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Marine conservation areas are an important tool for the sustainable management of
multispecies, small-scale fisheries. Effective spatial management requires a proper
understanding of the spatial distribution of target species and the identification of its
environmental drivers. Small-scale fisheries, however, often face scarcity and low-quality
of data. In these situations, approaches for the prioritization of conservation areas need
to deal with scattered, biased, and short-term information and ideally should quantify
data- and model-specific uncertainties for a better understanding of the risks related
to management interventions. We used a Bayesian hierarchical species distribution
modeling approach on annual landing data of the heavily exploited, small-scale, and
data-poor fishery of Chwaka Bay (Zanzibar) in the Western Indian Ocean to understand
the distribution of the key target species and identify potential areas for conservation.
Few commonalities were found in the set of important habitat and environmental
drivers among species, but temperature, depth, and seagrass cover affected the spatial
distribution of three of the six analyzed species. A comparison of our results with
information from ecological studies suggests that our approach predicts the distribution
of the analyzed species reasonably well. Furthermore, the two main common areas
of high relative abundance identified in our study have been previously suggested by
the local fisher as important areas for spatial conservation. By using short-term, catch
per unit of effort data in a Bayesian hierarchical framework, we quantify the associated
uncertainties while accounting for spatial dependencies. More importantly, the use of
accessible and interpretable tools, such as the here created spatial maps, can frame a
better understanding of spatio-temporal management for local fishers. Our approach,
thus, supports the operability of spatial management in small-scale fisheries suffering
from a general lack of long-term fisheries information and fisheries independent data.

Keywords: small-scale fisheries, spatio-temporal management, Chwaka Bay, Western Indian Ocean region, coral
reefs, seagrass, Bayesian hierarchical model
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INTRODUCTION

Small-scale fisheries employ over 90% of the world’s capture
fishers (FAO., 2015, 2018) and are the major livelihood and
protein suppliers in many coastal communities around the world
(Chuenpagdee, 2011; Belhabib et al., 2015; Teh and Pauly,
2018; Loring et al., 2019; Salas et al., 2019). It is believed that
well-managed small-scale fisheries can contribute to poverty
alleviation and food security (Bene et al., 2007; Purcell and
Pomeroy, 2015). However, assessing and managing these fisheries
is challenging given the large number of species caught and
the adaptive behavior of fishers in space, time, and fishing
methods (Wiyono et al., 2006; Salas et al., 2007; Daw, 2008).
The lack of alternative livelihoods and the strong resource
dependency of many small-scale fishing communities impede
common management measures such as total allowable catches
or effort regulations (Pomeroy, 2012). Within the context of a
global agenda to protect 10% of coastal and marine ecosystems
through area management by 2020 (CBD, 2010), many tropical
countries attempt to manage their coastal areas through different
use-zones (Wells et al., 2007; De Santo, 2013).

Such an example is found in Zanzibar (Tanzania), where most
of the coastline has been designated a conservation area ranging
from general use zones to locally managed partially protected and
privately managed no-take areas (McLean et al., 2012; Rocliffe
et al., 2014). Zanzibar has achieved international targets by
protecting 11% of its continental shelf, but a rapid appraisal by
regional experts estimated that only 25% of the coral reef MPAs
are effective (Rocliffe et al., 2014). Chwaka Bay on the east coast
of Zanzibar is an important, year-round fishing area, which is
part of Zanzibar’s large Mnemba Island Marine Conservation
Area management plan (MIMCA) (McLean et al., 2012). But
compliance with mesh-size and gear regulations is low (de la
Torre-Castro and Lindström, 2010; Wallner-Hahn et al., 2016),
making the bay a general use zone. A long history of intense
exploitation (de la Torre-Castro and Rönnbäck, 2004; Rehren
et al., 2018a), an increase in fishing effort (de la Torre-Castro
and Lindström, 2010; Department of Fisheries Development.,
2016), the use of illegal gears, and spatial use-conflicts (de la
Torre-Castro and Lindström, 2010) have led to concerns for
the sustainability of Chwaka Bay’s fisheries. In a participatory
workshop in 2016, invited fishers advocated for implementing
a no-take zone to combat the decrease in their catches and the
reoccurring user conflicts (Rehren, 2017).

However, a prerequisite for the success of such no-take zones
is to understand the spatial distribution of target species and
identify its environmental drivers. While the people of Chwaka
Bay strongly depend on fisheries resources for livelihoods and
food security (Jiddawi, 2012), fisheries managers face scarcity
and low-quality of data (Rehren et al., 2020). Because of the
high-cost and spatial limitations of fisheries independent data
collection, often the only source of information is landings data of
individual fishers. This information is relatively easy to collect but
comes with a strong sampling bias (Pennino et al., 2019). Spatio-
temporal modeling approaches, therefore, need to account for all
dependencies in the data, use information from different sources,
and quantify associated uncertainties. The latter is particularly

important to better understand the risks related to management
interventions. Bayesian hierarchical species distribution models
are well suited for this purpose because they allow for a more
accurate estimation of uncertainty, given that observed data
and model parameters can be considered as random variables
(Banerjee et al., 2004).

We use a Bayesian hierarchical species distribution modeling
approach on landing data from different fishing gears collected
in 2014 to assess and predict the distribution range of key target
species of Chwaka Bay. We identify common environmental
drivers of distribution and areas of overlapping high relative
abundance to prioritize potential conservation areas. The
analyzed species represent key target resources found in fisheries
catches throughout the Western Indian Ocean. Thus, our results
serve as baseline information for future studies in the region.

MATERIALS AND METHODS

Study Area
Chwaka Bay is a semi-enclosed bay-system located on the East
Coast of Zanzibar (Tanzania) (Figure 1). The bay is relatively
shallow, with depths up to 20 m in the outer borders and
some parts of the bay falling dry during low tide. The sea
surface temperature ranges from 25 to 31◦C and salinity from
35h at the bay opening to 26h in the bay proper (Jiddawi
and Lindström, 2012). Strong tidal currents, with a mean tidal
range of 3.2 m (Nyandwi and Mwaipopo, 2000), cause high
turbidity in the bay by stirring up sediments (Gullström et al.,
2006). The north-eastern (November–March) and south-eastern
(April–October) monsoons drive the bay’s climate, with the
latter showing stronger winds, longer rain periods, and lower
temperatures (Shaghude et al., 2012). The bay consists of a large
mangrove forest on the southern shore, dense seagrass meadows
throughout the bay, and a fringing reef at the bay opening. These
habitats form a continuum through particulate organic matter
exchange (Mohammed et al., 2001) and tidal, seasonal, foraging,
and ontogenetic migration of fish (Gullström et al., 2012).

The diversity of habitats and the protection from wave energy
through the fringing reef give rise to a highly productive,
year-round fishing area surrounded by several fishing villages
(Figure 1). The local community highly depends on the
fisheries’ resources for income and protein supply (Jiddawi and
Lindström, 2012). The fishery targets multiple species ranging
from invertebrates (e.g., sea cucumber, octopus), reef- and
seagrass-associated fish (e.g., parrotfish and rabbitfish) to large
pelagic species (e.g., mackerels and jacks). The main fishing gears
are basket traps, dragnets, handlines, spears, and, to a minor
extent, floatnets, longlines, fences, and gillnets (Rehren et al.,
2018a). Dragnet fishers are mainly from Chwaka village located
in the south of the bay, and their numbers have increased over
the years (de la Torre-Castro and Lindström, 2010). The nets are
weighted down with stones and dragged over the seafloor. Spatial
use-conflicts arise from dragnets’ damage to sensitive habitats
and basket traps from other fishers (Jiddawi and Ohman, 2002;
Mangi and Roberts, 2006; de la Torre-Castro and Lindström,
2010). Following a prohibition of dragnets in 2001, the fishing
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FIGURE 1 | Chwaka Bay, Zanzibar (Tanzania). The bay comprises large mangrove stands in the south, a fringing reef at the bay opening, and coral patches inside
the bay. Seagrass meadows are found throughout the bay with dense aggregations toward the central part.

grounds off Marumbi village were demarcated with buoys to
ensure the protection of Marumbi fishers from dragnet fishing
(de la Torre-Castro and Lindström, 2010). Despite this locally
enforced zone, all gears are deployed throughout the entire bay.
For over 20 years, fishers report decreases in their catch rates
(de la Torre-Castro and Rönnbäck, 2004; Geere, 2014), which,
together with the use of small mesh sizes and destructive gears,
has led to a general concern of overfishing in the bay (de la Torre-
Castro and Lindström, 2010; de la Torre-Castro et al., 2014).

Data Collection
Fisheries data, habitat, and depth information were collected by
the first author during the north–east monsoon (January–June)
and the south–east monsoon (September–December) season in
2014. Data collection was carried out on 18 days per month
at the main landing sites (i.e., Chwaka village, Uroa village,
and Marumbi village, Figure 1), covering a minimum of 30%

of the fishing boats that went fishing on the day of sampling.
The number of fishers sampled per gear and landing site was
based on the gear and landing site’s relative proportion. The
catch was classified to family, or if possible to species level
(Bianchi, 1985; Anam and Mostarda, 2012), weighed to the
nearest 1 g, and standardized to weight per fisher [weight per
unit of effort (WPUE), kg fisher−1]. The data collection was
done directly at the beach during landing before the fishers
sold their catch. Individuals of any size caught during fishing
were landed and used at least for home consumption. The
number of fishers, boat, gear, and fishing hours and the type
of gear, boat, and propulsion were also collected. We assigned
each sample to the corresponding lunar cycle (i.e., full moon,
third quarter, new moon, and first quarter) and season (i.e.,
north–east monsoon and south–east monsoon). Information
about the fishing location was collected as the name of the
fishing ground. In April and December 2014, the main fishing
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grounds (71%) were mapped together with experienced fishers.
The depth and seagrass and sand percentage cover were collected
for 57% of the mapped fishing grounds and on additional non-
fished, random locations in the bay. Depth was measured with
a diving computer and corrected with the tide level records
obtained from the Tanzania Ports Authority.1 The substrate
percentage cover was estimated within 2–6 quadrats at each
location. Depth, seagrass, and sand were then interpolated
within the spatial extent of the sampling locations using kriging
techniques. Seagrass nor sand displayed any trend, and thus
ordinary kriging was used with a spherical and exponential
variogram model, respectively. Depth distribution showed a clear
trend, and thus universal kriging with a cubic variogram model
was applied to data detrended by a second-order polynomial
trend surface analysis. The interpolation was done using the
geoR package (Ribeiro et al., 2020). Shapefiles of coral reef
presence–absence were obtained from the Institute of Marine
Science, Zanzibar. The daily sea-surface temperature of 2014
was obtained from the GHRSST level 4 data set (0.01◦

× 0.01◦)
downloaded from the OPeNDAP data repository2 using the XML
package (Temple Lang, 2020) implemented in the R software.
The temperature was transformed from Kelvin to Celsius, and
the annual average was calculated. We used the habitat variables,
depth, temperature, lunar cycle, and season as explanatory
variables for the distribution of the WPUE of the most dominant
species in the catches (Table 1). We chose the above explanatory
variables because they have been identified as key predictors
to determine spatial patterns of marine species (e.g., Beger and
Possingham, 2008; Moore et al., 2009; Roos et al., 2015). The
spatial distribution of the WPUE values was used as a proxy for
the species’ relative abundance.

Statistical Analysis
All analyses and graphics were performed in R (R Core
Team, 20203). Prior to the analysis, the explanatory variables
were standardized (i.e., difference from the mean divided by
the corresponding standard deviation) (Gelman et al., 2014)
using the decostand function in the vegan package (Oksanen
et al., 2019) to better interpret both the direction (positive
or negative) and magnitude (effect sizes) of the parameter
estimates. We used the variance inflation factor (VIF, <3) (Zuur
et al., 2009) and the Pearson correlation statistic to exclude
covariates with high multi-collinearity. Only sand and seagrass
were correlated for all species, and thus sand was removed
from the analysis. Categorical variables were examined for an
imbalance in the number of observations. Potential interactions
between the response and a predictor covariate conditioned
on other covariates were examined using coplots. Interactions
between covariates were included in the model selection process
if clear changes in the slope were observed, and the number
of observations in each group was good enough to allow for
such an analysis.

1https://www.ports.go.tz/index.php/en/customer-center/sea-tide-tables?
limitstart=0 (accessed 05.02.2015).
2https://opendap.jpl.nasa.gov/opendap/
3www.r-project.org

The relationship between the logarithm of the WPUE and
predictors was modeled using a normal distribution (Figure 2).
We included an independent and identically distributed random
metier effect (Gómez-Rubio, 2020) that accounts for variations
in WPUE due to differences in fishing methods and technologies
(hereafter metier effect). Metiers were assigned to the different
samples based on the associated fishing village,4 vessel, gear, and
propulsion type. We further accounted for spatial autocorrelation
by including a numeric vector with a mean of 0 and a Matern
covariance function linking each observation to a spatial location.
Thus, our model accounts for independent, region-specific, and
metier-specific noise not explained by the available covariates.
For the parameters involved in the fixed effects, vague Gaussian
priors with a mean of 0 and a variance of 100 were used, while
a gamma prior distribution on the precision τ with parameters 1
and 0.00005 was used for the metier effect. The random spatial
effect only depends on two hyperparameters: the range and
the variance of the spatial effect. Penalized complexity priors
(Fuglstad et al., 2018) were used to describe prior knowledge
on these hyperparameters. We set a prior range of 1 km with a
probability of 0.05 for it to be lower and a prior variance of 1.7–2
(depending on the species) with a probability of 0.05 for it to be
higher. We performed a sensitivity analysis of the choice of priors
for the spatial effect by testing different priors and verifying that
the posterior distributions were consistent and concentrated well
within the support of the priors (Supplementary Figure 1).

Bayesian inference was performed using the Integrated Nested
Laplace Approximations (INLA) approach (Rue et al., 2009)
with its corresponding package.5 INLA uses the so-called
Stochastic Partial Differential Equation approach to approximate
the Gaussian field with the Matern covariance function by a
Gaussian Markov random field (Rue et al., 2009).

We selected the most parsimonious model, starting with
all covariates (except those with VIF values > 3), based on
the goodness-of-fit using the deviance information criterion
(DIC) (Spiegelhalter et al., 2002) and Watanabe–Akaike
information criterion (WAIC) (Watanabe, 2010; Supplementary
Table 1). The model selection process was automated by
using the Bdiclcpomodel_stack function available on GitHub.6

We included covariates in the final model if the probability
for the regression parameters’ posterior distribution to be
below or above zero was 80% or higher (depending on the
relationship).7 The final model was evaluated with the log-
conditional predictive ordinate (log-CPO) (Roos and Held,
2011), which is a “leave-one-out” cross-validation index to
assess the predictive power of the model (Pennino et al.,
2019). The CPO values were also used to identify outliers.

4Potential factors associated with higher variability in WPUE between fishers
of different villages includes the travel distance to less/more productive fishing
grounds and the possession of different levels of knowledge about fishing grounds
and species.
5http://www.r-inla.org/
6https://github.com/MgraziaPennino/SDMs-with-INLA
7The only exception was the covariate seagrass in the model of Leptoscarus
vaigiensis, which was selected by the goodness-of-fit indicators but had only a
probability of 70% for the posterior distribution to be below zero. We kept this
covariate given its importance as habitat and food item for Leptoscarus vaigiensis.
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TABLE 1 | Key characteristics of the analyzed target species.

Species Family Habitat association Depth range
[m]

Feeding group IUCN status Median size
(cm TL)

Main gear

Siganus sutor Siganidae Reef-associated 1–50 Herbivore Least concern 19 Trap, dragnet

Lutjanus fulviflamma Lutjanidae Reef-associated 3–35 Zoobenthivore Least concern 18 Dragnet, trap, handline

Lethrinus lentjan Lethrinidae Reef-associated 10–90 Zoobenthivore Least concern 17 Trap, dragnet, handline

Lethrinus mahsena Lethrinidae Reef-associated 2–100 Zoobenthivore Endangered 15 Trap, dragnet, handline

Leptoscarus vaigiensis Scaridae Reef-associated 1–15 Herbivore grazer Least concern 19 Trap, dragnet

Scarus ghobban Scaridae Reef-associated 1–90 Herbivore scraper Least concern 17 Trap, dragnet

While the median size (total length, TL) and main gear were obtained from the present data set, other characteristics were taken from FishBase (Froese and Pauly, 2019).

FIGURE 2 | Graphical representation of the model. The logarithm of the WPUE (γi ) follows a normal distribution. For the fixed effects parameters, vague Gaussian
priors with a mean of 0 and a variance of 100 were used. ζi is a Gaussian distributed random metier effect with a mean of 0 and a precision τζ. By default, INLA
assigns a gamma prior with parameters 1 and 0.00005 to the precision. The random spatial effect (ωi ) is approximated with a Matern covariance function (Q). The
parameters κ and τω determine the range and the total variance of the spatial effect. The penalized complexity priors of these parameters follow a normal
distribution. This adaption of a Kruschke style diagram was generated using Bååth (2013) template for LibreOffice.

We further evaluated the final model through residual plots
(homogeneity of variance, outliers) (Supplementary Figure 2)
and visualizing model predictions. Model assumptions were
also analyzed by visualizing the predictive integral transform
(Supplementary Figure 3), which measures the probability
of a new value to be lower than the observed value (Held
et al., 2010). INLA has built-in functions allowing for a
linear interpolation of the spatial effect within each triangle
into a finer regular grid. The resulting high-resolution map

of the spatial effect can be seen as a proxy for the species’
relative abundance.8 The spatial effect maps were then stacked,
and the posterior distribution of the mean, first, and third
quantile was calculated to identify overlapping areas of high
relative abundance.

8The data and the script for the model construction can be accessed
at https://github.com/Jrehren/Frontiers-2020-Rehren-Supporting-spatial-
management-with-Bayesian-approach
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Figures were created using the ggplot2 package, and maps
were created with the marmap (Pante et al., 2020), mapdata
(Richard A. Becker and Ray Brownrigg, 2018), mapproj (R by
Ray Brownrigg McIlroy et al., 2018), cowplot (Wilke, 2019),
ggspatial (Dunnington, 2018), rnaturalearth (South, 2017a), and
rnaturalearthdata (South, 2017b) packages.9

RESULTS

Drivers and Distribution of Target
Species
Spatial dependencies and the random metier effect contributed
strongly to the explained variance and hence improved model
performance. The temporal covariates had a relatively strong
effect on species distribution. While the third quarter and
full moon were important covariates for Siganus sutor and
Lethrinus lentjan (Figure 3), season was only important in
the distribution of Leptoscarus vaigiensis. This relationship was
positive, indicating higher relative abundances for L. vaigiensis
during the south–east monsoon season (Figure 3). The strong
positive relationship between the third quarter moon phase and
the distribution of L. lentjan indicates that this is a relevant
predictor of high WPUE values. Important environmental drivers
were highly variable among species, but the magnitude of their
effects was relatively similar (Figure 3). While depth was an
important predictor for the distribution of L. vaigiensis, L. lentjan,
and Lutjanus fulviflamma, temperature was important for Scarus
ghobban, L. vaigiensis, and Lethrinus mahsena (Figure 3). S. sutor
showed a much smoother spatial trend in relative abundance
across the bay than the other species and had higher numbers
of observations (twofold) (Figure 4). This species is highly
dominant in the catches throughout the year and was particularly
caught north of Uroa. The spatial pattern of relative abundance
generally shows a clear south to north trend (Figure 4). None

9Source code for the map can be accessed at https://github.com/MgraziaPennino/
Create_map_study_area/blob/master/Map_study_area.R

of the environmental variables were found to be important in
the distribution of S. sutor (Figure 3), and only full moon was
selected as a relevant predictor forming a negative relationship
with abundance. The emperor species showed a strong positive
relationship with depth (Figure 5), leading to higher relative
abundances around the bay opening close to Uroa and Michamvi
(Figure 4). Reef occurrence was the strongest predictor of
L. mahsena (Figure 3), intensifying the spatial pattern of
high relative abundances around the bay opening where the
fringing reef is present. The distribution of L. fulviflamma and
S. ghobban, contrastingly, showed a spatial pattern of higher
relative abundances in the south of the bay (Figure 4). Although
the distribution of L. fulviflamma was driven by greater depth,
it is even stronger driven by high seagrass cover (Figure 5). It is
present in dense seagrass meadows in the bay proper and around
Chwaka village. The relative abundance of L. vaigiensis indicated
a slightly negative relationship with seagrass and a strong positive
relationship with depth (Figure 5), leading to a spatial pattern
of high values around Uroa toward the bay opening and in the
middle of the bay (Figure 4). The posterior distribution of the
standard deviation of all spatial effects was relatively high, with
the highest values toward the bay opening and the south of the
bay, where the number of observations for the target species
decreases (Figure 4).

Identifying Areas of High Relative
Abundance
Two main areas of high relative abundance were found by
overlaying the mean posterior distribution of the spatial effect
from all analyzed species: one area in the north of Uroa
village and one area in front of Marumbi village (Figure 6).
High relative abundances of the target species were also found
close to the patch reefs inside the bay, which is a fishing
area frequently visited by fishers even under unfavorable wind
conditions as it is partly protected by the fringing reef. The
fringing reefs and the deeper outer parts do not seem to create
areas of particular high relative abundance for the analyzed

FIGURE 3 | Summary of the selected environmental drivers for each species and the value of the corresponding slope. The legend represents the probability of the
slope (Importance) to be below (negative, red) or above (positive, blue) zero.
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FIGURE 4 | Posterior mean and standard deviation of the spatial random effect. Letters indicate the position of the villages: C, Chwaka; M, Marumbi; U, Uroa; Mi,
Michamvi. Black lines depict the reef.

target species. The area in front of Marumbi corresponds to
the demarcated dragnet-free zone enforced by the Marumbi
villagers. The area in the north of Uroa lies in the region
suggested by the fishers as a no-take zone during the participatory
workshop conducted in 2016. Both also remain areas of higher
relative abundance in the posterior distribution of the upper and
lower quantiles.

DISCUSSION

Main Drivers of Species Distribution
Understanding species distribution is a key aspect in setting
successful spatio-temporal management plans (Franklin, 2009;
Lawler et al., 2011; Guisan et al., 2013). The results from this
study provide information on important distribution drivers of
the WIO’s key target species and commonalities among them.

The environmental drivers found to be important for
species distribution were highly dissimilar between the different
species. This was very apparent among species of the same
family: for the two emperor species, relevant selected predictors
were opposite and for the two parrotfish, the only common
environmental driver was temperature. Contrastingly, season was
only an important driver of the distribution of L. vaigiensis.
The weak influence of seasons on fish density is a general
pattern observed in Chwaka Bay’s mangrove creeks (Mwandya
et al., 2010) and the seagrass meadows close to Chwaka
and Marumbi village (Lugendo et al., 2007). Only the heavy
rain season from April to May has been shown by Lugendo
et al. (2007) to induce significant changes in environmental
factors and fish density inside the mangrove creeks of Chwaka
Bay. This suggests relatively stable annual catches of the
other target species, representing a significant part of trap
and dragnet catch (Rehren et al., 2018a). Reduced temporal
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FIGURE 5 | Functional response of the weight per unit of effort of each species to their main environmental drivers. Solid lines and shaded regions are the mean and
95% credibility intervals, respectively. NEMS stands for North–East Monsoon Season and SEMS for South–East Monsoon Season.

FIGURE 6 | Posterior distribution of the mean, first, and third quantile of the combined spatial effect of the analyzed species to identify areas of overlapping high
relative abundance. The dots represent a dragnet free zone (blue) enforced by the Marumbi fishers and the area proposed for the implementation of a no-take zone
during the participatory workshop in 2016 (black). Letters indicate the position of the villages: C, Chwaka; M, Marumbi; U, Uroa; Mi, Michamvi. Black lines depict the
reef.

fluctuations in catches and the protection from wave energy
through the fringing reef makes the bay a vital fishing ground
that decreases the vulnerability of the fishing community.
Attempts to reallocate fishing efforts to offshore areas, which
has been part of past management actions (Gustavsson
et al., 2014), need to compensate for a potential increase in
income uncertainty.

The full moon lunar phase was the only relevant predictor
for S. sutor. This species is of high importance to Chwaka Bay’s
fishery since it dominates the main gears, and its annual yield
strongly exceeds all other target species (Rehren et al., 2018b).
S. sutor grazes over algae beds, and juveniles mainly use seagrass
meadows as nurseries (Dorenbosch et al., 2005; Lugendo et al.,
2005; Kimirei et al., 2011). Larger individuals are usually found
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around reefs and are associated with deeper depths (Kimirei
et al., 2011). Accordingly, the spatial distribution of S. sutor
shows a clear increasing trend in relative abundance toward the
bay opening and, thus, deeper areas. S. sutor, unlike the more
sedentary emperor species, is a relatively mobile species with a
home range of about 900 m (Ebrahim et al., 2020a). This might
explain its smoother distribution and the lack of patches in the
spatial random effect compared to the other species.

Our analysis indicates that seagrass plays an important
role in the distribution of the emperor species L. mahsena,
the parrotfish L. vaigiensis, and the snapper L. fulviflamma.
L. fulviflamma uses seagrass meadows and particularly mangrove
swamps as nursery areas (Lugendo et al., 2005; Kimirei et al.,
2011), explaining the higher relative abundances found in the
south of the bay. During the workshop in 2016 with 30
participants, fishers reported that L. fulviflamma used to occur
in higher quantities in the bay and that the species seemed
to have moved toward deeper waters due to an increase in
water temperatures (Rehren, 2017). While our model indicates a
positive relationship of L. fulviflamma distribution with depth,
temperature was not selected as a relevant predictor. Along
this line, other studies conducted in Tanzania mainland found
that depth best explained the size-frequency distribution of
L. fulviflamma among habitats (Kimirei et al., 2015) with
adult specimens found on deeper reefs (Kimirei et al., 2011).
Temperature, however, was selected as the main driver for
three of the other analyzed species, including S. ghobban, and
overall species density is also negatively related to temperature
in mangrove and mud/sand habitats of the bay (Lugendo et al.,
2007). Dorenbosch et al. (2005) found high juvenile densities
(>70%) and intermediate adult densities (30–70%) of S. ghobban
in seagrass meadows, likely explaining its high relative abundance
found in the central bay and in the south of the bay where
seagrass meadows occur.

Lethrinus mahsena, also found to be driven by seagrass cover,
is a generalist occurring in all habitats of the bay (Dorenbosch
et al., 2005) and is particularly associated with coral patches and
fringing reefs adjacent to seagrass beds (Gell and Whittington,
2002; Locham et al., 2010). This observation also matches our
findings that the most important driver of its abundance was
reef, followed by temperature and seagrass. Accordingly, areas of
high relative abundance of L. mahsena were found around coral
patches inside the bay, which are surrounded by large seagrass
meadows and at the fringing reef in the north of Uroa. High
relative abundances were also found in front of Marumbi village,
a fishing ground dominated by dense seagrass beds.

Little information was available for the other emperor species,
L. lentjan, which occurs in all habitats of the bay (Lugendo et al.,
2005). The adult part of the population mostly occurs around
the reef areas (Dorenbosch et al., 2005). Depth was the only
environmental predictor selected in our model and probably
explains the higher relative abundances in the north of Uroa and
the area around Michamvi.

While L. vaigiensis mainly occurs in seagrass beds
(Dorenbosch et al., 2005; Lugendo et al., 2005) and feeds
on seagrass plants (Gullström et al., 2011), our results showed a
slight negative relationship between seagrass cover and relative

abundance. Although these results seem counterintuitive,
Gullström et al. (2011) also found a negative relationship
between shoot density and the variability of juvenile and adult
density of L. vaigiensis. Fish assemblages in coral reef and
seagrass habitats in Kenya likewise showed a decrease in overall
density with increasing seagrass density (Chirico et al., 2017).
The authors argued that this relationship possibly arises due
to the reduced movement ability of fish in very dense and
relatively short seagrass beds. Stronger environmental drivers of
L. vaigiensis were depth and temperature in our models, which
probably explains its high relative abundance around the north
of Uroa and in the middle of the bay. Gullström et al. (2011)
also found temperature to be a driver for the abundance of
L. vaigiensis within different seagrass meadows in Chwaka Bay,
but not depth. The authors, however, mainly studied seagrass
meadows along the shore, which does not represent the full
range of depth in the bay, possibly explaining the differences in
our model results.

Potential Areas for Conservation
Spatio-temporal management is a key strategy to help mitigate
conflicts among fishers and protect essential habitats and target
species, without entirely depriving fishers of their economic basis
(Rassweiler et al., 2012; Kerwath et al., 2013; Sale et al., 2014;
Di Franco et al., 2016; Sala et al., 2021). In the WIO region,
the implementation of conservation areas has been a prime
management tool to reduce anthropogenic pressures (IUCN.,
2004). In this study, we identified areas of high relative abundance
of six key target species of the region to provide information for
the prioritization of such conservation areas.

The identified overlapping areas of high relative abundance
are in the north of Uroa, close to reef areas, and in front of
Marumbi village, dominated by seagrass meadows. Furthermore,
areas close to the patch reefs surrounded by seagrass meadows
inside the bay also showed higher relative abundances. Both
emperor species, the rabbitfish S. sutor, and the parrotfish
L. vaigiensis would benefit from the closure of fishing in the
selected areas. Except for Uroa, the identified areas do not
occur on the proper fringing reef that runs along the bay
opening. Although we use the analyzed WPUE values as a
proxy for relative abundance, the absence of high relative
abundances on the fringing reef is likely a mere reflection
of the distribution of effort: the exposure and deeper depths
at the fringing reef make it harder to fish with the main
fishing methods. However, the WPUE distribution pattern
indicates that proper reef areas with high coral cover are not
necessarily areas with the highest fishing pressure in small-
scale fisheries of the WIO region and that non-reef areas in
Chwaka Bay may be as suitable for spatio-temporal management
plans. These findings match the observation from de la Torre-
Castro et al. (2014) that seagrass meadows, and not reefs,
are the fishing grounds with the highest community benefits
for the fishers of Chwaka village. In the WIO region, spatial
management plans are often implemented to protect a specific
habitat (Turpie et al., 2000; Wells et al., 2007; Rocliffe et al.,
2014), which has led to the disproportionate representation of
coral reefs in marine conservation areas (Wells et al., 2007;
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de la Torre-Castro et al., 2014; Chirico et al., 2017). The need to
include seagrass meadows into fisheries management efforts has
not only been highlighted for the bay (de la Torre-Castro et al.,
2014) but globally (Unsworth et al., 2019).

Conservation areas are often selected without incorporating
fisher’s behavior in the implementation of spatio-temporal
management plans, which has led to weak compliance
(McClanahan et al., 2006; Rosendo et al., 2011) and reduced
benefits for fishing communities (Benjaminsen and Bryceson,
2012). For instance, Marine parks in Kenya have been established
with little consultation of fishing communities, and in Tanzania,
examples of opposing the enforcement of existing conservation
areas exist (Wells et al., 2007). This is surprising as fishers
have shown to possess strong ecological knowledge about their
target stocks (Silvano and Valbo-Jørgensen, 2008). Lopes et al.
(2018) have shown that fisher’s knowledge can even be reliable
enough for predicting species occurrence. These observations
are also reflected in our analysis: the two areas of high relative
abundance correspond to the areas that: (1) have been prioritized
by fishers for the dragnet free zone in front of Marumbi village
in 2001 (de la Torre-Castro and Lindström, 2010); and (2) have
been proposed as a potential no-take zone in the workshop of
2016 (Rehren, 2017). This study has been conducted to support
local spatio-temporal management actions with quantitative
information. In a series of upcoming participatory workshops,
the relative abundance maps with their associated uncertainties
will be used to effectively visualize and convey our key findings to
the local stakeholders. With these workshops, we aim to combine
short-term fisheries dependent data and fishers’ knowledge
to synthesize the most relevant information about the spatial
dynamics of Chwaka Bay’s fisheries and target resources and to
prioritize spatial management actions.

Potential and Limitations of the
Approach
In many small-scale fisheries, dependence on resources for
livelihood and protein supply is high, making their sustainable
management particularly important (Belhabib et al., 2015; Teh
and Pauly, 2018; Loring et al., 2019; Salas et al., 2019).
Appropriate management plans are, however, impeded by the
notorious lack of data (Salas et al., 2007; Salayo et al., 2008;
Samoilys et al., 2015). Fisheries independent surveys are often
cost-intensive and visual census data collected around Zanzibar
are spatially limited and only represent a temporal snapshot
(Rehren et al., 2020). Fisheries catch information, on the other
hand, is collected throughout the WIO region at a subset of
landing sites (UNEP-Nairobi Convention and WIOMSA, 2015)
and thus becomes the most cost-effective and accessible source
of information when evaluating the spatio-temporal dynamics
of target resources. Suppose that fishers’ catches represent
thousands of sampling observations (García-Quijano, 2007) and
those fishers use multiple gears catching a multitude of species.
In that case, it can be argued that fisheries catches as a whole
might better reflect species relative abundance than spatially
and temporally limited visual census data. Bayesian hierarchical
modeling approaches can better handle problems associated with

this data, such as spatial dependencies and the fisher effect,
through their direct incorporation in the model formulation
(Banerjee et al., 2004; Pennino et al., 2019).

Our analysis shows that a large part of the variance
was explained by the random effect terms highlighting the
importance of spatial dependencies and effects stemming from
the use of different gears, boats, and propulsions. The latter
effect is very high, suggesting that Chwaka Bay’s fisheries might
be better managed based on fishing units. This requires flexible
and adaptive management approaches tailored around the
dynamic behavior of fishers in space, time, and fishing methods.
A clear benefit of Bayesian models in data-poor situations is
the provision of uncertainty associated with the data and the
parameter estimates (Banerjee et al., 2004; Fonseca et al., 2017).
This is particularly important when the stakes are high, as is
the case in small-scale fishing communities. Our analysis shows
that the uncertainties associated with our results are relatively
high, particularly for the areas in the south and the north of the
bay. A central issue associated with fisheries-dependent data is
that fishers have prior knowledge of the probability of catching
their target species at a given location leading to sampling bias.
Furthermore, in our case study, greater depths and the presence
of hard corals make fishing harder for dragnet fisher, lowering the
number of observations at the fringing reef. Our approach does
not account for such sampling bias in the data, which might have
influenced the identification of the high relative abundance areas.
Another limitation is the difficulty in obtaining a precise geo-
localization of the catch in tropical, small-scale fisheries because
of the large number of vessels, their dynamic behavior, and the
lack of technical equipment. Usually, the spatial location of the
catch is associated with a fishing ground name and mapped
subsequently, or the fishing ground location is identified on a
map by the fisher. These procedures reduce the spatial precision
of the catch and can mislead inference. The observation that
our model selects the same area for conservation as fishers
did during the participatory workshop in 2016 (Rehren, 2017)
increases the confidence in our model results. It must be noted
that these action plans were formulated and discussed with a
limited number of fishers. A comparison of our results with
information from ecological studies about the habitat preference
and ecology of four of the analyzed species also suggests that
our approach predicts the distribution of the analyzed species
reasonably well. For the remaining two species (i.e., S. ghobban,
L. lentjan), not enough information was found to evaluate our
models properly. For S. sutor, it is likely that we missed to
include the distribution of macroalgae in the bay as a predictor
variable because S. sutor grazes on epibenthic algae and feeds on
macroalgae thalli (Ebrahim et al., 2020b). But it is also possible
that the spatial change in environmental or habitat variables in
the bay is not strong enough to significantly affect S. sutor’s
distribution because the area is relatively small and S. sutor’s
mobility is relatively high. Salinity and primary productivity
are other predictors that have been identified to drive species
distribution (Roos et al., 2015; Gonzáles-Andrés et al., 2016; Coll
et al., 2019). Studies from the bay, however, suggest that salinity
is not a driver of fish density (Lugendo et al., 2007) and that
habitat variables generally are more important predictors for fish
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assemblages and abundance (Gullström et al., 2008; Mwandya
et al., 2010).

Information on environmental drivers at a high-resolution
scale is often lacking, making it difficult to model the distribution
of resources in small fishing areas such as Chwaka Bay.
We used data collected by the first author about depth and
habitat variables and interpolated them to get an estimate
at all fishing grounds. Thereby, we did not consider the
uncertainty associated with the covariate estimations, which
can cause erroneous inference and a biased estimate of the
covariate effect (Martínez-Minaya et al., 2018). Consequently,
we compared models with and without the interpolated data:
while some species had similar spatial random effect maps,
for other species using the non-interpolated data resulted
in peaks or throughs at missing locations (Supplementary
Figure 4). In other words, including only a subset of the
data would have resulted in misidentifying areas of high
relative abundance. Ideally, information on environmental
covariates should be available at all fishing grounds to avoid
potential misalignment.

Areas prioritized by the fishing community or the approach
used here may not be sufficient to achieve ecological objectives.
The structural complexity of seagrass meadows in the bay, for
instance, is an important factor that can drive fish abundance
(Gullström et al., 2008) and habitats often function together
with surrounding habitats determining fish composition through
seascape structure (Berkström et al., 2012). Furthermore, the
areas prioritized by the Chwaka Bay fishers are relatively
small, while large marine protected areas are associated with
higher success, particularly when protecting highly mobile
species (Claudet et al., 2008; Vandeperre et al., 2011; Edgar
et al., 2014; White et al., 2017). But it has also been
shown that small community-based marine protected areas
established in coral reef developing nations may nonetheless
be highly successful (Ban et al., 2011; Chirico et al., 2017).
In the long-term such conservation efforts need to be
scaled up to regional or national levels to achieve the

ecological principles of complementarity, representativeness, and
connectivity (Ban et al., 2011).
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