neighbor-weighting rule that takes distance into
account may be more fitting for other applications, such as
irregularly spaced data where the spatial distribution between
hydrophones is not uniform. Different neighbor-weighting
rules and irregular hydrophone spatial arrangements were not
addressed in this study. Scott-Hayward et al. (2014) address this
type of data by using spatial interpolation to convert irregularly
spaced tracks to persistent grid locations. Nonetheless, because
the GLC approach is not constrained to grids, it can be applied
to other hydrophone patterns with minor modification. Future
work should investigate the use of other neighbor-weighting
rules, e.g., distance-weighting, other binary weighting schemes,
etc., along with various hydrophone arrangements for studying
spatial behavior with the GLC approach.

The observed significance of a few of the hydrophones in the
Gi∗ analysis of the Random 2 data recalls the need to understand
the assumptions made in the hypothesis test. One way to interpret
the use of a 95% confidence level is that if the study were repeated

over and over again, the results may match the underlying model
95% of the time (Greenland et al., 2016). It is therefore important
not to strictly use the statistical results, rather use them to guide
the interpretation of the underlying data within the full context of
the study. As a consequence, it is most appropriate to interpret the
statistical designation of hot and cold spots more holistically than
on an individual hydrophone level. The precise hydrophones that
are identified as significant should be emphasized less compared
to the general pattern or area of significance, such as a cluster of
several hydrophones. The number of hydrophones, their spatial
resolution, and the expected scale of change one might expect
to find are all important considerations when determining the
appropriate design for this type of spatial analysis.

Synthesizing these findings from the simulated patterned and
random data sets, the exemplars of marine mammal spatial
behavior were more easily understood. For example, the issue
of scale-invariance with the Gi∗ analysis (Ord and Getis, 1995)
was evident when the same spatial significance pattern resulted
for the Steep Grade and Graded patterns, despite their differing
values. This highlighted the need for the additional comparison
analysis to identify order-of-magnitude differences undetectable
by the spatial analyses. In the AUTEC exemplar, a hot spot
cluster was found in the same general area in all three analysis
periods, suggesting no spatial change in foraging activity. But
after applying the comparison analysis it became clear that there
were statistically fewer GVPs During MFAS activity. Thus an
overall change had occurred, which would have been missed if
the comparison analysis had not been applied.

Though this approach provides a way to view group level
behavior over a large spatial scale, the ability of the test to identify
spatial patterns is constrained to the resolution and layout in
which the data are sampled. If a hypothesis test leads to the
conclusion that no spatial autocorrelation exists, this only means
that a spatial pattern does not exist at the resolution the data were
sampled, but it does not mean spatial patterns at a smaller scale do
not exist. The PMRF exemplar serves as a good case to this point.
Though a spatial change was detected, it might have been more
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obvious with a finer spatial sampling resolution. Tagging efforts
and other approaches (Houser, 2004; Gallagher et al., 2021) that
focus on individual behavior can provide vital information about
disturbance at finer scales that can complement these larger-scale
efforts. Not detecting spatial autocorrelation may also mean that
the sample size is too small, either not enough observations on
individual hydrophones (i.e., too many zeros) or not enough
hydrophones in the area where the spatial change is occurring
to provide adequate resolution. These design constraints should
be considered when drawing conclusions about whether spatial
behavior has been affected or not.

Observations of marine mammals can be limited, which raises
the question of whether a statistical test applied to such data
has enough power to detect an effect (Hawkins et al., 2017).
The exemplar data sets were chosen in part because the original
analyses demonstrated there was an effect. Thus, the simulated
data sets and mock arrays were designed to represent array
sizes and observation numbers with a similar magnitude to the
exemplars to be confident that there were a sufficient number of
degrees of freedom to provide enough statistical power to detect
meaningful differences without a formal analysis. However, tools
exist (e.g., G∗Power and MRSeaPower) for determining effect size
and statistical power (Faul et al., 2007; MacKenzie et al., 2017,
respectively) and should be used when relevant for a particular
research question.

It is worth reiterating that the purpose of this paper was strictly
to introduce and demonstrate the GLC approach on empirical
data, and not to reassess the spatial effect of the MFAS activities
on beaked whale foraging behavior in the McCarthy et al. (2011)
and Manzano-Roth et al. (2016) studies. Though the intention
of visual extraction of the data from the original studies was to
obtain as similar a data set as possible, it is not the same data set.
The use of similar but not identical data would lead to unknown
differences, which would make a comparison misleading. As
such, a comparison of the results presented here was not made
to the original results of the exemplar studies.

Inherent in any analysis is the need to interpret the results.
The spatial analyses of previous studies assessing marine
mammal spatial behavior using hydrophone arrays during noise-
generating activities heavily relied on heat maps to visually
assess differences in the spatial distribution of animals across
analysis periods (McCarthy et al., 2011; Manzano-Roth et al.,
2016). This has been a powerful tool for easily communicating
the results of the research. However, visual results can be very
subjective. A certain color bar theme may make the results
appear more stark than the value of the color bar implies, or
vice-versa. Spatial modeling has also been used to assess marine
mammal spatial behavior, sometimes in conjunction with heat
maps (McCarthy et al., 2011; Manzano-Roth et al., 2016) or
as a stand-alone (Thompson et al., 2013). Generalized linear
models, generalized additive models, and mixed models are
commonly used (McCarthy et al., 2011; Thompson et al., 2013;
Manzano-Roth et al., 2016; Henderson et al., 2019; Jacobson et al.,
2019). These models consider factors such as spatial site (e.g.,
hydrophone location), distance to the activity of interest, received
sound level, and identifying differences with respect to perimeter
vs. center hydrophones in an array to assess and characterize

spatial change. But the results of statistical models by themselves
can be non-intuitive to interpret.

Henderson et al. (2019) and Jacobson et al. (2019) have made
parallel efforts to those presented here to assess local spatial
changes in marine mammal behavior with respect to noise-
generating events. A multi-stage generalized additive model
was used to quantify the spatial response of beaked whales to
various periods related to naval mid-frequency active sonar.
The modeled results were also visualized by using tessellation
of a non-uniform hydrophone array. Scott-Hayward et al.
(2013) designed an approach for marine mammal detection
data collected along a line transect, which was used in an
environmental impact assessment in wind-farm construction
(Scott-Hayward et al., 2014). Their approach used a spatial
smoothing model (CReSS) to identify spatial differences in
animal densities from one period to another. This approach is
especially fitting for data that is not tied to a geographically
fixed position, whereas the GLC approach was designed for data
that is geographically fixed. Data in either form could easily be
modified to fit either approach. If an interpolation approach
is adopted, however, it is imperative that the observations of
the study species are spatially continuous within the resolution
upon which the data were collected (e.g., this may be more
difficult for animals that move in pods or are aggregated
heterogeneously across space). One of the benefits of establishing
a spatial model instead of testing empirical data (like that
of the GLC approach) is that, if well-supported by empirical
evidence, it can be used to predict or forecast changes (Redfern
et al., 2013; Scott-Hayward et al., 2014). With any approach
there are advantages and disadvantages, depending on the
specific research question. As such, several approaches should
be considered when deciding the optimal way to answer a given
research question.

The significance of establishing the GLC approach is that it
combines many of the strengths of existing methods (visual and
statistical, global and local) in an organized manner, providing
a comprehensive assessment of empirical spatial observations of
marine mammals and objective descriptions of different group
level animal behaviors. It builds off approaches that use visual
representations of quantitative data by statistically quantifying
patterns that can be illustrated through visual representations.
The Gi∗ analysis essentially performs the same job as our eyes
when looking at a heat map: it identifies spatial patterns and
changes to those patterns, but without subjectivity. In evaluating
the effects of anthropogenic noise on marine mammal behavior,
visuals can be extremely intuitive, providing a powerful tool
for communicating the statistics to policy makers and other
stakeholders. Thus the GLC approach incorporates visualizations
of the local results. Other efforts largely focus on the local
scale. But the global analysis provides a quick way to assess
whether a broad-scale change has occurred, which is one way
of assessing whether animal behavior in the system under
study was disturbed. Finally, the comparison analysis brings
another dimension to the spatial question providing insight
about the degree of change identified, or standalone knowledge
when spatial change is not identified. Together, the three-
prongs of the GLC approach provide a reliable, objective, and
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standardized approach to assessing spatial change in marine
mammal behavior. It ensures a robust statistically backed
analysis without compromising on the ability to effectively
communicate the findings.

Not only is this approach applicable to a BACI data set—for
which it was originally designed and demonstrated here—but
a final strength of the GLC approach is that it is not limited
to the study of marine mammal behavior, or the assessment
of anthropogenic noise impact. For example, the value of
spatial autocorrelation analyses has been demonstrated in other
applications, such as marine spatial planning (Redfern et al., 2013;
Jossart et al., 2020). Within a large-scale hydrophone receiver
array framework, some examples of ways the GLC approach
can be extended could include spatially analyzing sound levels
over different periods of time in a changing soundscape, or
assessing changes in marine mammal vocalizations that are not
directly linked to behavior. In addition, there are many ways
in which this three-pronged approach of established statistical
methods can be extended or modified to answer other spatially
driven research questions by using different observation types
and observation platforms.

CONCLUSION

The GLC approach serves as a tool to quantitatively measure
spatial patterns, or lack thereof, allowing for the identification
of changes in group level spatial behavior on large observational
arrays. Within the approach are two scales of spatial assessment:
global and local. The global statistic, Moran’s I, provides a coarse
overview of the type of spatial distribution of a set of features
which can be used to quickly evaluate whether an array-wide
change in behavior has occurred when comparing two or more
analysis periods. The local statistic, Getis-Ord Gi∗, provides
the visual and spatial detail about change within an array by
identifying local hot and cold spots of activity. An additional
statistical hypothesis test (e.g., Kruskal-Wallis test) and difference
plots, are used to detect potential differences in the overall level of
activity on the array not identified by the spatial statistics alone.

The GLC approach was demonstrated using simulated
patterned data sets that revealed the global analysis, utilizing
a Queen’s case neighbor-weighting, would be most effective at
detecting a shift from clustered to random distributions, or vice-
versa. The exemplar data sets provided two empirical examples
of how to use this spatial analysis approach to evaluate spatial
change in group level marine mammal behavior before, during,
and after anthropogenic noise events. Overall the GLC approach
provides a quantitative and intuitive way to assess group level
spatial behavior change, but with careful consideration of the
assumptions discussed herein, its use can be much broader than
just this application.
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