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How top predators behave and are distributed depend on the conditions in their
marine ecosystem through bottom−up forcing; this is because where and when these
predators can feed and spawn are limited and change often. This study investigated
how the catch rates of immature and mature cohorts of bigeye tuna (BET) varied across
space and time; this was achieved by analyzing data on the Taiwanese longline fishery
in the western and central Pacific Ocean (WCPO). We also conducted a case study
on the time series patterns of BET cohorts to explore the processes that underlie the
bottom-up control of the pelagic ecosystem that are influenced by decadal climate
events. Wavelet analysis results revealed crucial synchronous shifts in the connection
between the pelagic ecosystems at low trophic levels in relation to the immature BET
cohort. Many variables exhibited decreasing trends after 2004–2005, and we followed
the Pacific Decadal Oscillation (PDO) as a bottom-up control regulator. The results
indicated that low recruitment into the mature cohort occurs 3 years after a decrease in
the immature cohort’s food stocks, as indicated by a 3-year lag in our results. This finding
demonstrated that, by exploring the connection between low-trophic-level species and
top predators at various life stages, we can better understand how climate change
affects the distribution and abundance of predator fish.

Keywords: bottom−up forcing, climate change, bigeye tuna, Pacific Decadal Oscillation, spatiotemporal age
structure, marine ecosystem

INTRODUCTION

Changes, anomalies, and oscillations in the climate affect numerous ecological processes in marine
ecosystems, which in turn strongly affect the abundance and distribution of top predators, such
as tuna, in the ocean (Langley et al., 2009; Syamsuddin et al., 2013; Goñi et al., 2015; Lan et al.,
2019). Therefore, biological and oceanographic information concerning top predators can aid
the management of fishery resources and fishing operations (Damalas and Megalofonou, 2012;
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Nieto et al., 2017). Previous studies have focused on the
implications of thermal tolerance and on the environmental
factors that limit the area over which top predators are
distributed, doing so by using species distribution models
and data from fisheries (Figure 1A). The availability of
oceanographic and biological information can help parameterize
the environmental characteristics that influence the range,
habitats, and biology of the species of interest (Lehodey et al.,
2010; Senina et al., 2020).

At present, we have a poor understanding of the climate
change-induced processes that alter the distribution of top
predators, particularly in terms of amplitude and lagged processes
(Corbineau et al., 2008; Hsieh et al., 2008; Botsford et al., 2011;
Lan et al., 2013, 2019; Nieto et al., 2017). These processes
have been difficult to determine because fluctuations in top
predator populations are explained by a non-linear combination
of factors (environmental and otherwise) rather than a single
factor; these factors pertain to, for example, fishing efforts,
targeting practices, and fleet dynamics (Hsieh et al., 2008; Tu
et al., 2018). Furthermore, the high mortality rates of mature
fish are caused by factors (e.g., exploitation) that can ultimately
alter how fish populations respond to their physical environment
(Rouyer et al., 2012; Tu et al., 2018).

The movements and distributions of top predators are
conditioned through bottom−up processes and through direct
environmental effects (e.g., physiological tolerance to anoxia
and thermal preferences). Time lag results elucidate the
delay in the response of a dependent variable to a stimulus
(Borges et al., 2003). The time and area strata that are
favorable for spawning and feeding are limited and variable
(Fonteneau and Soubrier, 1996; Fonteneau et al., 2008).
Therefore, changes in species density occur after fluctuations
in the dynamics of an interacting species or of a limited
resource (Borges et al., 2003). Thus, most tuna species
develop thermoregulation capabilities, and the efficiency of
thermoregulation is variable and dependent on size (Holland
et al., 1992; Fonteneau and Soubrier, 1996). Tropical-temperate
tuna species [e.g., bigeye tuna (BET)] and temperate tuna
species (e.g., bluefin tunas) migrate extensively between their
spawning areas and feeding grounds (Fonteneau and Soubrier,
1996; Fonteneau et al., 2008). Specifically, the growth and
survival rates of juvenile and immature cohorts depend on
mechanisms that control the local food supply within their
favored habitats (Bakun, 2006). Thus, through understanding
how low-trophic marine ecosystems relate to each life stage
of top predators, we can better understand how climate
change influences the distribution and abundance of top
predators (Figure 1B).

Although predictions of the climate change-induced habitat
shifts of top predators have improved, the abundance and
distribution of top predators at each life stage in marine
ecosystems remain relatively unknown. This study used BET as
a case study. BET has a lifespan of >10 years; the age at first
maturity is 2–3 years, and spawning occurs in warm tropical
waters (Lehodey et al., 2010). Based on Taiwanese longline fishery
data, this study investigated the temporal and spatial variations in
the fishing grounds and catch per unit effort (CPUE) of immature

and mature BET cohorts in the western and central Pacific Ocean
(WCPO, the area west of 150◦W).

In the North Pacific Ocean, BET primarily preys on organisms
in the fish and squid taxa (Ohshimo et al., 2018). Thus, we first
analyzed the long-term data on the crucial pelagic species of
Pacific saury and neon flying squid (trophic level: 2–4); second,
we determined the abundance of eggs and larvae for these species
(trophic level < 2). Wavelet analysis is a common tool for time
series analysis, and it involves decomposing a time series into
time and frequency components; this helps the analyst to identify
the dominant periodic components and to determine how these
components vary over time (Torrence and Compo, 1998; Wu
et al., 2020). Specifically, in this study, we used wavelet analysis to
further explore the processes underlying the bottom-up control
of the pelagic ecosystem, where these processes are influenced by
decadal climate events in the WCPO.

MATERIALS AND METHODS

Fishery Data and Age Structure of
Bigeye Tuna
We analyzed 1994–2014 data from the logbooks of Taiwanese
longline fleets, which were provided by the Overseas Fisheries
Development Council of the Republic of China. The fishery
data, which were recorded in 5◦ spatial grids, pertained to
fishing effort (indicated by number of hooks), fishing date, catch
amount (number of fish caught for each species), and fork length
(randomly sampled and measured in centimeters). However, fork
length had fewer data points (<3000 fish) with a lower spatial
coverage for before 2002; the number of data points was >104

fish caught during 2002–2014. Thus, the 2002–2014 fork length
data were used to estimate the mean values of fork length by age.

The flowchart in Figure 2 illustrates how we processed the
fishery and age structure data. The fork length at maturity is
defined as the length at which 50% of females are mature (L50),
which for BET in the WCPO is estimated to be 103 cm (Farley
et al., 2017). We therefore distinguished immature (<103 cm)
from mature (≥103 cm) cohorts and calculated the monthly
percentages of immature and mature cohorts in each grid.

The catch numbers of the two cohorts by species were
weighted by the spatial distributions of catch data. To better
understand the spatial distribution of the fishery and the
associated variability, we estimated the nominal CPUE to be the
number of fish captured per 1000 hooks (individuals/103 hooks);
subsequently, we determined the gravitational center of CPUE
(G) based on the nominal CPUE and seasonal location of fishing
vessels (L) through the following formula.

Glatitude =

∑
Li × nominal CPUEi∑

nominal CPUEi
(1)

Glongitude =

∑
Lj × nominal CPUEj∑

nominal CPUEj
(2)

where i and j denote the latitude and longitude, respectively, of
individual fishing locations in the 5◦ grid.
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FIGURE 1 | Flow of data processing and analyses used in (A) Species distribution models and (B) Ecosystem bottom-up control models to understand the influence
of climate change on top predators.

FIGURE 2 | Flow chart of processing and analysis of fishery and age structure data.
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Standardization of Nominal CPUE
The nominal CPUE had to be standardized because it can vary
substantially in time and space with respect to targeting practices,
such as the targeting of albacore or BET by fishers, which is
principally driven by market trends and gear efficiency (Lan
et al., 2013; Wu et al., 2020). We standardized the nominal
CPUE values of BET cohorts by using generalized linear models
(GLMs). The main variables were temporal (year and month)
and spatial (longitude and latitude) variables, the catch rates of
albacore, and interaction terms for two covariates. The GLMs had
the following general form:

Log (CPUE + c) = µ + year + month + latitude+

longitude + albacorecatchrates+ Interactions+ ε (3)

where CPUE is the nominal CPUE (individuals/103 hooks) of
BET cohorts, µ is the intercept, and ε is a normally distributed
variable with a mean of 0. Because the log-link function cannot
handle zeros, 10% of the overall mean of nominal CPUE was
added before the logarithm function to ensure that the result
was a rational number (Lan et al., 2013; Wu et al., 2020). The
best model was selected based on the residual deviance, and the
Akaike information criterion decreased as more variables were
added. Time and location were treated as interaction terms to
account for possible monthly and interannual variability driven
by climatic variations in the spatial distribution of BET cohorts.
Furthermore, in our analyses, we used generalized additive
models (GAMs) to investigate the effects of the interaction terms;
GLMs and GAMs were executed in R (Version 2.15.0) using the
mgcv package.

Data From Purse Seine, Pacific Saury,
and Neon Flying Squid Fisheries and on
Egg and Larva Abundance
The immature cohort of BET in this study was also identified
from surface schools with other tuna species (e.g., skipjack and
yellowfin tuna) that were caught using purse seine nets (Lehodey
et al., 2010; Ducharme-Barth et al., 2020). Although this cohort
is essentially a bycatch of BET in purse seine fisheries, the
catch volume was substantial at approximately the same order
of magnitude as that for longline fisheries, and the fish that
were caught were mainly from the immature cohort of BET
(Ducharme-Barth et al., 2020). Thus, we further downloaded
1995–2016 purse seine fishery data from the Western and Central
Pacific Fisheries Commission website. The technology behind
fixed and free-floating fish aggregation devices has continually
improved; they have influenced the behavioral and movement
patterns of juvenile and small-size tuna (Leroy et al., 2013).
Therefore, BET abundance may be more accurately indicated
by BET catch rates as obtained from natural logs. Thus, the
natural-log schools of BET were selected, and the catch rates were
calculated in terms of the weight of fish captured daily (tons/day);
this revealed the time series patterns of the immature cohort.

Fisheries data of neon flying squid were downloaded from the
website of the North Pacific Fisheries Commission1. The 1995–
2016 Japanese fishery data used in this study were included the
number of vessels, fishing days, fishing areas (west and east of
170◦E and the northwestern Pacific Ocean), and catch (measured
in metric tons). We calculated the average annual catch rates
of neon flying squid in the North Pacific Ocean. As shown in
Figure 3B, the biomass of Pacific saury in the North Pacific Ocean
of this study was obtained from the fourth meeting report of
the technical working group assessing the stock of Pacific saury
(Figure 3A of NPFC, 2019).

Data on the abundance of eggs and larvae were for
ichthyoplankton biomass; these data were gathered by a
group dedicated to studying coastal and oceanic plankton2.
The CalCOFI dataset was established through long-term and
uninterrupted sampling of larvae and eggs in the region bounded
by 20◦N–51◦N and 106◦W–146◦W.

Interannual and Decadal Climatic
Variability Indices
The El Niño/Southern Oscillation (ENSO) and Pacific Decadal
Oscillation (PDO) are well-known and dominant manifestations
of interannual and decadal global climate change that develop
from air–sea interactions in the Pacific Ocean (Mantua and Hare,
2002; Bell et al., 2011). In this study, the ENSO was represented by
the Oceanic Niño Index (ONI) and was estimated by a 3-month
running mean of sea surface temperature anomalies in the Niño
3.4 region (5◦N–5◦S, 120◦W–170◦W) between 1986 and 2015.
The ONI is the most common index for measuring and defining
El Niño and La Niña events, and other indices (e.g., Niño 1 + 2,
3, and 4) can verify whether these periods are accompanied by
features that are consistent with a coupled ocean–atmosphere
phenomenon (Glantz and Ramirez, 2020). This study represented
the PDO by the first empirical orthogonal function (EOF1) in an
analysis of temperature anomalies in the detrended sea surface
north of 20◦N in the Pacific Ocean (Mantua and Hare, 2002), and
data on the PDO data were downloaded from the NOAA Earth
System Research Laboratory.

Cross-Wavelet Coherence and Phase
Analyses
This study used wavelet analysis to investigate how
environmental variations caused by the interannual and decadal
climate events of the ENSO and PDO affected the temporal
standardized CPUE of immature and mature cohorts. Fourier
spectral analysis is commonly used to analyze periodicities in
time series data, but this approach assumes that the time series
is stationary. The time series of climatic indices and fishery data
were not stationary. Thus, we used wavelet analysis because
it requires no such assumption (Wu et al., 2020). The wavelet
transformation is based on a convolution between a time series yn
(n = 0,. . ., N − 1, with equal spacing δt) and a wavelet function.
The Morlet wavelet is the most popular complex wavelet used in

1https://www.npfc.int/summary-footprint-squid-fisheries
2https://www.st.nmfs.noaa.gov/copepod/
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FIGURE 3 | Annual (thin dotted line) and 3-year mean (thick solid line) trends of the pelagic ecosystem for species with low trophic (<2) to high trophic (>4) levels as
influenced by PDO in the WCPO. (A) Abundance of eggs and larvae, (B) biomass of Pacific saury, (C) catch rates of neon flying squid, (D) catch rates of nature-log
schools of BET caught in purse seine nets, and (E,F) standardized CPUE anomaly of immature and mature cohorts of BET. The dashed lines in (A–E) indicate that
the phases have significant correlations with the interannual pelagic ecosystem and PDO in a Pearson’s test.

practice and is defined as

ψ0(η) = π−1/4eiω0ηe−
1
2 η2

(4)

where η is a dimensionless time parameter and ω0 is a
dimensionless frequency used to balance time and frequency
localization. The wavelet transform of yn is

Wy
n(s) =

√
δt
s

N∑
n′=1

yn′ψ0

[
(n′ − n)

δt
s

]
(5)

where s is a scale such that η = st. By varying s, the wavelet
is extended through time. A 5% significance level was set
based on 1000 bootstrap simulations with a spectral synthetic
test (Rouyer et al., 2008). The autoregression coefficient was
empirically obtained from the time series data. Subsequently,
cross-wavelet coherence and phase analyses were used to
investigate the relationships between PDO events and the pelagic
ecosystem in the WCPO.

Cross-wavelet coherence and phased analyses represent cross-
correlations normalized to the power of a single process and
are thus not biased by the power of any single series (Grinsted
et al., 2004). We defined the cross-wavelet transformation of the
two series xn and yn to be WXY

=WXWY∗ , where ∗ denotes a
complex conjugation. The wavelet coherency was defined as

R2
n(s) =

∣∣S(s−1WXY
n (s))

∣∣2
S(s−1(WX

n(s))2 · S(s−1WY
n(s))2 (6)

where S is a smoothing operator determined based on a
running average.

The wavelet coherency phase is

φn(s) = tan−1

(
Imaginary

{
S
(
s−1WXY

n (s)
)}

Real
{

S(s−1WXY
n (s))

} )
(7)

where both R2
n(s) and ϕn(s) are functions of the time index

n and scale s. Torrence and Compo (1998) and Grinsted
et al. (2004) have detailed the mathematics underlying this
analysis. The wavelet transform has edge artifacts because
the wavelet is not completely localized in time, and the
finite nature of such images gives rise to edge artifacts
in the reconstructed data. Therefore, a cone of influence
can be introduced where edge effects cannot be ignored
(Grinsted et al., 2004).

RESULTS

Distribution of Immature and Mature BET
Cohorts
The catch percentage of the Taiwanese longline fisheries in the
WCPO indicated that most BET catches were from the mature
cohort (approximately 81%, Figure 4A). The immature cohort
comprised approximately 18–35% of the total catch between
2002 and 2006, and this proportion decreased to approximately
8% in 2009. To combine the spatiotemporal length–frequency
and logbook data for 5◦ spatial grids (Figures 4B–D), we
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FIGURE 4 | (A) Annual trends of BET catch percentage for various age ranges. Spatial distributions of (B) Catch percentage of BET for various age ranges,
(C) Nominal CPUE of BET, and (D) Effort in 5◦ spatial grids during the entire study period.

FIGURE 5 | Seasonal spatial distributions of average nominal CPUE in 2002–2014 for (A) Immature and (B) Mature BET cohorts. Seasonal gravitational center
positions over years of the catch rates (quarters 1–4) in each year for (C) Immature and (D) Mature BET cohorts in the WCPO.

further calculated the distribution and gravitational center
positions of the nominal CPUE of immature and mature cohorts
(Figure 5). The seasonal spatial distribution suggested that
the immature cohort was concentrated in subtropical waters

(20◦N–30◦N) during the first quarter before gradually moving
southward to tropical waters (Figures 5A,B). The mature
cohort was concentrated in tropical waters throughout the year
(Figures 5C,D).
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TABLE 1 | GLM, residual deviance, approximate Akaike information criterion, and
p-values for GAM models of immature and mature cohorts of BET in the WCPO.

Residual deviance t-Value AIC p-Value

Immature

Year 9194 −7.29 17839 <0.05

Month 9101 4.18 17788 <0.05

Latitude 9101 5.49 17790 <0.05

Longitude 9099 5.67 17791 <0.05

Albacore catch rate 8833 13.07 17633 <0.05

Year*Latitude 8707 −5.67 17562 <0.05

Month*Latitude 8477 −12.81 17424 <0.05

Latitude*Longitude 8272 11.40 17229 <0.05

Mature

Year 6577 −6.17 16081 <0.05

Month 6331 9.40 15884 <0.05

Latitude 6311 8.23 15869 <0.05

Longitude 6179 20.17 15761 <0.05

Albacore catch rate 6178 0.21 15762 0.33

Year*Latitude 5937 −8.57 15553 <0.05

Month*Latitude 5909 −10.23 15531 <0.05

Latitude *Longitude 5460 20.73 15120 <0.05

Time Series Analysis of the Standardized
CPUE of BET and Climate Events
Before the time series analysis was conducted, nominal CPUE
values were standardized by using GLM; the model selection
criteria are shown in Table 1. The selection of GLMs for
analysis revealed that temporal factors, spatial factors, and
the two interaction terms of (1) latitude with year and (2)
month with longitude were significant for the immature and
mature cohorts. However, the catch rate of albacore was not
significant for the mature cohort. Furthermore, the deviance
explained by the selected GAMs was 46.40 and 71.70% for
the immature and mature cohorts, respectively. The results for
the interaction terms in the GAM indicated that the immature
cohort had a high CPUE in tropical and subtropical waters
(Figure 6A, 20◦S–40◦N, 160◦E–160◦W) during the first half of
the year (Figure 6B). However, the CPUE decreased after 2006
in subtropical waters (Figure 6C). The mature cohort tended
to have a high CPUE in tropical waters (Figure 6E, 20◦S–
20◦N, 160◦E–110◦W) throughout the year (Figure 6F), but the
CPUE also decreased after 2009 in tropical and subtropical
waters (Figure 6G). In addition, the standardized CPUE of
both the mature and immature cohorts decreased over time
in subtropical waters (north of 20◦N) after 2006 and 2009,
respectively (Figures 6D,H).

By using state-space time series analysis and a single
decomposition procedure, we removed seasonality from the time
series dataset, which comprised data on climatic indices and
data from the standardized CPUE dataset. The cross-wavelet
coherence results indicated a significant positive correlation (in-
phase arrows in Figure 7) between standardized CPUE and
ONI in both cohorts, with periodicities of approximately 2 years
during 2002–2006 and 2010–2014 (Figures 7A,B). Standardized

CPUE was significantly and positively related to PDO in the
immature cohort throughout the study period (Figure 7C);
however, it was negatively correlated with PDO (out-of-phase
arrows in Figure 7), with intermittent periodicities, in the mature
cohort (Figure 7D).

Bottom-Up Control of the Pelagic
Ecosystem Under the Effects of Decadal
Climate Events
The wavelet analysis results highlighted the different periodicities
between BET cohorts and PDO. The catch rate of natural-
log schools of BET was also strongly positively correlated with
PDO, with a periodicity of approximately 8 years between
1995 and 2014 (Figure 8A). The GAM results revealed that
the standardized CPUE of both mature and immature cohorts
decreased over time in subtropical waters (north of 20◦N) after
2006 and 2009, respectively. The food web was affected by
bottom-up climate change through changes in physical factors.
Thus, the abundance of the BET prey of Pacific saury and neon
flying squid (trophic level: 2–4) and the abundance of their
eggs and larvae (trophic level < 2) in the region north of 20◦N
were selected for further analysis. Wavelet analysis was used to
further investigate the effects of PDO on the abundance of neon
flying squid, Pacific saury, eggs, and larvae in the WCPO. Strong
positive correlations were identified between the abundances of
eggs and larvae, Pacific saury, and PDO, with periodicities of
approximately 8 years between 1995 and 2014 (Figures 8B,C).
Moreover, the time lags were observed between the abundances
of neon flying squid and PDO with 1–2-years (Figure 9A), and
also had periodicities of approximately 8 years between 1995 and
2014 (Figure 8D). The evolution of the abundances of eggs and
larvae, Pacific saury, and neon flying squid, with a 1–2-year lag,
were similar to that of PDO (Figures 3A–C). The catch rate of
natural-log schools of BET caught by purse seine nets decreased
from 1998 to 2004, as did the PDO (Figure 3D). The standardized
CPUE anomaly of immature cohorts decreased from 2004 to
2012 (Figure 3E), and that of mature cohorts increased from
2003 to 2008 before decreasing from 2009 onward (Figure 3F).
The annual values of standardized CPUE in the immature cohort
evolved in a similar manner as the abundances of eggs and larvae,
Pacific saury, and neon flying squid and the catch rate of BET
caught by purse seine nets. In general, the values of the variables
increased from 2000 to 2004 and decreased thereafter until 2012
(Figure 3). Furthermore, the mature cohort had a standardized
CPUE anomaly that lagged behind that in the immature cohort
by 3 years (Figure 9B).

DISCUSSION

Bigeye tuna is a highly valuable species that faces overfishing
pressure because of the prevalence of longline subsurface fisheries
and because BET is a bycatch of purse seine surface tuna fisheries
(Lehodey et al., 2010). Catch rate and fork length data for
the 2002–2014 period from Taiwanese longline fleets were used
in this study. The Taiwanese longline fleet began operating in
the mid1960s and mainly targeted the albacore in the south
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FIGURE 6 | GAM results for the effects of three interaction terms, namely (A,E) Longitude with latitude, (B,F) month with latitude, and (C,G) Year with latitude, on
CPUE for immature (A–D) and mature (E–H) BET cohorts. Quarterly standardized CPUE in the subtropical (black line) and tropical (gray line) WCPO for (D) Immature
and (H) Mature BET cohorts.

FIGURE 7 | Cross-wavelet coherence between monthly standardized CPUE of (A,C) Immature and (B,D) Mature BET cohorts with ONI and PDO from 2002 to
2014. Black solid contours enclose regions with > 95% confidence, and the black line indicates areas where edge effects are significant. High and weak variabilities
are represented by red and blue colors, respectively. Arrows indicate the phase relationships, with in-phase arrows (positive correction) pointing to the right and
out-of-phase arrows (negative correction) pointing to the left.

Pacific Ocean. The historical catch information and logbook
data for Taiwanese longlines in the Pacific Ocean have been
available since 1964, and the spatiotemporal length-frequency
data have been available since 1981 (Wang et al., 2009). Since the
late 1990s, many Taiwanese longline fleets have been equipped
with supercold storage equipment and have targeted BET and

yellowfin tuna using deep longlines (Lan et al., 2012b; Wu et al.,
2020). The development of BET fisheries through the use of deep
longline vessels since 2002 has resulted in more catches, and the
annual length-frequency sample sizes of the data increased from
approximately 500–3000 fish before 2000 to more than 104 fish in
recent years (Wang et al., 2009). This meant that before 2002, the
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FIGURE 8 | Cross-wavelet coherence between (A) Catch rates of nature-log schools of BET caught using purse seine nets, (B) Abundances of eggs and larvae,
(C) Biomass of Pacific saury, and (D) Catch rates of neon flying squid influenced by PDO from 1996 to 2014. Refer to Figure 7 for additional details.

FIGURE 9 | Cross-correlation function between (A) Annual catch rates of
neon flying squid and PDO in 1996–2014 and (B) Annual standardized CPUE
of immature and mature cohorts of BET in 2002–2014. Two red dotted lines
represent the limits of significance at the 5% level.

data only revealed sporadic and incomplete information on the
spatiotemporal distribution of BET cohorts.

Large-scale migration frequently occurs between spawning
and feeding grounds, covering hundreds or thousands of miles,
as has been clearly demonstrated for BET in the Atlantic Ocean
and Pacific Ocean (Fonteneau and Soubrier, 1996; Hallier et al.,
2005). We combined spatiotemporal data from the Taiwanese
longline fishery with data on fork length, which had a spatial
resolution of 5◦. We noted that for the immature cohort, a
region with high CPUE values moved southward from temperate
to tropical waters during the first quarter of each year; such
southward movement was also noted in the WCPO more
generally. BET caught using purse seine nets were also mainly
from the immature cohort in the tropical waters of the Pacific
Ocean. Mark-and-recapture data revealed that the BET migration
differed depending on the age group and ranged from 1000 to
3000 nautical miles (Schaefer et al., 2015). BET is highly prone to
year-round migration and spawning in tropical waters (Miyabe,
1994). The GAM results also showed that CPUE tended to
be high for the immature cohort in tropical and subtropical

waters and high throughout the year for the mature cohort in
tropical waters.

However, Schaefer et al. (2015) analyzed extensive tagging
data and observed that the movement of immature BET was
constrained latitudinally in the equatorial central Pacific Ocean,
rarely extending to higher latitudes. To further investigate how
BET migrated across its life cycle in the WCPO, we overlaid
the distributions of the immature and mature cohorts from the
longline fishery data of this study and the distributions of larvae
and adult habitats, as reported by Reglero et al. (2014), on top
of the major surface currents in the tropical and subtropical
Pacific Ocean (Figure 10). The immature and mature cohorts
were observed across the equatorial Pacific Ocean with respect
to the equatorial current system (Figure 10, mature cohort and
adult habitat). The equatorial current system is the foundation
for the highly productive equatorial upwelling that supports high
concentrations of mesopelagic fish, cephalopods, and crustaceans
(Schaefer et al., 2015).

In addition, the immature cohort was found to have a high
CPUE in subtropical waters Tuna larval habitat is related to
the occurrence of mesoscale oceanographic activity (Bakun,
2006). BET larvae were present in the tropical WCPO along
the Kuroshio current to the Japanese coast (Reglero et al.,
2014). We further speculated that equatorial counter currents
transport the eggs and larvae of BET to the eastern and western
coastal waters and then to the temperate waters in the north
(Figure 10, larva habitat and immature cohort). Studies have
suggested that BET caught in tropical Pacific waters tend to
be more sexually mature than those encountered in temperate
waters. Because temperate waters are too cold, BET in these
regions may not reach sexual maturity or their gonads may not be
ready for reproduction (Miyabe, 1994). Fronts are narrow bands
with horizontal gradients that indicate regions demarcated by
physical, chemical, and biological differences, which can be used
to divide the ocean into various water masses; predators aggregate
around the fronts where their preferred prey gather (Olson et al.,
1994; Lan et al., 2012a). Further studies that consider oceanic
fronts as aggregating mechanisms and as mechanisms that limit
the distribution of BET cohorts will further elucidate the factors
influencing the spatial distribution of BET in the WCPO.

El Niño/Southern Oscillation events are associated with
changes in the equatorial trade winds and the corresponding
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FIGURE 10 | Distribution of the immature and mature cohorts of BET (black slash line and yellow grids) revealed in this study and the larva and adult habitats (red
slash line and green grids) revealed by Reglero et al. (2014) overlaid with the major surface currents (blue lines) in the tropical and subtropical Pacific Ocean. The red
and brown ellipses indicate the possible nursing, spawning, and feeding grounds for different life stages of BET.

major currents in the basin, resulting in shifts in the equatorial
warm pool region (Izumo et al., 2010; Bell et al., 2011). The
effects of ENSO-related changes in thermal structure have
been clearly associated with the vertical extension of the tuna
habitats in the Pacific Ocean (Lehodey et al., 2010; Bell et al.,
2011, 2013). The PDO, the most prominent decadal variability
in the North Pacific Ocean, is characterized by a horseshoe-
shaped pattern in sea surface temperature anomaly (Li et al.,
2020). The PDO has changed its phase several times since the
1900s, and these regime shifts substantially influence current,
temperature, and primary production. Consequently, epipelagic
forage controls the habitats and dynamics of larvae and juvenile
organisms (Miller and Schneider, 2000; Newman et al., 2016).
The immature BET cohort was found in surface schools with
other tuna species; adult fish explore deeper layers where they can
find mesopelagic prey species (Lehodey et al., 2010). Thus, this
substantial oceanographic phenomenon likely induced changes
in positions and thermal environments in the subtropical fronts,
which would have affected the migrations of the forage that
immature BET cohort prey on; these prey include mesopelagic
fish, such as Pacific saury and neon flying squid.

Because of the fluctuating global mean temperature, the phase
shift of the PDO at the end of the 20th century has been
considered an influential factor affecting the recent hiatus in
surface warming (Kosaka and Xie, 2013; Li et al., 2020). However,
the planet’s warming climate has shortened PDO periodicity
because of the acceleration of Rossby waves and the decrease
in PDO amplitude through a reduction in its development time
(Li et al., 2020). The changes in the abundances of Pacific saury
and neon flying squid revealed an interannual-decadal pattern
of variation with regime shifts in large-scale climatic indices
(Igarashi et al., 2017; Yu et al., 2017; Liu et al., 2019). The PDO
may be a major factor for differentiating physical processes and
subsequent responses in the zooplankton community structures
(Chiba et al., 2015). The copepod community size has increased
after 2006 and 2007 in the North Pacific Ocean because of

the increased dominance of large cold-water species (Chiba
et al., 2015). Olson et al. (2014) revealed a major decadal-
scale dietary shift in yellowfin tuna over a broad region of the
eastern Pacific Ocean, suggesting that more broad-scale food
web changes had occurred in lower trophic levels in the 2000s
than in the 1990s. The stock assessment estimates provided by
Ducharme-Barth et al. (2020) also indicated a decrease over time
in estimated spawning potential and in the recruitment of BET
within the WCPO.

The present results also revealed crucial synchronous shifts
in the effect of the pelagic ecosystem at low trophic levels on
the immature BET cohort (including the nature-log schools
of BET caught by purse seine), with a decreasing trend after
2004–2005 caused by the PDO. The results suggested that the
PDO’s decadal climate index affected the pelagic ecosystem
due to the low trophic levels of eggs and larvae; this effect
has progressed to small pelagic fish, cephalopods, and the top
predators of the immature BET cohort, acting as a bottom-
up control regulator. The feeding habits of BET also revealed
that larger BET preyed on larger fish—their prey ranged from
the smaller Eucleoteuthis luminosa to the larger Magnisudis
atlantica—and indicated ontogenetic shifts in the feeding habits
of BET in the North Pacific Ocean (Ohshimo et al., 2018).
Thygesen et al. (2016) also suggested that BET diving behavior
while foraging varied with body size due to ontogenetic changes
in physical and physiological characteristics (e.g., swimming
speed and the development of endothermy). Furthermore, in
the WCPO, the decrease in food stocks for the immature BET
cohort may have decreased recruitment into the mature cohort
after 3 years, as indicated by the 3-year lag in our results. This
finding confirmed that the age structure of top predators can
be critical for predicting the responses of populations to species
interactions at both the micro and macro ecological scales under
the influence of climate change. Declines in the abundance of
forage fish resulting from heavy fishing pressure and changes
in the marine environment have been observed worldwide
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(Olson et al., 2014; Madigan et al., 2016; Liu et al., 2019), and an
understanding of predator–prey relationships has become crucial
to managing fisheries.

Bigeye tuna recruitment may occur throughout the year
because individual fish can spawn almost every day if the marine
environment (e.g., water temperatures) is suitable (Kume, 1974).
However, variability in early growth influences the stage at
which young fish are vulnerable to predation, which, in turn,
influences the accumulated mortality during early life stages
and recruitment to the population (Houde and Hoyt, 1987).
The present study did not apply complex ecosystem models in
response to the general concern regarding the combined effects
of fishing and climate. Instead, the actual spatial distribution
of the age structure of BET was used to investigate the
time series relationship between the pelagic ecosystem and
decadal climatic index in the potential BET nursing ground.
When analysts assess the impact of climate change, because
of computational constraints, they typically use ecosystem
models that are of an approximated or simpler form in their
representation of age structures and spatiotemporal variations
(Botsford et al., 2011; Glaser et al., 2014). If information on age
structure and spatiotemporal variation is absent, then ecosystem
models may not adequately depict the variability attributable
to cohort resonance and long-term changes in abundance
(Botsford et al., 2011).

Top marine predators can have high phenotypic plasticity and
adaptive capabilities that mitigate the effects of climate change
on them; however, climate change may still affect these predators
through their prey (Hazen et al., 2013). Our analysis only applied
to a top predator, BET, in the WCPO. Nevertheless, we provided
evidence that the true spatial distribution and time series
variation of age structures are important indices for investigating
the effects of climatic events on pelagic ecosystems. However,
many top predators in marine ecosystems adopt different life
strategies and we did not investigate the potential effects of the
interactions between climate change and other human stressors.
Future studies should use ecosystem models that describe the full
population age structure from larvae through to the mature stock

(e.g., SEAPODYM models, Lehodey et al., 2010). Furthermore,
to better elucidate how species are threatened by climate change,
future studies should extend their spatiotemporal time series data
on fishery and age structure by including data on a diversity of
gear types and fishing strategies.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

K-WL led the study design and wrote the article. Y-LW and
T-HL contributed materials of GAM and wavelet analysis.
L-CC and MN contributed for fisheries data collected and data
analysis. All authors read and agreed to the published version
of the manuscript.

FUNDING

This study was financially supported by the Council of
Agriculture (107AS-9.1.5-FA-F1 and 108AS-9.2.1-FA-F1) and
the National Science Council (MOST 107-2611-M-019-017 and
MOST 108-2611-M-019-007).

ACKNOWLEDGMENTS

We are grateful to the Overseas Fisheries Development Council
(OFDC) of Taiwan for providing data from the Taiwanese
longline fishery. We also thank the North Pacific Fisheries
Commission and NOAA Fisheries for providing public fishery
data on the abundances of neon flying squid, Pacific saury, and
ichthyoplankton biomass.

REFERENCES
Bakun, A. (2006). Fronts and eddies as key structures in the habitat of marine fish

larvae: opportunity, adaptive response and competitive advantage. Sci. Mar. 70,
105–122. doi: 10.3989/scimar.2006.70s2105

Bell, J. D., Ganachaud, A., Gehrke, P. C., Griffiths, S. P., Hobday, A. J., Hoegh-
Guldberg, O., et al. (2013). Mixed responses of tropical Pacific fisheries and
aquaculture to climate change. Nat. Clim. Chang. 3, 591–599. doi: 10.1038/
nclimate1838

Bell, J. D., Johnson, J. E., and Hobday, A. J. (eds) (2011). Vulnerability of Tropical
Pacific Fisheries and Aquaculture to Climate Change. Noumea: SPC.

Borges, M. F., Santos, A. M. P., Crato, N., Mendes, H., and Mota, B. (2003). Sardine
regime shifts off Portugal: a time series analysis of catches and wind conditions.
Sci. Mar. 67, 235–244. doi: 10.3989/scimar.2003.67s1235

Botsford, L. W., Holland, M. D., Samhouri, J. F., White, J. W., and Hastings,
A. (2011). Importance of age structure in models of the response of upper
trophic levels to fishing and climate change. ICES J. Mar. Sci. 68, 1270–1283.
doi: 10.1093/icesjms/fsr042

Chiba, S., Batten, S. D., Yoshiki, T., Sasaki, Y., Sasaoka, K., Sugisaki, H., et al. (2015).
Temperature and zooplankton size structure: climate control and basin-scale
comparison in the North Pacific. Ecol. Evol. 5, 968–978. doi: 10.1002/ece3.1408

Corbineau, A., Rouyer, T., Cazelles, B., Fromentin, J. M., Fonteneau, A., and
Ménard, F. (2008). Time series analysis of tuna and swordfish catches and
climate variability in the Indian Ocean (1968-2003). Aquat. Living Resour. 21,
277–285. doi: 10.1051/alr:2008045

Damalas, D., and Megalofonou, P. (2012). Discovering where bluefin tuna,
Thunnus thynnus, might go: using environmental and fishery data to map
potential tuna habitat in the eastern Mediterranean Sea. Sci. Mar. 76,
691–704.

Ducharme-Barth, N., Vincent, M., Hampton, J., Hamer, P., Williams, P., and
Pilling, G. (2020). Stock Assessment of Bigeye Tuna in the Western and Central
Pacific Ocean. WCPFC-SC16-2020/SA-WP-03. Kolonia: WCPFC.

Farley, J., Eveson, P., Krusic-Golub, K., Sanchez, C., Roupsard, F., McKechnie,
S., et al. (2017). Project 35: Age, Growth and Maturity of Bigeye Tuna in
the Western and Central Pacific Ocean. WCPFC-SC13-2017/SA-WP-01 Rev 1.
Kolonia: WCPFC.

Frontiers in Marine Science | www.frontiersin.org 11 April 2021 | Volume 8 | Article 614594

https://doi.org/10.3989/scimar.2006.70s2105
https://doi.org/10.1038/nclimate1838
https://doi.org/10.1038/nclimate1838
https://doi.org/10.3989/scimar.2003.67s1235
https://doi.org/10.1093/icesjms/fsr042
https://doi.org/10.1002/ece3.1408
https://doi.org/10.1051/alr:2008045
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-614594 April 7, 2021 Time: 12:43 # 12

Lan et al. Climate Change on Marine Ecosystem

Fonteneau, A., Lucas, V., Tewkai, E., Delgado, A., and Demarcq, H. (2008).
Mesoscale exploitation of a major tuna concentration in the Indian Ocean.
Aquat. Living Resour. 21, 109–121. doi: 10.1051/alr:2008028

Fonteneau, A., and Soubrier, P. (1996). Interactions Between Tuna Fisheries: A
Global Review with Specific Examples from the Atlantic Ocean. Rome: FAO,
84–123.

Glantz, M. H., and Ramirez, I. J. (2020). Reviewing the Oceanic Niño Index (ONI)
to enhance societal readiness for El Niño’s impacts. Int. J. Disaster Risk Sci. 11,
394–403.

Glaser, S. M., Fogarty, M. J., Liu, H., Altman, I., Hsieh, C. H., Kaufman, L., et al.
(2014). Complex dynamics may limit prediction in marine fisheries. Fish. Fish.
15, 616–633. doi: 10.1111/faf.12037

Goñi, N., Didouan, C., Arrizabalaga, H., Chifflet, M., Arregui, I., Goikoetxea, N.,
et al. (2015). Effect of oceanographic parameters on daily albacore catches in
the Northeast Atlantic. Deep Sea Res. Pt. II 113, 73–80. doi: 10.1016/j.dsr2.2015.
01.012

Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004). Application of the cross wavelet
transform and wavelet coherence to geophysical time series. Nonlinear Process
Geophys. 11, 561–566. doi: 10.5194/npg-11-561-2004

Hallier, J. P., Stequert, B., Maury, O., and Bard, F. X. (2005). Growth of bigeye tuna
(Thunnus obesus) in the eastern Atlantic Ocean from tagging-recapture data
and otolith readings. Collect. Vol. Sci. Pap. ICCAT 57, 181–194.

Hazen, E. L., Jorgensen, S., Rykaczewski, R. R., Bograd, S. J., Foley, D. G., Jonsen,
I. D., et al. (2013). Predicted habitat shifts of Pacific top predators in a changing
climate. Nat. Clim. Chang. 3, 234–238. doi: 10.1038/nclimate1686

Holland, K. N., Brill, R. W., Chang, R. K., Sibert, J. R., and Fournier, D. A. (1992).
Physiological and behavioural thermoregulation in bigeye tuna (Thunnus
obesus). Nature 358, 410–412. doi: 10.1038/358410a0

Houde, E. D., and Hoyt, R. (1987). Fish early life dynamics and recruitment
variability. Trans. Am. Fish. Soc. 2, 17–29.

Hsieh, C. H., Anderson, C., and Sugihara, G. (2008). Extending nonlinear analysis
to short ecological time series. Am. Nat. 171, 71–80. doi: 10.1086/524202

Igarashi, H., Ichii, T., Sakai, M., Ishikawa, Y., Toyoda, T., Masuda, S., et al. (2017).
Possible link between interannual variation of neon flying squid (Ommastrephes
bartramii) abundance in the North Pacific and the climate phase shift in
1998/1999. Prog. Oceanogr. 150, 20–34. doi: 10.1016/j.pocean.2015.03.008

Izumo, T., Vialard, J., Lengaigne, M., de Boyer Montegut, C., Behera, S. K., Luo, J. J.,
et al. (2010). Influence of the state of the Indian Ocean Dipole on the following
year’s El Niño. Nat. Geosci. 3, 168–172.

Kosaka, Y., and Xie, S. P. (2013). Recent global-warming hiatus tied to equatorial
Pacific surface cooling. Nature 501, 403–407. doi: 10.1038/nature12534

Kume, S. (1974). Tuna fisheries and their resources in the Pacific Ocean. Indo Pac.
Fish. Coun. Proc. 15, 390–423.

Lan, K. W., Chang, Y. J., and Wu, Y. L. (2019). Influence of oceanographic and
climatic variability on the catch rate of yellowfin tuna (Thunnus albacares)
cohorts in the Indian Ocean. Deep Sea Res. Pt. II 175:104681. doi: 10.1016/j.
dsr2.2019.104681

Lan, K. W., Evans, K., and Lee, M. A. (2013). Effects of climate variability on the
distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in
the western Indian Ocean. Clim. Chang. 119, 63–77. doi: 10.1007/s10584-012-
0637-8

Lan, K. W., Kawamura, H., Lee, M. A., Lu, H. J., Shimada, T., Hosoda, K., et al.
(2012a). Relationship between albacore (Thunnus alalunga) fishing grounds
in the Indian Ocean and the thermal environment revealed by cloud-free
microwave sea surface temperature. Fish Res. 113, 1–7. doi: 10.1016/j.fishres.
2011.08.017

Lan, K. W., Lee, M. A., Nishida, T., Lu, H. J., Weng, J. S., and Chang, Y. (2012b).
Environmental effects on yellowfin tuna catch by the Taiwan longline fishery
in the Arabian Sea. Int. J. Remote Sens. 33, 7491–7506. doi: 10.1080/01431161.
2012.685971

Langley, A., Briand, K., Kirby, D. S., and Murtugudde, R. (2009). Influence of
oceanographic variability on recruitment of yellowfin tuna (Thunnus albacares)
in the western and central Pacific Ocean. Can. J. Fish. Aquat. Sci. 66, 1462–1477.
doi: 10.1139/f09-096

Lehodey, P., Senina, I., Sibert, J., Bopp, L., Calmettes, B., Hampton, J., et al.
(2010). Preliminary forecasts of Pacific bigeye tuna population trends under the
A2 IPCC scenario. Prog. Oceanogr. 86, 302–315. doi: 10.1016/j.pocean.2010.04.
021

Leroy, B., Phillips, J. S., Nicol, S., Pilling, G. M., Harley, S., Bromhead, D., et al.
(2013). A critique of the ecosystem impacts of drifting and anchored FADs use
by purse-seine tuna fisheries in the Western and Central Pacific Ocean. Aquat.
Living Resour. 26, 49–61. doi: 10.1051/alr/2012033

Li, S., Wu, L., Yang, Y., Geng, T., Cai, W., Gan, B., et al. (2020). The Pacific Decadal
Oscillation less predictable under greenhouse warming. Nat. Clim. Chang. 10,
30–34. doi: 10.1038/s41558-019-0663-x

Liu, S., Liu, Y., Fu, C., Yan, L., Xu, Y., Wan, R., et al. (2019). Using novel
spawning ground indices to analyze the effects of climate change on Pacific
saury abundance. J. Mar. Syst. 191, 13–23. doi: 10.1016/j.jmarsys.2018.
12.007

Madigan, D. J., Chiang, W. C., Wallsgrove, N. J., Popp, B. N., Kitagawa, T., Choy,
C. A., et al. (2016). Intrinsic tracers reveal recent foraging ecology of giant
Pacific Bluefin tuna at their primary spawning grounds. Mar. Ecol. Prog. Ser.
553, 253–266. doi: 10.3354/meps11782

Mantua, N. J., and Hare, S. R. (2002). The Pacific decadal oscillation. J. Oceanogr.
58, 35–44.

Miller, A. J., and Schneider, N. (2000). Interdecadal climate regime dynamics in
the North Pacific Ocean: theories, observations and ecosystem impacts. Prog.
Oceanogr. 47, 355–379. doi: 10.1016/s0079-6611(00)00044-6

Miyabe, N. (1994). A review of the biology and fisheries for bigeye tuna, Thunnus
obesus, in the Pacific Ocean. FAO Fish. Tech. Pap. 336, 207–244.

Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E.,
et al. (2016). The Pacific decadal oscillation, revisited. J. Clim. 29, 4399–4427.

Nieto, K., Xu, Y., Teo, S. L., McClatchie, S., and Holmes, J. (2017). How important
are coastal fronts to albacore tuna (Thunnus alalunga) habitat in the Northeast
Pacific Ocean? Prog. Oceanogr. 150, 62–71. doi: 10.1016/j.pocean.2015.
05.004

NPFC (2019). 4th Meeting of the Technical Working Group on Pacific Saury
Stock Assessment. 4th Meeting Report NPFC-2019-TWG PSSA04-Final Report.
Yokohama: NPFC.

Ohshimo, S., Hiraoka, Y., Sato, T., and Nakatsuka, S. (2018). Feeding habits of
bigeye tuna (Thunnus obesus) in the North Pacific from 2011 to 2013. Mar.
Freshw. Res. 69, 585–606. doi: 10.1071/mf17058

Olson, D. B., Hitchcock, G. L., Mariano, A. J., Ashjian, C. J., Peng, G., Nero, R. W.,
et al. (1994). Life on the edge: marine life and fronts. Oceanography 7, 52–60.
doi: 10.5670/oceanog.1994.03

Olson, R. J., Duffy, L. M., Kuhnert, P. M., Galván-Magaña, F., Bocanegra-
Castillo, N., and Alatorre-Ramírez, V. (2014). Decadal diet shift in yellowfin
tuna Thunnus albacares suggests broad-scale food web changes in the eastern
tropical Pacific Ocean. Mar. Ecol. Prog. Ser. 497, 157–178. doi: 10.3354/
meps10609

Reglero, P., Tittensor, D. P., Álvarez-Berastegui, D., Aparicio-González, A., and
Worm, B. (2014). Worldwide distributions of tuna larvae: revisiting hypotheses
on environmental requirements for spawning habitats. Mar. Ecol. Prog. Ser. 501,
207–224. doi: 10.3354/meps10666

Rouyer, T, Fromentin, J. M., Stenseth, N. C., and Cazelles, B. (2008). Analysing
multiple time series and extending significance testing in wavelet analysis. Mar.
Ecol. Prog. Ser. 359, 11–23. doi: 10.3354/meps07330

Rouyer, T., Sadykov, A., Ohlberger, J., and Stenseth, N. C. (2012). Does
increasing mortality change the response of fish populations to environmental
fluctuations? Ecol. Lett. 15, 658–665. doi: 10.1111/j.1461-0248.2012.01781.x

Schaefer, K., Fuller, D., Hampton, J., Caillot, S., Leroy, B., and Itano, D. (2015).
Movements, dispersion, and mixing of bigeye tuna (Thunnus obesus) tagged
and released in the equatorial Central Pacific Ocean, with conventional
and archival tags. Fish Res. 161, 336–355. doi: 10.1016/j.fishres.2014.
08.018

Senina, I., Lehodey, P., Sibert, J., and Hampton, J. (2020). Integrating tagging and
fisheries data into a spatial population dynamics model to improve its predictive
skills. Can. J. Fish. Aquat. Sci. 77, 576–593. doi: 10.1139/cjfas-2018-0470

Syamsuddin, M. L., Saitoh, S. I., Hirawake, T., Bachri, S., and Harto, A. B. (2013).
Effects of El Niño–Southern Oscillation events on catches of bigeye tuna
(Thunnus obesus) in the eastern Indian Ocean off Java. Fish. Bull. 111, 175–188.

Thygesen, U. H., Sommer, L., Evans, K., and Patterson, T. A. (2016). Dynamic
optimal foraging theory explains vertical migrations of bigeye tuna. Ecology 97,
1852–1861. doi: 10.1890/15-1130.1

Torrence, C., and Compo, G. P. (1998). A practical guide to wavelet analysis. Bull.
Am. Meteorol. Soc. 79, 61–78.

Frontiers in Marine Science | www.frontiersin.org 12 April 2021 | Volume 8 | Article 614594

https://doi.org/10.1051/alr:2008028
https://doi.org/10.1111/faf.12037
https://doi.org/10.1016/j.dsr2.2015.01.012
https://doi.org/10.1016/j.dsr2.2015.01.012
https://doi.org/10.5194/npg-11-561-2004
https://doi.org/10.1038/nclimate1686
https://doi.org/10.1038/358410a0
https://doi.org/10.1086/524202
https://doi.org/10.1016/j.pocean.2015.03.008
https://doi.org/10.1038/nature12534
https://doi.org/10.1016/j.dsr2.2019.104681
https://doi.org/10.1016/j.dsr2.2019.104681
https://doi.org/10.1007/s10584-012-0637-8
https://doi.org/10.1007/s10584-012-0637-8
https://doi.org/10.1016/j.fishres.2011.08.017
https://doi.org/10.1016/j.fishres.2011.08.017
https://doi.org/10.1080/01431161.2012.685971
https://doi.org/10.1080/01431161.2012.685971
https://doi.org/10.1139/f09-096
https://doi.org/10.1016/j.pocean.2010.04.021
https://doi.org/10.1016/j.pocean.2010.04.021
https://doi.org/10.1051/alr/2012033
https://doi.org/10.1038/s41558-019-0663-x
https://doi.org/10.1016/j.jmarsys.2018.12.007
https://doi.org/10.1016/j.jmarsys.2018.12.007
https://doi.org/10.3354/meps11782
https://doi.org/10.1016/s0079-6611(00)00044-6
https://doi.org/10.1016/j.pocean.2015.05.004
https://doi.org/10.1016/j.pocean.2015.05.004
https://doi.org/10.1071/mf17058
https://doi.org/10.5670/oceanog.1994.03
https://doi.org/10.3354/meps10609
https://doi.org/10.3354/meps10609
https://doi.org/10.3354/meps10666
https://doi.org/10.3354/meps07330
https://doi.org/10.1111/j.1461-0248.2012.01781.x
https://doi.org/10.1016/j.fishres.2014.08.018
https://doi.org/10.1016/j.fishres.2014.08.018
https://doi.org/10.1139/cjfas-2018-0470
https://doi.org/10.1890/15-1130.1
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-614594 April 7, 2021 Time: 12:43 # 13

Lan et al. Climate Change on Marine Ecosystem

Tu, C. Y., Chen, K. T., and Hsieh, C. H. (2018). Fishing and temperature effects
on the size structure of exploited fish stocks. Sci. Rep. 8, 1–10. doi: 10.1002/
9780470999936.ch1

Wang, S. P., Maunder, M. N., and Aires-da-Silva, A. (2009). Implications of model
and data assumptions: an illustration including data for the Taiwanese longline
fishery into the eastern Pacific Ocean bigeye tuna (Thunnus obesus) stock
assessment. Fish Res. 97, 118–126. doi: 10.1016/j.fishres.2009.01.008

Wu, Y. L., Lan, K. W., and Tian, Y. J. (2020). Determining the effect of multiscale
climate indices on the global yellowfin tuna (Thunnus albacares) population
using a time series analysis. Deep Sea Res. Pt. II 175:104808. doi: 10.1016/j.dsr2.
2020.104808

Yu, W., Chen, X., Chen, C., and Zhang, Y. (2017). Impacts of oceanographic
factors on interannual variability of the winter-spring cohort of neon flying

squid abundance in the Northwest Pacific Ocean. Acta Oceanol. Sin. 36, 48–59.
doi: 10.1007/s13131-017-1069-0

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Lan, Wu, Chen, Naimullah and Lin. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 13 April 2021 | Volume 8 | Article 614594

https://doi.org/10.1002/9780470999936.ch1
https://doi.org/10.1002/9780470999936.ch1
https://doi.org/10.1016/j.fishres.2009.01.008
https://doi.org/10.1016/j.dsr2.2020.104808
https://doi.org/10.1016/j.dsr2.2020.104808
https://doi.org/10.1007/s13131-017-1069-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

	Effects of Climate Change in Marine Ecosystems Based on the Spatiotemporal Age Structure of Top Predators: A Case Study of Bigeye Tuna in the Pacific Ocean
	Introduction
	Materials and Methods
	Fishery Data and Age Structure of Bigeye Tuna
	Standardization of Nominal CPUE
	Data From Purse Seine, Pacific Saury, and Neon Flying Squid Fisheries and on Egg and Larva Abundance
	Interannual and Decadal Climatic Variability Indices
	Cross-Wavelet Coherence and Phase Analyses

	Results
	Distribution of Immature and Mature BET Cohorts
	Time Series Analysis of the Standardized CPUE of BET and Climate Events
	Bottom-Up Control of the Pelagic Ecosystem Under the Effects of Decadal Climate Events

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


