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Shifts in species distributions are occurring globally in response to climate change,
but robust comparisons of redistribution rates among species are often prevented by
methodological inconsistencies, challenging the identification of species that are most
rapidly undergoing range shifts. In particular, comparable assessments of redistributions
among harvested species are essential for identifying climate-driven changes in fishing
opportunities and prioritising the development of management strategies. Here we
utilise consistent datasets and methodologies to comparably analyse rates of climate-
driven range shifts over 21 years for four recreationally important coastal-pelagic fishes
(Australian bonito, Australian spotted mackerel, narrow-barred Spanish mackerel, and
common dolphinfish) from the eastern Australian ocean warming hotspot. Latitudinal
values corresponding to the poleward edge of species’ core oceanographic habitats
were extracted from species distribution models (SDMs). Rates of poleward shifts in
core oceanographic habitats ranged between 148.7 (i.e., common dolphinfish) and
278.6 (i.e., narrow-barred Spanish mackerel) km per decade over the study period.
However, rates of redistribution varied by approximately 130 km per decade among
species, demonstrating that subtle differences in species’ environmental responses can
manifest in highly variable rates of climate-driven range shifts. These findings highlight
the capacity for coastal-pelagic species to undergo rapid, yet variable, poleward range
shifts, which have implications for ecosystem structure and the changing availability of
key resources to fisheries.

Keywords: climate change, Coryphaena hippurus, range shift, Sarda australis, Scomberomorus commerson,
Scomberomorus munroi, species distribution model, species redistribution

INTRODUCTION

Shifts in species geographic distributions are an evident biological response to the environmental
effects of climate change. In marine systems, species redistributions are occurring approximately
an order of magnitude faster than in terrestrial systems (Chen et al., 2011; Poloczanska et al., 2013),
in part due to marine ectotherms having a greater physiological vulnerability to environmental

Frontiers in Marine Science | www.frontiersin.org 1 February 2021 | Volume 8 | Article 622299

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.622299
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2021.622299
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.622299&domain=pdf&date_stamp=2021-02-25
https://www.frontiersin.org/articles/10.3389/fmars.2021.622299/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-622299 February 22, 2021 Time: 16:36 # 2

Champion et al. Rates of Redistribution Among Coastal-Pelagic Fishes

warming (Pinsky et al., 2019). Determining which species are
most likely to undergo climate-driven range shifts, and assessing
the rates at which these changes are occurring, is essential for
managing the consequences for ecosystems and human well-
being (Pecl et al., 2017; Bonebrake et al., 2018). However, rates
of redistribution among marine taxa are considerably variable
(Pinsky et al., 2013; Poloczanska et al., 2016; Fredston-Hermann
et al., 2020), challenging the capacity of scientists and managers to
develop adaptation strategies that are applicable to broad groups
of species (Fogarty et al., 2019).

Marine species associated with rapid redistributions
commonly exhibit broad geographic distributions, high
adult mobility, long pelagic larval durations, and generalist
diets (Luiz et al., 2012; Feary et al., 2014; Sunday et al., 2015;
Monaco et al., 2020). For example, adult mobility has been
identified as a strong predictor of the rate of range expansion
across diverse marine taxa (Sunday et al., 2015), and dietary
generalism is known to facilitate the persistence of range
extending species in novel environments over interannual
time scales (Monaco et al., 2020). Coastal-pelagic fishes (i.e.,
species whose distributions encompass both coastal-shelf and
open ocean habitats) display many of these characteristics (e.g.,
large latitudinal ranges and high adult mobility), indicating
that these species are likely to have already undergone large
spatial shifts to track their environmental habitat preferences
in a warming ocean (Sunday et al., 2015; Briscoe et al., 2016).
Rates of redistribution refers to the pace of latitudinal and/or
longitudinal shifts in defined components of species ranges (e.g.,
leading or trailing edges) through time, which have been found
to be relatively rapid for coastal-pelagic fishes when compared
to nearshore species. For example, rates of recent poleward
redistributions of coastal-pelagic fishes off eastern Australia [e.g.,
Seriola lalandi: 94.4 km per decade (Champion et al., 2018) and
Istiompax indica: 88.2 km per decade (Hill et al., 2015)] markedly
exceed average rates of range change for a suite of nearshore
fishes from the same region (38 km per decade; Sunday et al.,
2015). Environmental variability is also a strong predictor
of range shifts among marine taxa, having been shown to be
approximately six times more powerful than species functional
traits for explaining variation in rates of redistribution in marine
fishes (Pinsky et al., 2013). Subsequently, climate-driven range
shifts in coastal-pelagic fishes from fast warming regions of
the global ocean are expected to be among the most rapid
biological responses to climate change (Hazen et al., 2013;
Poloczanska et al., 2013), indicating the need to prioritise these
species in quantitative range shift analyses to inform climate
adaptation strategies.

Species distribution models (SDMs) have proven to be
valuable tools for quantifying the spatial distribution of
species as a function of environmental variables (Elith
et al., 2010; Robinson et al., 2011). These models have been
successfully used to quantify climate-driven range extensions
and contractions in diverse marine taxa (Dell et al., 2015;
Martínez et al., 2018; Champion et al., 2019). However,
careful parameterisation of SDMs with consistent datasets
and methodologies is required for generating comparable
multi-species range shift analyses as methodological differences

can greatly affect model results (Brodie et al., 2019; McHenry
et al., 2019). When standardised methods are used across
species, SDMs are valuable tools for identifying the relative
effects of changing environmental conditions on the spatial
distribution of biodiversity. Furthermore, spatial predictions
from SDMs can be converted to indices that define specific
areas of species’ distributions, such as the effective area occupied
(Thorson et al., 2016) and core (Hill et al., 2015) and range-
edge habitats (Robinson et al., 2015; Champion et al., 2018).
When spatial predictions are created at consistent timesteps
(e.g., monthly), indices such as these can form appropriate
response variables for analyses that quantify changes in species
distributions through time.

Over the past six decades, ocean temperatures off the east
coast of Australia have risen at a rate that is approximately four
times faster than the global average (Ridgway, 2007; Hobday and
Pecl, 2014). Ocean warming off eastern Australia is primarily
driven by the strengthening of the East Australian Current
(EAC) in response to increased wind stress over a broad region
of the South Pacific (Cai et al., 2005; Sloyan and O’Kane,
2015). The extension of anomalously warm seawater to higher
latitudes off eastern Australia (Holbrook and Bindoff, 1997;
Hobday and Pecl, 2014) has been linked with range shifts in
diverse marine taxa (Sunday et al., 2015; Malcolm and Scott,
2016), including multiple coastal-pelagic fishes (Hill et al., 2015;
Champion et al., 2019).

Changes to the distributions of coastal-pelagic fishes off
eastern Australia have important socio-ecological implications
as species are commonly targeted by recreational fishers. For
example, catches of coastal-pelagic fishes by recreational anglers
off eastern Australia commonly exceed catches taken by the
commercial sector (West et al., 2016) and recreational fishing
enhancement projects (e.g., the deployment of fish aggregation
devices and coastal artificial reefs) aim to assist recreational
fishers targeting these species (Dempster, 2004; Smith et al.,
2016). Furthermore, a recreational gamefish tagging program
administered by the New South Wales Department of Primary
Industries has tagged over 480,000 individuals since its inception
in 1973 (NSW DPI, 2019), demonstrating considerable fishing
effort by recreational anglers targeting coastal-pelagic species.
While there is emerging evidence that range shifts in some
coastal-pelagic fishes off eastern Australia are resulting in
increased fishing opportunity for recreational anglers at higher
latitudes (Champion et al., 2019), it remains uncertain whether
multiple species are responding at similar rates.

The overarching objective of this study was to assess
variation in predicted rates of climate-driven redistributions
among multiple recreationally important fishes from a global
ocean warming hotspot. Specifically, we aimed to (1) quantify
the oceanographic habitat preferences for four coastal-pelagic
fishes off eastern Australia using consistent data sources
and methodologies, and (2) quantify and compare rates of
climate-driven redistribution of core oceanographic habitat for
these fishes over two decades. By addressing these aims, we
demonstrate variation in the sensitivity of multiple coastal-
pelagic fishes to climate change and highlight changing fishing
opportunities off eastern Australia.
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MATERIALS AND METHODS

Study Extent and Species
The spatial extent of this study encompassed the marine
environment adjacent to eastern Australia (145–160◦E; 15–
45◦S; Figure 1). Coastal-pelagic fishes from this region selected
for habitat modelling and range shift analyses were based on
the availability of species occurrence records within the New
South Wales Department of Primary Industries gamefish tagging
database (NSW DPI, 2019). This government administered
citizen science database contains a large set of occurrence records
for a suite of coastal-pelagic fishes, representing a valuable
resource for the development of comparable habitat suitability
models that can facilitate a robust multi-species range shift
analysis. Occurrence records within this database were recorded
by recreational anglers as part of a cooperative catch-and-
release tagging program that spans a temporal range from
1973 to the present. However, data were initially restricted
to 1998–2018 to match the availability of satellite−derived
oceanographic variables. Data were further restricted to ensure
spatial and temporal independence among species occurrence
records (Supplementary Figures 1–4), which involved retaining
species occurrences from a unique day and location, and
retaining only those that were greater than 0.1◦ (∼11 km)
apart, as per the methods applied by Brodie et al. (2015).
A minimum of 300 unique occurrence records was used
as the threshold for species inclusion within this study to
(1) facilitate statistical modelling of non-linear relationships
between species data and oceanographic covariates, while (2)
allowing for robust k-fold model validation, which requires
multiple models to be trained on subsets of the full dataset
to evaluate the accuracy and skill of the optimal models.
Based on this method of refinement, the study species selected
were Australian bonito (Sarda australis; n = 314; hereafter
“bonito”), Australian spotted mackerel (Scomberomorus munroi;
n = 410; hereafter “spotted mackerel”), narrow-barred Spanish
mackerel (Scomberomorus commerson; n = 889; hereafter
“Spanish mackerel”) and common dolphinfish (Coryphaena
hippurus; n = 558; hereafter “dolphinfish”). These species
represent four of the 28 (∼14%) coastal and pelagic fishes
recorded within the gamefish tagging database (NSW DPI, 2019).
To ensure that oceanographic habitat models and subsequent
range shift analyses were comparable among species, 300
occurrence records were randomly sampled for each species
from the resulting dataset and retained for model selection and
evaluation (Figure 1).

In order to create a binomial response variable for
quantifying species’ oceanographic habitat preferences, pseudo-
absence data were spatially and temporally randomised
nearshore of the continental shelf-break (200-m isobath)
throughout the study extent and period to characterise
unsuitable habitat for each study species. A consistent dataset
containing a total of 10,000 pseudo-absences was used for
each species, based on Barbet-Massin et al. (2012), who
recommend a large number (i.e., 10,000 or more) of randomly
selected pseudo−absences for regression−type analyses for
species distributions.

Oceanographic Variables
A suite of oceanographic variables known to influence the
distributions of coastal-pelagic fishes (Hobday and Hartog, 2014)
were downloaded from the Copernicus Marine Environment
Monitoring Service1 and matched to species occurrence
and pseudo-absence data. These variables were sea surface
temperature (SST; 0.05◦ spatial resolution), salinity (SAL; 0.25◦
spatial resolution), eddy kinetic energy (EKE; 0.25◦ spatial
resolution), sea level anomaly (SLA; 0.25◦ spatial resolution)
and chlorophyll a concentration (CHL; 0.04◦ spatial resolution).
The native spatial and temporal resolutions of oceanographic
variables were used when matching species occurrence and
pseudo-absence data for developing habitat models (see
Supplementary Table 1), and were bilinearly interpolated to
a common 0.1◦ grid and aggregated to a monthly temporal
resolution when making spatial predictions of habitat suitability.
Collinearity among predictor variables was assessed using
Spearman rank correlation coefficients and variance inflation
factors (VIFs). When correlated (r > 0.5 or < −0.5) variables
were identified, the predictor variable with the clearest ecological
interpretation from covarying pairs was retained for model
selection (Zuur et al., 2013). Sea surface temperature and salinity
were negatively correlated (r = −0.71) resulting in the removal
of salinity from the suite of potential oceanographic predictors
prior to model fitting. Given that Spearman coefficients
only describe pairwise correlations, variance inflation factors
(VIFs) were used to assess the effect of collinearity among the
remaining explanatory variables during model fitting. VIFs
for all remaining predictors were less than 1.5, indicating that
collinearity among these variables was unlikely to negatively
affect model performance (Zuur et al., 2007). Full descriptions
of oceanographic variables available for model selection are
provided in Supplementary Table 1.

Oceanographic Habitat Modelling
Generalised additive mixed effects models (GAMMs) were used
to describe oceanographic habitat suitability for all species.
GAMMs used a logistic link function to relate binomially
distributed response variables (i.e., species occurrence or
pseudo-absence) to multiple oceanographic covariates. Year
was included as a random intercept term in all models
to control for intraclass correlations between data collected
during the same year, which may have been temporally
biased due to unmeasured variation in species catch per
unit effort over the study period. Non-linear responses were
modelled using penalised regression spline smoothers applied
using generalized cross validation, which is recommended to
optimise smooth functions and to avoid overfitting to the
data (Zuur et al., 2009). However, smoothers were removed
from predictor variables in favour of linear terms if their
effective degrees of freedom were approximately equal to
1, indicating linearity with log-of-odds transformed binomial
responses variables.

A backward model selection procedure was initially
applied to identify all significant oceanographic predictors

1https://marine.copernicus.eu
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FIGURE 1 | Map of eastern Australia displaying the spatial extent of the study region and the distribution of random samples of 300 species occurrence records (red
circles) used in model fitting and 50 independent occurrences (blue circles) used in model testing for bonito (Sarda australis), spotted mackerel (Scomberomorus
munroi), Spanish mackerel (Scomberomorus commerson), and dolphinfish (Coryphaena hippurus).

TABLE 1 | Summary of full models for each species and nested alternatives assessed using an AIC informed model selection procedure on covariate combinations of
decreasing complexity.

Iteration Model Variable dropped 1AIC Mean AUC (± SD) Mean TSS (±SD)

Bonito (Sarda australis)

0 s(SST) + EKE + s(SLA) + (1| Year) – 0 0.891 ± 0.018 0.752 ± 0.021

1 s(SST) + s(EKE)+ (1| Year) SLA 23.62 0.846 ± 0.009 0.738 ± 0.012

2 s(SST) + (1| Year) EKE 73.05 0.768 ± 0.008 0.676 ± 0.013

Spotted mackerel (Scomberomorus munroi)

0 s(SST) + s(CHL) + s(SLA)+ (1| Year) – 0 0.832 ± 0.008 0.636 ± 0.022

1 s(SST) + s(CHL) + (1| Year) SLA 42.12 0.764 ± 0.007 0.511 ± 0.018

2 s(SST) + (1| Year) CHL 160.87 0.711 ± 0.009 0.436 ± 0.019

Spanish mackerel (Scomberomorus commerson)

0 s(SST) + s(CHL) + s(SLA)+ (1| Year) – 0 0.741 ± 0.009 0.526 ± 0.022

1 s(SST) + s(CHL) + (1| Year) SLA 57.83 0.692 ± 0.006 0.431 ± 0.019

2 s(SST) + (1| Year) CHL 210.66 0.632 ± 0.008 0.419 ± 0.023

Dolphinfish (Coryphaena hippurus)

0 s(SST) + s(EKE) + s(CHL) + s(SLA)+ (1| Year) – 0 0.734 ± 0.011 0.599 ± 0.018

1 s(SST) + s(EKE) + s(CHL) + (1| Year) SLA 50.12 0.701 ± 0.009 0.541 ± 0.019

2 s(SST) + s(EKE) + (1| Year) CHL 103.44 0.665 ± 0.010 0.487 ± 0.011

3 s(SST) + (1| Year) EKE 592.21 0.623 ± 0.011 0.444 ± 0.015

Smoothing factors are indicated by “s.” Delta-AIC values denote differences in AICs between models relative to the most parsimonious model (i.e., 1AIC = 0). Area Under
the receiver-operating Curve (AUC) statistic and True Skill Statistic (TSS) are derived from sixfold model validation using an independent set of species occurrence records.
SST, sea surface temperature; EKE, eddy kinetic energy; CHL, chlorophyll a concentration; SLA, sea level anomaly.

from the suite of non-correlated variables. Models were
further reduced using a p-value informed backward
stepwise selection procedure to produce a set of explanatory
models for each species that contained nested covariate

combinations of decreasing complexity (Table 1). The
model in this set with the lowest Akaike information
criterion (AIC) value was considered the most parsimonious
model. Optimal GAMMs estimated species probability
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FIGURE 2 | Spatial predictions of seasonal oceanographic habitat suitability off eastern Australia. Monthly spatial predictions were averaged for the period
encompassing January 1998–December 2018 and seasonally aggregated (Summer = December to February, Autumn = March–May, Winter = June–August,
Spring = September–November). The black line offshore of the coastline denotes the continental shelf-break (i.e., 200-m isobath). We note that although spatial
predictions of oceanographic habitat have been extrapolated beyond the continental shelf-break to improve visual communication in this figure, range shift analyses
were only undertaken on oceanographic habitat nearshore of the continental boundary.

of occurrence, but given that absolute probabilities are
dependent on the ratio of occurrence to absence data
(Pearce and Boyce, 2006) and that pseudo-absences were

randomly generated, probabilities were rescaled to an
index of oceanographic habitat suitability ranging from 0
(unsuitable) to 1 (optimal).
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FIGURE 3 | Partial effects of covariates on the fitted values of the optimal bonito (Sarda australis), spotted mackerel (Scomberomorus munroi), Spanish mackerel
(Scomberomorus commerson), and dolphinfish (Coryphaena hippurus) habitat suitability models. Dashed lines denote 95% confidence intervals. Rugs on x−axes
indicate occurrence and pseudo−absence data for each covariate. SST, sea surface temperature; EKE, eddy kinetic energy; CHL, chlorophyll a concentration; SLA,
sea level anomaly.

The accuracy and predictive skill of all models containing
unique combinations of predictors were quantified using a k-fold
validation approach that incorporated an independent testing
dataset. To do so, the full dataset was randomly divided into
six subsets (k = 6) that each contained 50 occurrence records
and 2,000 pseudo-absences, and models for each species were
trained on each subset of the data. Six-fold validation was
used due to concerns that too few occurrence data would be
available (i.e., < 50) for model fitting if the full dataset was
partitioned into a greater number of folds. All models for each
species were then tested against an independent set of species

occurrence records (n = 50 per species; Figure 1) extracted from
the Atlas of Living Australia database2 and a unique set of 2000
pseudo-absences randomly sampled from the full dataset used
in model fitting. These comparisons produced a set of confusion
matrices for calculating two model accuracy indices, which were
the mean area under the receiver operating characteristic curve
(AUC) and mean true skill statistic (TSS). AUC values range
from 0 to 1, where > 0.7 AUC < 0.8 indicates fair model
performance, > 0.8 AUC < 0.9 indicates good performance

2https://www.ala.org.au
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TABLE 2 | Summary of range shift analyses.

Species Poleward redistribution of core
oceanographic habitat (95% CI)

p-value Intra-class correlation coefficients

factor: “month” factor: “ENSO state”

Bonito (Sarda australis) 244.2 km per decade
(195.3–293.2 km dec−1)

<0.001 0.715 0.081

Spotted mackerel
(Scomberomorus munroi)

269.7 km per decade
(219.0–320.4 km dec−1)

<0.001 0.682 <0.008*

Spanish mackerel
(Scomberomorus commerson)

278.6 km per decade
(223.6–333.7 km dec−1)

<0.001 0.631 0.033*

Dolphinfish (Coryphaena
hippurus)

148.7 km per decade
(102.4–195.1 km dec−1)

<0.001 0.745 0.010*

*Denotes factors excluded from the optimal linear mixed effects model due to negligibly low (<0.05) intraclass correlation coefficients.

and > 0.9 AUC indicates excellent performance (Swets, 1988;
Araújo et al., 2005). Alternatively, TSS ranges from -1 to 1,
where 0 denotes the threshold between models with some
predictive skill (model skill increases toward 1) and models that
are no better than random (model skill declines toward –1)
(Allouche et al., 2006).

Range Shift Analyses
Core oceanographic habitat for each species was quantified by
comparing the spatial distribution of the independent species
occurrence records used in model validation with day-specific
predictions of modelled habitat. Values of oceanographic habitat
suitability (created with 0.1◦ spatial resolution) matching the
spatial and temporal location of independent occurrence records
(n = 50 per species) were extracted and the mean of these values
was considered to represent core oceanographic habitat for each
species. This approach for identifying core habitat is a data-
driven alternative to selecting arbitrary threshold values (e.g.,
0.5) for discriminating between species’ suitable and unsuitable
environmental habitats, which commonly lack ecological basis
(Liu et al., 2005; Champion et al., 2019). Defining species core
habitats in this way is one option for developing comparable
analyses of spatiotemporal change in species distributions,
provided that (1) consistent methods are applied to quantify
discrete areas of environmental habitat (e.g., core or range edge
habitat), and (2) values are held constant at each time point that
a spatial prediction of habitat suitability is generated.

Linear mixed effects models were used to quantify latitudinal
changes in the poleward edge of core oceanographic habitats
between January 1998 and December 2018. These models
incorporated random terms to account for intra- and inter-
annual climate variability on the latitudinal distribution of core
oceanographic habitat throughout the study period. However,
random effects were removed if these had low intraclass
correlation coefficients (i.e., < 0.05), which indicates negligible
collinearity among levels within these factors (Zuur et al., 2013).
Initial range shift models fitted for all species took the form (in
script notation):

Latitude = Year +
(
1

∣∣ Month
)
+ (1|ENSO state)

where Latitude is the most poleward location corresponding
to the distribution of each species’ core oceanographic habitat
nearshore of the continental shelf-break modelled as a function
of time (Year), with Month and ENSO state included as random
intercept terms to account for the effects of short- and long-term
climate variability on the distributions of core oceanographic
habitats. ENSO state is an index of El Niño Southern Oscillation
that drives oceanographic variability off eastern Australia over
interannual timescales. Rates of redistribution (km per decade)
of core oceanographic habitats and associated 95% confidence
intervals were derived from the fixed slope parameters of
linear models fitted to data extracted from monthly predictions
from January 1998 to December 2018. Residual plots were
assessed visually to confirm that linear mixed effects models (i.e.,
range shift models) satisfied the assumptions of normality and
homogeneity of variance.

Data pertaining to range shift analyses are available in the
Zenodo repository3. Statistical analyses were undertaken using
the R programming language (R Core Team, 2017): GAMMs
were fitted using the “gamm4” package (Wood and Scheipl,
2013), spatial and temporal autocorrelation was assessed using
the “gstat” package (Gräler et al., 2016), k−fold cross validation
was undertaken using the “dismo” package (Hijmans et al., 2013)
and linear mixed effects models were fitted using the “lme4”
package (Bates et al., 2015). Oceanographic habitats and data
were plotted in the MATLAB computing environment (ver. 9.8,
The MathWorks, Inc.).

RESULTS

Oceanographic Habitat Models
Monthly spatial predictions of oceanographic habitat showed
consistent patterns of seasonal variation among all species
distributions, which underwent poleward advances during the
Austral summer and autumn and equatorward retreats during
winter and spring (Figure 2). Optimal models for all species
contained the predictors SST and SLA, while CHL contributed
to oceanographic habitat suitability for all species except bonito
(Table 1). EKE was a significant predictor of the distributions

3https://doi.org/10.5281/zenodo.4475997
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FIGURE 4 | Spatial predictions of Autumn oceanographic habitat suitability off eastern Australia from January 1998 to December 2018. Monthly predictions have
been averaged into 4-year time bins to aid visualisation of temporal trends. The black line offshore of the coastline denotes the continental shelf-break (i.e., 200-m
isobath). We note that although spatial predictions of oceanographic habitat have been extrapolated beyond the continental shelf-break to improve visual
communication in this figure, range shift analyses were only undertaken on oceanographic habitat nearshore of the continental shelf boundary.
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FIGURE 5 | Seasonally explicit latitudinal trends in monthly predictions of the poleward edge of species’ core oceanographic habitats nearshore of the continental
shelf-break (dashed lines denote 95% confidence intervals). The east Australian coastline has been underlaid to aid visual interpretation of the trends presented.

of bonito and dolphinfish, but not spotted or Spanish mackerel
(Supplementary Table 2). Collectively, the distributions of all
study species were found to be driven by simultaneous responses
to multiple oceanographic variables, with some variables (e.g.,
SST and CHL) contributing to the oceanographic habitat quality
of multiple species.

The effects of oceanographic variables on the occurrence of
all species took both non-linear and linear forms (Figure 3).
SST had a consistent, unimodal effect on oceanographic habitat
suitably. Peaks in optimal thermal habitat occurred between 22.5
and 24.5◦C for all species. Both spotted and Spanish mackerel
models produced consistent responses to SST, CHL and SLA. SLA
ranging between –0.1 and 0.3 m positively affected oceanographic
habitat suitability for all species, with the effect of this variable on
models becoming negative toward lower and higher values than
these. All covariates in each optimal oceanographic habitat model
were significant at alpha level = 0.001 (Supplementary Table 2).

Six−fold validation against an independent dataset not
used in modelling fitting revealed that optimal models for
each species had high predictive accuracy based on multiple
indices of model performance (Table 1). Mean AUC and TSS
values for all optimal models ranged between 0.734–0.891 and
0.526–0.752, respectively. Values within these ranges denote
models with fair to good performance (Swets, 1988) and
are considered reliable for conservation planning applications
(Pearce and Ferrier, 2000), indicating that all optimal models
produced accurate spatial predictions of species distributions for
subsequent range shift analyses.

Range Shift Analyses
Habitat suitability values representative of species’ core
distributions were: bonito = 0.573, spotted mackerel = 0.451,
Spanish mackerel = 0.408, dolphinfish = 0.568 (Supplementary
Figure 5). The poleward edge of core oceanographic habitats for
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all species were found to have undergone significant poleward
shifts between 1998 and 2018 (Table 2 and Figure 4). Linear
mixed effects models revealed that core oceanographic habitats
rapidly (i.e., > 100 km per decade) moved toward higher latitudes
for all species over the study period (Figure 5). However, rates
of redistribution varied by approximately 130 km per decade
among coastal-pelagic fishes, with core habitat shifting most
rapidly for Spanish mackerel (278.6 km per decade), followed by
spotted mackerel (269.7 km per decade), bonito (244.2 km per
decade) and dolphinfish (148.7 km per decade; Table 2).

Poleward shifts in core oceanographic habitat occurred over a
relatively lower range of latitudes for both spotted and Spanish
mackerel than range shifts identified for bonito and dolphinfish
(Figures 4, 5). The random “month” term was retained in all
linear mixed effects models (Table 2), indicating that monthly
variability in regional oceanography drove spatial variation in the
distribution of core habitat for all species. However, the random
“ENSO state” term was dropped from the dolphinfish and both
spotted and Spanish mackerel models but retained in the bonito
model (Table 2), indicating that the distribution of core habitat
for bonito, but not any other species analysed, was marginally
dependent on ENSO during the study period.

DISCUSSION

By developing comparable analyses of spatial shifts in the
distribution of core habitats for four coastal-pelagic fishes from a
warming western boundary current, we found evidence for rapid
(i.e., up to∼280 km per decade) recent poleward redistributions.
These findings are consistent with climate-driven range shifts in
over 30,000 species globally that show marine taxa moving to
higher latitudes six times faster than their terrestrial counterparts
(Lenoir et al., 2020) and support the results of previous research
demonstrating rapid climate-driven redistributions in coastal-
pelagic fishes (Hill et al., 2015). However, we found that rates
of redistribution varied by approximately 130 km per decade
among species, highlighting that subtle differences in species’
environmental responses can manifest in highly variable rates of
climate-driven range shifts.

Our analyses revealed that species’ core oceanographic
habitats have shifted poleward by between ∼312 and
585 km since 1998 in response to climate−driven changes
in regional oceanography. This range exceeds rates of poleward
redistribution predicted for yellowtail kingfish (Seriola lalandi;
approximately 240 km since 1996) and black marlin (Istiompax
indica; 140 km between 1999 and 2013) off eastern Australia
quantified using correlative analyses comparable to those
applied here (Hill et al., 2015; Champion et al., 2018). Taken
together, these findings indicate that poleward range shifts
in core oceanographic habitat for coastal-pelagic fishes off
eastern Australia are generally exceeding 100 km per decade,
with predictions for some species (e.g., bonito and both
spotted and Spanish mackerel) in excess of 200 km per
decade. Given the north-south orientation of Australia’s east
coast, poleward shifts of this magnitude may considerably
alter the availability of resources to fisheries along the coast

(e.g., Selden et al., 2020). Out-of-range observations logged
by recreational anglers with the Range Extension Database
and Mapping project (Redmap; Pecl et al., 2019) provide
observational support for predicted shifts in coastal-pelagic fish
distributions. For example, recreational catches of yellowtail
kingfish off eastern Tasmania and dolphinfish off southern
NSW have become increasingly reported via Redmap website
and smartphone applications since the inception of this citizen
science project in 2009 (Stuart-Smith et al., 2016; Fogarty
et al., 2017). These catch records concur with predictions
of increasing environmental suitability for these species
off south-eastern Australia due to changing oceanographic
conditions (Champion et al., 2018). Based on relative rates
of poleward redistributions quantified using standardised
methods, our results suggest that fishing opportunity off
south-eastern Australia is likely to be most rapidly increasing
for Spanish mackerel, followed by spotted mackerel, bonito
and dolphinfish. While our analysis was developed to infer
potential increases in fishing opportunity at higher latitudes,
and thus quantified and compared shifts in the leading edge of
oceanographic habitats, poleward shifts in the trailing edge of
suitable habitat may manifest in reduced fishing opportunity
at lower latitudes. For example, projected redistributions for
truly pelagic fishes off eastern Australia have found that trailing
edges of environmental habitat are likely to shift poleward
more rapidly than leading edges in the future (Robinson et al.,
2015), suggesting that losses in fishing opportunity at lower
latitudes may outpace increases in opportunity at higher latitude.
We acknowledge that our predictions of habitat suitability
do not reflect species realised distributions directly due to
their reliance on correlative relationships between species
and available environmental conditions (Elith et al., 2010),
which also do not incorporate the effects of biotic interactions
on species distributions. Nevertheless, our findings illustrate
how the redistribution of suitable oceanographic habitat for
recreationally important fishes can be estimated using publicly
available data to understand changes in fishing opportunity and
inform fisheries adaptation.

The application of a consistent methodology and dataset for
developing comparable range shift analyses was a crucial aspect
of this study as methodological difference have been found to
explain approximately 22% of variation in rates of climate-
driven redistributions (Brown et al., 2016). For example, studies
utilising continuous and consistent time series more accurately
quantify rates of species redistributions than estimates based
on infrequent data that may confound short-term variability
with long-term trends (Brown et al., 2016; Fredston-Hermann
et al., 2020). Therefore, our range shift estimates based on
monthly predictions of species’ core habitats over 21 years (i.e.,
n = 252 per species) are likely to be more robust to short-
term oceanographic variability occurring during this period
than, for example, analyses based on seasonal or annual data.
Although redistribution analyses using infrequent measurements
commonly produce estimates of change that exceed studies using
continuous time series (Brown et al., 2016), our results markedly
exceed previous rates quantified for nearshore and truly pelagic
fishes off eastern Australia. For example, historical analyses
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utilising observational data of 50 nearshore fishes identified an
average rate of poleward redistribution of 38 km per decade
(Sunday et al., 2015), while climate-driven redistributions for
16 pelagic fishes not analysed here averaged less than 50 km
per decade (Hobday, 2010). While it is probable that rates of
poleward redistributions in coastal-pelagic fishes are exceeding
those of other marine fishes off eastern Australia, it is also
possible that methodological differences between studies account
for variation between our results and previously documented
rates of redistribution. For example, our analyses incorporated
species responses to multiple oceanographic variables analysed
over a recent historical period, while previous research has
utilised observational data (Sunday et al., 2012; Malcolm and
Scott, 2016), correlative relationships with single environmental
covariates (e.g., SST only; Hobday, 2010) and scenario-based
projections of future ocean conditions (Robinson et al., 2015)
to quantify rates of redistribution. Despite methodological
difference preventing robust comparisons between our findings
and previous research, results from our standardised analysis
highlight that marine fishes from eastern Australia’s are likely to
be undergoing poleward shifts in distribution more rapidly than
previously thought.

Robust estimates of species responses to environmental
conditions underpin climate change vulnerability assessments
(Pacifici et al., 2015; Foden et al., 2019) and the subsequent
prioritisation of species within conservation and adaptation
strategies (Watson et al., 2013). Trait-based, correlative and
mechanistic analyses represent the three primary approaches
supporting climate change vulnerability assessments of species
(Foden et al., 2019). By using species distribution or habitat
suitability models to compare rates of range change for four
coastal-pelagic fishes, we demonstrate the utility of correlative
analyses for discriminating between the sensitivity of species
distributions to climate change. Despite all species assessed being
likely to receive similar climate sensitivity scores within trait-
based assessments (e.g., using the methods of Pecl et al., 2014),
correlative analyses identified variation in species responses.
For example, the distribution of Spanish mackerel was found
to be most sensitive to the environmental effects of climate
change off eastern Australia, followed by the distributions
of spotted mackerel, bonito and dolphinfish. These results
demonstrate the utility of correlative methods for identifying
species that are most likely to attract increasing fishing effort
in novel poleward environments under climate change, and
for prioritising the development of climate-sensitive fisheries

management strategies for marine fishes that are undergoing
climate-driven redistributions.
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