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Characterizing the response of ecosystems to global climate change requires that
multiple aspects of environmental change be considered simultaneously, however, it
can be difficult to describe the relative importance of environmental metrics given their
collinearity. Here, we present a novel framework for disentangling the complex ecological
effects of environmental variability by documenting the emergent properties of eelgrass
(Zostera marina) ecosystems across ∼225 km of the Atlantic Coast of Nova Scotia,
Canada, representing gradients in temperature, light, sediment properties, and water
motion, and evaluate the relative importance of different metrics characterizing these
environmental conditions (e.g., means, extremes, variability on different time scales) for
eelgrass bioindicators using lasso regression and commonality analysis. We found that
eelgrass beds in areas that were warmer, shallower, and had low water motion had
lower productivity and resilience relative to beds in deeper, cooler areas that were well
flushed, and that higher temperatures lowered eelgrass tolerance to low-light conditions.
There was significant variation in the importance of various metrics of temperature, light,
and water motion across biological responses, demonstrating that different aspects
of environmental change uniquely impact the cellular, physiological, and ecological
processes underlying eelgrass productivity and resilience, and contribute synergistically
to the observed ecosystem response. In particular, we identified the magnitude of
temperature variability over daily and tidal cycles as an important determinant of eelgrass
productivity. These results indicate that ecosystem responses are not fully resolved
by analyses that only consider changes in mean conditions, and that the removal of
collinear variables prior to analyses relating environmental metrics to biological change
reduces the potential to detect important environmental effects. The framework we
present can help to identify the conditions that promote high ecosystem function
and resilience, which is necessary to inform nearshore conservation and management
practices under global climate change.

Keywords: seagrass, eelgrass (Zostera marina), environmental gradient, temperature, global climate change,
resilience, productivity
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INTRODUCTION

Coastal vegetated marine habitats, such as seagrass, seaweed, and
salt marsh ecosystems are vulnerable to changing environmental
conditions and anthropogenic stressors, leading to widespread
declines over the past several decades (Lotze et al., 2006; Waycott
et al., 2009; Krumhansl et al., 2016). Marine macrophytes
enhance secondary production through the provision of habitat
and food (Krumhansl and Scheibling, 2012; Wong, 2018), and
play a significant role in carbon and nutrient cycling and
storage (Fourqurean et al., 2012), thereby providing billions
of dollars annually in ecosystem services to humans (Barbier
et al., 2011; Filbee-Dexter and Wernberg, 2018). Understanding
how environmental conditions impact the functioning of marine
ecosystems, as well as their susceptibility to disturbance, is
critical for decision making processes related to nearshore
conservation and management (Unsworth et al., 2015). In
particular, identifying the environmental conditions under which
marine macrophyte communities remain resilient within the
context of climate change is critical for maximizing the
effectiveness of conservation strategies.

Research into the response of seagrasses to environmental
change has evolved from manipulative studies of single stressors
to factorial experiments of multiple stressors acting in synergy
(e.g., Gao et al., 2017; Moreno-Marin et al., 2018). However,
the physiological and ecological performance of seagrasses are
influenced by a suite of environmental variables, including light,
temperature, sediment properties, salinity, nutrients, and water
motion (Koch, 2001; Lee et al., 2007), the interactive effects
of which are difficult to simulate in an experimental setting.
An alternative approach is to investigate emergent properties of
ecosystems, which represent the cumulative effects of the full
suite of relevant environmental variables and associated processes
over varying time scales (Odum and Barrett, 1971). Further,
investigating emergent properties of seagrass communities at
sites spanning environmental gradients and levels of stress
can provide insights into how these ecosystems respond to
environmental change, and the relative importance of different
environmental variables for driving a biological response.

Previous work has shown that seagrass bioindicators (or traits)
can be used to understand the nature of seagrass change, since
indicator responses vary with the type and duration of exposure
to stress, and depend on the physiological and ecological
processes impacted (McMahon et al., 2013; Wong et al., 2020a).
Measuring suites of bioindicators over environmental gradients
can be an effective strategy to capture the range of possible
biological responses to varying environmental conditions.
Changes in primary production, a key ecosystem function, in
relation to environmental stressors has been assessed using
measures of photosynthetic performance, as well as emergent
properties of growth and acclimation to low and high light
conditions, including tissue biochemistry, plant morphology, and
biomass (Martínez-Crego et al., 2008; McMahon et al., 2013;
Gao et al., 2017; Hammer et al., 2018; Bertelli et al., 2020).
Seagrass resilience is also impacted by processes that reduce the
capacity for seagrasses to resist and recover from disturbance,
and is measured, in part, by factors such as the production

of defensive compounds, the capacity to build carbohydrate
reserves, and the ability to recover from habitat disturbance
through asexual vegetative growth and sexual reproduction
(Unsworth et al., 2015).

Previous research has provided insight into how varying
light conditions, water current speeds, wave exposures, and
sediment characteristics impact seagrass ecosystem properties.
Light stress is considered one of the primary factors impacting
seagrass ecosystem productivity and resilience to disturbance
(Lee et al., 2007; Ochieng et al., 2010; Lefcheck et al., 2017;
Wong et al., 2020b), and the depth distribution of seagrasses
are largely determined by light availability (Krause-Jensen et al.,
2011). Light availability is influenced indirectly by sediment
properties, as finer sediments are more easily re-suspended than
coarser sediments, leading to increased turbidity and reduced
light. Fine sediments are also linked to high concentrations of
hydrogen sulfide, which are toxic to seagrass plants (Goodman
et al., 1995; Pérez et al., 2007; Krause-Jensen et al., 2011). High
water motion can increase seagrass production by thinning the
diffusive boundary layer and increasing carbon uptake (Koch,
2001), reduce epiphytic growth (Lavery et al., 2007), and can
be associated with cooler temperatures and clearer waters as a
result of high flushing rates. High water motion also influences
bed patchiness on a landscape scale through physical disturbance
(Fonseca and Bell, 1998; Fonseca et al., 2002).

Growing evidence for a rapidly changing climate has increased
the emphasis on temperature effects on seagrasses (Short and
Neckles, 1999; Campbell et al., 2006; Rasheed and Unsworth,
2011; Strydom et al., 2020). Initial studies identified optimal
temperature thresholds for productivity and survival (Biebl and
McRoy, 1971; Evans et al., 1986; Marsh et al., 1986), and
documented seasonal changes in productivity, biomass, and
survival in response to temperature and light in the field (Cabello-
Pasini et al., 2003; Bostrom et al., 2004; Lee et al., 2005; Wong
et al., 2013; Richardson et al., 2018). More recently, the focus has
shifted to the impacts of extreme temperature events, as large-
scale losses of seagrass have been documented in association
with marine heat waves (Marbà and Duarte, 2010; Moore et al.,
2014; Hammer et al., 2018; Saava et al., 2018; DuBois et al.,
2019; Shields et al., 2019; Strydom et al., 2020). With this has
come an awareness that changes to mean temperatures does not
always cause the most dramatic biological responses as compared
to temperature variability (George et al., 2018; Shields et al.,
2019; Smale et al., 2019), leading to alternative ways in which
temperature effects are characterized (e.g., warm water events,
temperature variation, degree days) (Marbà and Duarte, 2010;
Oliver et al., 2018).

Here, we investigate a suite of biological metrics for the
temperate seagrass Zostera marina (eelgrass) in Nova Scotia,
Canada that reflect emergent properties of plant functioning and
resilience over environmental gradients, including temperature,
light, water motion, and sediment properties. To understand the
interactive effects of different forms of environmental change
and disturbance, we evaluate the relative importance of different
environmental metrics in driving spatial patterns in these
emergent properties. To support a more detailed understanding
of temperature effects on seagrass emergent properties, we also
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examine the relative importance of a variety of temperature
metrics, including those that characterize the mean conditions,
as well as temperature extremes and variability over different
time scales. This work provides insight into the conditions
necessary for seagrass resilience, and demonstrates the utility of a
framework through which species-environment interactions can
be assessed to provide information necessary for the conservation
and management of coastal ecosystems.

MATERIALS AND METHODS

Study Sites
Ten sites were selected along the Atlantic coast of Nova Scotia
to represent the range of environmental conditions over which
Zostera marina beds occur (Figure 1). Specifically, sites were
chosen a priori to span the range of environmental gradients
of temperature, light, sediment properties, and water motion
(as influenced by tidal currents, wind, waves, depth, and slope)
(Bakirman and Gumusay, 2020). Human impacts relating to
coastal development and eutrophication were relatively low at
all sites (Murphy et al., 2019). At six of the sites, two different
locations were designated to capture within-site variation related
to depth (termed “deep” and “shallow”; five sites) or dominant
substrate (“sandy” and “muddy”; one site). Depth locations
were chosen to characterize the largest differences in depth
evident across extensive areas of each bed. Four sites did not
have a large enough depth gradient to examine. Overall, sites
ranged in depth from 0.9–6.2 m (mean depth at high tide)
(Supplementary Table S1).

At all sites and locations, a suite of biological and
environmental measurements were taken to describe the status
of the eelgrass bed and surrounding environment. All biological
metrics were taken in July 2017 with the exception of bed
patchiness. While some environmental measures (temperature,
sediments, wave exposure) coincided with the biological
sampling, by logistical necessity light, water currents and slope
were measured the following year (June–September 2018).
In spite of the time asynchrony, measurements captured the
relative differences among sites, which are similar between years
(Supplementary Table S3, M. Wong, unpublished data). We
note that this study does not consider other biological variables
(e.g., competition, herbivory, epiphyte fouling) that can impact
eelgrass production and resilience.

Environmental Conditions
Temperature
Near-seabed temperature was recorded at 10-min intervals
within eelgrass beds at all sites and locations from May/June
2017-April/May 2018 using HOBO tidbit temperature loggers
(Onset Corp). At some sites, loggers were exposed at low tide,
but these recordings were retained in the record because warm
aerial temperatures are known to impact seagrasses (Kim et al.,
2016), and these were in fact representative of the temperature
experienced by plants at low tide. From the temperature time
series, we calculated the mean, maximum, 95th percentile, and
standard deviation for the year. As a heat wave metric, we then

quantified the number of days above 23◦C at each site, the mean
optimal temperature for productivity of Zostera marina (Lee
et al., 2007). We also characterized temperature variability over
short (<36 h) and medium (36 h – 60 days) time scales using
time series analysis as in Krumhansl et al. (2020), and computed
the ratio of high (short time scale) to mid frequency temperature
changes (HF:MF temperature variability) as an indication of the
relative importance of changes in daily temperature from tides
and cycles of heating and cooling versus those of storms and
upwelling events in the temperature record. We also used the
high frequency temperature time series to calculate the average
range of temperatures over tidal and daily cycles (Krumhansl
et al., 2020). Growing Degree Day (GDD) was calculated as
a quantification of heat accumulation in a system (Neuheimer
and Taggart, 2007) using 11◦C as a base temperature, generated
using the statistical method described by Yang et al. (1995)
with no maximum temperature cap (see Krumhansl et al., 2020
for details). Note, we did not include minimum temperatures
in our analysis because we found that the biological metrics
correlated with HF:MF temperature variability were the same
as those correlated with minimum temperatures, indicating that
the low temperature effect on eelgrasses is more closely related
to the range and variability of temperatures experienced than
to the absolute minimum, which in some cases was well below
0◦C due to logger exposure to the air. Note, the direction
of the relationships between biological metrics and minimum
temperature were inverse to those with HF:MF temperature
variability, as higher temperature variability is correlated with
a lower minimum temperature. Time series analyses were done
using functions in the signal (Signal Developers, 2013), TSA
(Chan and Ripley, 2012), astsa (Stoffer, 2017), and tseries
(Trapletti and Hornik, 2018) packages in R (R Core Team, 2017).

Currents and Depth
Current speeds were recorded in burst samples every 10 min (20
samples per burst, 2 s intervals between samples) at each site
using an electromagnetic current meter (Infinity-EM AEM, JFE
Advantech), deployed < 1 m above bottom within the eelgrass
bed for a 2–3-week period between June–September 2018. When
sites contained deep and shallow locations, current meters were
only deployed in the deep location due to logistical constraints
(Sambro, Sacrifice, Croucher, Cable, Taylor’s Head). Current
speed measurements were averaged across each burst, and then
summarized by the mean, maximum, minimum, and standard
deviation for each time series. Pressure sensors (HOBO Water
Level Loggers, Onset Corp.) were deployed simultaneously with
current meters and measured depth every 10 min. Mean depth
at high tide was calculated by isolating local maxima within
the dominant 12.42 h M2 tidal cycle after smoothing with a
harmonic regression, and averaging these depths across all high
tides (Krumhansl et al., 2020).

PAR (Photosynthetically Active Radiation)
Downwelling irradiance (PAR: 400–700 nm) was recorded at 10-
min intervals at each site and location using light sensors (DEFI2-
L, JFE Advantech Co., Ltd.) deployed for 2–3 weeks periods
between June and September 2018, coinciding with current meter
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FIGURE 1 | Study sites along the Atlantic coast of Nova Scotia, Canada.

and depth sensor deployments. Two PAR sensors were set at a
fixed vertical distance from each other (0.5–1 m) and above the
bottom (<0.5 m) in bare areas within the seagrass bed. Light
attenuation coefficients were calculated from the two sets of
light measurements using the Beer–Lambert law (Kirk, 2011) and
averaged for each site and location. Mean and max PAR were also
calculated using data recorded by the bottom light sensor.

Wave Exposure, Slope, and Sediment Properties
A relative index of wave exposure was calculated using a
modification of the index by Keddy (1982) from wind data
obtained from a centrally located Environment Canada weather
station (Shearwater RCS, 44◦ 37′ 47′′ N, 63◦ 30′ 48′′ W) from
January 2016 to December 2017 (Krumhansl et al., 2020). This
time period was selected to provide a representative estimate of
wave exposure over the 2 years period prior to and encompassing
the field season when biological measures were taken. Fetch was
calculated for each site and location using the fetch function in R
(package fetchR, Seers, 2018).

Slope angle of the seagrass bed was estimated by measuring
depth at 2 m increments along two or three, 50 m transects
positioned perpendicular to the shore. The angle between
successive 2 m intervals was calculated as the arctangent of the

depth difference between sequential points, divided by the along
bottom distance (Krumhansl et al., 2020). The resulting slope
angles were averaged across sequential points to estimate overall
slope angle for each site and location.

Sediment grain size distribution was determined in July 2017
using a wet sieve method as described in Wong et al. (2013).
Percent fractions of gravel (≥2000 µm) and sand (64–2000 µm)
were calculated from the dry mass of each fraction divided by the
total dry mass and multiplied by 100. Percent fraction mud and
silt was calculated as the total dry mass minus the dry mass of
the gravel and sand fractions, divided by the total dry mass and
multiplied by 100. Given that gravel was only present at a few
sites and that mud/silt and sand fractions were highly collinear,
only percent sand was used in the analyses.

Biological Metrics
Biological metrics were collected at all sites and locations.
They were split into two categories: metrics of production,
and metrics of resilience. Metrics of production included
chlorophyll concentration, number of leaves, sheath length,
length of the third oldest leaf (leaf 3), vegetative shoot
density, and canopy height; while metrics of resilience included
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phenolic acid and rhizome water soluble carbohydrate (WSC)
concentrations, leaf nitrogen content, reproductive shoot density,
above to belowground biomass ratio, and eelgrass patch size
and density. These groupings of variables spanned biological
scales, from landscape to bed, as well as plant morphological and
physiological properties.

Landscape and Bed Properties
Bed fragmentation at each field site was measured using five,
50 m × 1 m transects once between July and September 2018
by snorkelers or SCUBA divers. Transects were laid parallel to
shore along a depth contour. Observers noted the dominant
substrate cover at the start of each transect, defined as the
sediment or macrophyte type occupying ≥50% of the bottom
within a 1 × 1 m area encompassing the transect, and then
swam along the transect recording each location (as distance
along the transect) where bottom cover changed. Average eelgrass
patch size was calculated as the average along-transect length of a
patch (maximum 50 m), and patch density was calculated as the
number of patches per transect.

Eelgrass plant and population characteristics were recorded at
10 haphazardly chosen sampling stations within each eelgrass bed
in July 2017. Stations were at least 2 m from the bed edge and 10 –
15 m apart. At each station, canopy height was measured as the
height of the tallest 80% of leaves. Vegetative and reproductive
shoot density were counted in a 0.25 × 0.25 m quadrat, and
above and belowground biomass was collected using a hand
corer (10.8 cm diameter × 12 cm deep). In the laboratory, plant
material was separated into above and belowground components,
dried at 60◦C for 48 h, and weighed to determine the ratio of
above to belowground biomass.

Plant Morphology and Physiology
Three vegetative shoots were collected per quadrat and processed
in the laboratory for sheath length, number of leaves, and
length of leaf 3. Measurements were averaged across the three
shoots within each quadrat. After measurements, one shoot
from each quadrat was processed for concentrations of total
chlorophyll (chl a and b, in µg cm−2) and phenolic acids (mg
gallic acid equivalent [GAE] per g of dry weight) using the
methods described in Wong et al. (2020a). Percent nitrogen in
five eelgrass leaves from each site and location were determined
from dried and ground sections of leaf 3 using a CHN analyzer.
Rhizomes were analyzed for water-soluble carbohydrates (WSC;
i.e., sugars), as preliminary analyses indicated that starch content
was very low (A. Sadowy and B. Vercaemer, unpublished
data). WSC in plant rhizomes were extracted using methods in
Wong et al. (2020a). Soluble sugar concentrations (mg glucose
equivalent per g dry weight) were determined using the anthrone
method and read at 625 nm (modified from Ebell, 1969).

Photosynthetic performance was assessed using Rapid Light
Curves (RLCs) applied to 10 shoots from each site and location
using a Pulse Amplitude Modulated fluorometer (DIVING-
PAM, Heinz Walz GmbH, Germany). RLCs were conducted
between 10am-3pm on days with similar cloud cover. Shoots
were harvested from the site and held in a container of salt
water onshore prior to performing the RLCs. We ensured light

conditions and water temperature in the holding container were
similar to the collection site, using an underwater quantum
sensor (LI-192, LICOR) and YSI (YSI Inc., Yellow Springs, OH,
United States). Shade cloth was used to reduce light intensity
as necessary, and water was periodically replaced. Within 1 h of
collection, a mid-section of the third most mature leaf was shaded
for a 5–10 s quasi-darkness period, to ensure that measurements
were representative of the current light acclimation state (Ralph
and Gademann, 2005). The RLC was then initiated, with the
leaf subjected to nine successive 10 s saturating light pulses
ranging from 0 to 2400 µmol m-2 s-1. Effective quantum
yield was measured after each light pulse, and relative electron
transport rate (rETR) was then calculated as effective quantum
yield multiplied by irradiance and leaf absorbance (0.72; Wong
and Vercaemer, 2012). Maximum relative electron transport rate
(rETRmax) and alpha (initial slope of RLC) were then estimated
using the photosynthesis-light model of Platt et al. (1980)
with photo-inhibition excluded (Platt et al., 1980; Ralph and
Gademann, 2005). These parameters were used in subsequent
analyses to represent photosynthetic performance. Models were
fit to data from each site and location using non-linear least
squares regression (‘nls’ function in R) (R Core Team, 2017).

Statistical Analyses
Principal component analyses (PCAs) were conducted using the
environmental data to visualize how sites were spread along
the environmental gradients and to identify the environmental
metrics that explained the most variation across sites. PCAs were
run with and without water current speed data; the PCA with
water current data excluded sites where these measurements were
not taken. Data were standardized using the mean and standard
deviation prior to the analyses. PCAs were conducted using the
prcomp function in the R package vegan (Oksanen et al., 2019).

Multiple regression with a variable selection approach was
used to identify environmental metrics (predictors) that were
important determinants of eelgrass production and resilience
(response). Metrics of photosynthetic efficiency (rETRmax,
alpha) were not included as response variables as there was only
one measure per site and hence too few points in relation to the
number of predictors. There were 18 environmental predictors
and 13 biological responses included in the analyses, as indicated
in Figure 2 and Supplementary Tables S1, S2. Current metrics
were included in the predictor set, and thus sites without these
measurements were excluded prior to the analysis (n = 109). We
note that our initial approach to analyzing this data set was with
Generalized Linear Mixed Effects Models with location nested
within site as random effects, but we consistently found that
these random effects explained very little variability, and that our
interpretations of the models did not change when they were
excluded. Thus, we elected to exclude the random effects.

We used lasso regression (least absolute shrinkage and
selection operator, Tibshirani, 1996), for model selection and
identifying the most important predictor variables for seagrass
production and resilience. Lasso regression adds a regularization,
or penalty term to regular least-squares multiple regression. This
allows for the effective fitting of regression models wherein the
number of predictors is near or even larger than the number of
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FIGURE 2 | Principal components analysis of environmental metrics measured at each site with currents excluded. Points are colored from red to blue according to
their position along the first principal component. Loadings of environmental variables are shown by end points of the black arrows Variable abbreviations are defined
in Table 1.

observations. The penalty term is on the size (absolute value)
of the regression coefficients and this allows for less important
or irrelevant regression coefficients to be forced to zero, and
omitted from the model (hence the designation of lasso as a
shrinkage estimator). The weight given to the regularization
term, and hence the variable selection, is controlled by the
parameter λ. The lasso regression was implemented with elastic-
net regression in the glmnet package in R (Friedman et al.,
2010), which estimates λ using k-fold cross-validation. Due to
the Monte Carlo variation in the cross-validation procedures
(the random splitting of the data into training and validation
sets), the lasso procedure was run for 200 randomly assigned
training and validation data splits for each biological response
metric using the cv.glmnet function in the glmnet package
in R (Friedman et al., 2010). For each response metric the

final selected set of predictors were those retained when they
occurred in all cases.

The selected predictors were then used in subsequent multiple
regression models to evaluate the relative influence of each
metric on each biological response variable. Because collinearity
was present, and an inherent feature of the system, we used
a suite of regression fit and diagnostic metrics to evaluate the
relative importance of each predictor (Kraha et al., 2012; Nimon
and Oswald, 2013; Ray-Mukherjee et al., 2014). In addition
to coefficient estimates and Beta weights, squared structure
coefficients (rs

2) were used to give information on the proportion
of the variance in the regression effect explained by each predictor
alone, allowing for a ranking of independent variables based on
their contribution to the regression effect (Kraha et al., 2012;
Ray-Mukherjee et al., 2014). We also conducted commonality
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analyses, which decomposes the proportion of variance explained
by a regression R2 into unique and common effects. Unique
effects indicate how much variance is uniquely accounted for
by each predictor, and is the incremental difference in the
proportion of the variance assigned to a predictor with and
without that predictor present in the multiple regression (Ray-
Mukherjee et al., 2014). Common effects indicate how much
variance is common to a set of predictors, and is the total R2

discounted by the unique effects (Ray-Mukherjee et al., 2014).
The unique and common effects can be summed to generate
an estimate of the total explanatory power of a predictor (r2).
We also used dominance analysis (Gen Dom) to identify if
a predictor contributed more unique variance than others on
average across all models of all-possible-subset sizes (Kraha
et al., 2012; Nimon and Oswald, 2013). Finally, we used
relative importance weights (RIW) to evaluate the proportional
contribution of each predictor to the model’s R2 after correcting
for the effects of correlations with other predictors (Kraha et al.,
2012). Regression metrics were calculated using the yhat package
in R (Nimon et al., 2020).

Predictors were then ranked in each model according to
rs

2, r2, GenDom, and RIW. This subset of the regression
metrics was chosen to avoid redundant metrics. The rankings
were then averaged across these metrics to yield an overall
importance ranking for each predictor. We then assessed
the relative importance of environmental predictors for each
biological response using: (1) the identity of the variables
selected by the lasso approach, and (2) the overall ranking
of each selected variable, generated by averaging the rankings
for the above noted regression fit metrics (Tables 1, 2). To
assess the overall importance of each environmental predictor
for all biological metrics, the ranking of each environmental
metric was then averaged across all the biological models for
which it was selected, and then for all models of production
and resilience separately. Variable abbreviations are listed in
Table 1.

RESULTS

Environmental Conditions in Eelgrass
Beds
The first principal component in the PCA of environmental
variables (excluding water currents) explained 61% of the
variance across sites (Figure 2). Metrics of temperature (HF:MF
variability, mean, maximum, standard deviation, 95th quantile,
GDD, days > 23◦C, tidal temperature range, and daily
temperature range) and light attenuation (mean Kd) had the
highest positive loadings on this axis, while depth, slope, REI
and percent sand had the highest negative loadings (Figure 2).
When water currents were included (by excluding sites without
current measurements), PC1 explained 68.2% of the variance,
and water currents loaded along the first principal component
along with temperature, light, REI, depth, slope, and percent sand
(Supplementary Figure S1). The second principal component
in the PCAs explained 13.99% without currents and 10% with
currents, with only PAR (mean, maximum) strongly loading

TABLE 1 | Biological and environmental variables, and their abbreviations used
throughout the text and figures.

Variable
Category

Variable Name Abbreviation

Biological Maximum relative Electron Transport
Rate

rETRmax

Alpha (initial slope of RLC curve) Alpha

Total chlorophyll total.chl

Total number of leaves per shoot total.leaves.per.
shoot

Sheath length sheath.len

Length of leaf 3 length.leaf.3

Vegetative shoot density veg.shoot.dens

Phenolic acid concentration phenolics

Percent nitrogen per.N

Water soluble carbohydrates WSC

Ratio of above to below ground
biomass

AG:BG

Reproductive shoot density repro.shoot. dens

Patch size mean.patch.size

Patch density patch.dens

Environmental Ratio of high to middle frequency
temperature variability

HF.MF.temp.
variability

Mean temperature mean.temp

Max temperature max.temp

Standard deviation of temperature stdev.temp

95th quantile temperature quant.95.temp

Growing Degree Day GDD

Number of days above 23C n.days.23C

Tidal temperature range tidal.temp.range

Daily temperature range daily.temp.range

Mean water current speed mean.currents

Minimum water current speed min.currents

Mean Photosynthetically Active
Radiation

mean.PAR

Max Photosynthetically Active Radiation max.PAR

Mean light attenuation coefficient mean Kd

Relative Wave Exposure REI

Water depth depth

Seafloor slope slope

Percent sand Per.sand

in both analyses (Figure 2 and Supplementary Figure S1).
Sites loaded similarly along the first principal component in
both analyses, but warmer sites spread further along the second
principal component when currents were included (Figure 2 and
Supplementary Figure S1).

Mean temperatures ranged from 8.31 to 10.84◦C across
all sites. The warmest sites were Port l’Hebert, Port Joli, and
Lower Three Fathom (Supplementary Table S2), as these sites
generally had the highest extreme temperatures (max and 95th
quantile), more days above 23◦C, and greater temperature
variability (standard deviation of temperature, daily and
tidal temperature ranges, HF:MF temperature variability)
(Figures 2, 3 and Supplementary Table S2). These warmer
sites were also among the shallowest (mean depth at high
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TABLE 2 | Regression results for biological metrics of production.

Response

Predictor Coeff Beta rs
2 Unique Common r2 GenDom RIW Rank

Total Chlorophyll

per.sand 0.065 0.294 0.691 0.047 0.287 0.334 0.160 0.167 1

slope 1.047 0.408 0.545 0.050 0.213 0.263 0.130 0.118 2

REI 0.017 0.264 0.368 0.029 0.149 0.178 0.073 0.077 3

mean.currents 0.639 0.201 0.323 0.026 0.130 0.156 0.064 0.072 4

mean.temp 2.520 0.394 0.078 0.046 –0.008 0.038 0.038 0.031 5

mean.Kd 2.232 0.140 0.012 0.009 –0.004 0.006 0.018 0.017 6

Number of Leaves Per Shoot

slope 0.099 0.373 0.909 0.055 0.271 0.326 0.150 0.154 1

n.days.23C –0.019 –0.168 0.814 0.008 0.284 0.292 0.107 0.102 2

mean.Kd –0.095 –0.057 0.546 0.001 0.195 0.196 0.057 0.056 3

tidal.temp.range –0.208 –0.074 0.441 0.003 0.156 0.158 0.045 0.047 4

Sheath Length

mean.PAR –1.843 –1.319 0.273 0.351 –0.146 0.205 0.290 0.307 1

HF.MF.temp.variability –16.599 –0.039 0.259 0.000 0.195 0.195 0.161 0.134 2

tidal.temp.range –318.443 –1.096 0.059 0.160 –0.115 0.045 0.105 0.101 3

REI –0.606 –0.894 0.025 0.146 –0.128 0.019 0.077 0.084 4

min.currents –67.242 –0.526 0.000 0.053 –0.053 0.000 0.068 0.065 5

slope –8.056 –0.291 0.010 0.024 –0.017 0.007 0.053 0.063 6

Leaf 3 length

mean.PAR –8.162 –1.605 0.147 0.393 –0.276 0.118 0.269 0.290 1

HF.MF.temp.variability –315.200 –0.202 0.090 0.002 0.071 0.072 0.116 0.076 2

min.currents –446.987 –0.961 0.040 0.109 –0.077 0.032 0.083 0.076 3

slope –15.353 –0.152 0.079 0.002 0.061 0.063 0.069 0.076 4

REI –3.162 –1.282 0.001 0.242 –0.241 0.001 0.100 0.113 5

tidal.temp.range –1410.011 –1.333 0.002 0.147 –0.146 0.001 0.078 0.073 6

daily.temp.range 143.779 0.611 0.005 0.027 –0.023 0.004 0.046 0.049 7

mean.currents 55.421 0.443 0.027 0.061 –0.039 0.022 0.027 0.021 8

per.sand 1.753 0.201 0.000 0.009 –0.009 0.000 0.014 0.027 9

Canopy Height

HF.MF.temp.variability –188.320 –1.480 0.074 0.106 –0.048 0.167 0.059 0.132 1

mean.PAR –0.396 –0.955 0.070 0.117 –0.061 0.161 0.056 0.170 2

min.currents –31.190 –0.823 0.055 0.136 –0.093 0.120 0.044 0.099 3

REI –0.229 –1.138 0.015 0.195 –0.183 0.110 0.012 0.109 4

tidal.temp.range –29.807 –0.346 0.002 0.008 –0.006 0.069 0.001 0.071 5

mean.temp 10.328 0.504 0.003 0.014 –0.012 0.020 0.002 0.050 6

daily.temp.range 42.286 2.206 0.001 0.160 –0.159 0.085 0.001 0.079 7

GDD –0.114 –1.852 0.002 0.094 –0.093 0.043 0.001 0.049 8

per.sand 0.335 0.472 0.000 0.048 –0.047 0.022 0.000 0.038 9

Vegetative Shoot Density

HF.MF.temp.variability 73.472 0.613 0.746 0.058 0.474 0.532 0.287 0.257 1

tidal.temp.range 22.843 0.281 0.506 0.024 0.337 0.361 0.161 0.165 2

per.sand –0.100 –0.150 0.331 0.005 0.231 0.236 0.099 0.111 3

mean.currents –2.549 –0.265 0.200 0.039 0.104 0.142 0.068 0.077 4

mean.temp –3.797 –0.197 0.052 0.006 0.031 0.037 0.029 0.037 5

slope 2.453 0.317 0.006 0.014 –0.009 0.004 0.044 0.036 6

n.days.23C –0.455 –0.142 0.019 0.003 0.011 0.013 0.026 0.030 7

Selected predictor variables identified by lasso regression for each response variable are shown along with their coefficients, beta weights, squared structure coefficients
(rs2), commonality coefficients (Unique, Common), the sum of the commonality coefficients (r2), general dominance (GenDom), and Relative Importance Weights (RIW).
Also shown is the overall rank of each predictor based on rs2, r2, General Dominance, and RIW. Variable abbreviations are defined in Table 1.
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FIGURE 3 | Matrix of Pearson’s correlation coefficients between all environmental and biological metrics. Points are colored and sized according to the value of the
Pearson’s correlation coefficient. Biological metrics are shown in green and split into those associated with production and resilience. Environmental metrics are in
black and categorized as indicated. Variable abbreviations are defined in Table 1. Plot created using the corrplot package in R (Wei and Simko, 2017).

tide = 0.9–1.7 m) with the highest light attenuation (mean
Kd = 0.8–1.62 m−1), and some of the lowest slope angles
(0.14–1.82◦), current speeds (mean current speed = 0.66–
3.67 cm s−1), and wave exposure (REI = 3.00–16.39) (Figure 2
and Supplementary Table S1). The warmer, shallower sites
also generally had low percent sand (i.e., high percent silt:
27.09–79.26%) in sediments (Supplementary Table S1). The
coldest sites were the deep locations at Sambro, Taylor’s Head,
Sacrifice, Croucher, and Cable, where mean temperatures
and variability were low and temperatures did not exceed

23◦C (Figure 2 and Supplementary Table S2). These cooler
deep locations (mean depth at high tide = 3.4–6.2 m) had
lower light attenuation (mean Kd = 0.39–0.70 m−1) and PAR
(189.74–279.15 µmol m−2 s−1), and higher slope angles
(1.49–10.77◦) (Supplementary Table S1), wave exposure
(REI = 19.52–285.82), and current speeds (mean current
speed = 3.69–6.61 cm s−1) than the warmest sites and
locations. There were some shallow sites that had moderate
mean and maximum temperatures, and low light attenuation,
but had high temperature variability, and relatively low
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current speeds, wave exposures, and slope angles (Mason’s
Island, Cable Shallow) (Figure 2 and Supplementary Tables
S1, S2). Mean PAR was not strongly correlated with light
attenuation, but was negatively correlated with depth, water
currents, and wave exposure, and positively correlated
with temperature, although these correlations were fairly
weak (Figure 3).

Biological Metrics Along Environmental
Gradients
Biological metrics of production and resilience were examined
in terms of their relationships to environmental gradients
(Figures 2–5), as well as the relative importance of individual
environmental variables for each biological metric (Table 2 for
production, Table 3 for resilience). We then looked at the
overall importance of environmental metrics across all biological
variables (Figure 6).

Metrics of Production
Biological metrics of production were plotted against each site’s
ranking on the first principal component of the PCA to visualize
relationships with the main environmental gradient represented
by the sites (temperature, light attenuation, depth, slope, REI,
and percent sand) (Figure 4). The photosynthetic parameters
rETRmax and alpha tended to decrease along the gradient when
moving from deeper cooler sites to shallower warmer sites
(rETRmax = 27–148 a.u., α = 0.068–0.225 electrons/photons),
except for low values at the two coldest sites (Sambro Deep,
Taylor’s Head Deep). Bivariate correlations (Figure 3) were
strongest between the two metrics of photosynthetic efficiency
(rETRmax and alpha) and temperature variability (HF:MF
temperature variability, stdev temp, and the daily temperature
range), mean current speeds, mean light attenuation, and slope,
with all relationships being negative except with slope and
mean current speed. Total chlorophyll (median) also generally
decreased along the environmental gradient represented by PC1
(13.4–25.6 µg cm−2) (Figure 4), and was influenced by positive
relationships with percent sand, slope, wave exposure, mean
water currents, mean temperature, and mean light attenuation
(Figure 3 and Table 2). The median number of leaves per
shoot also decreased along the gradient represented by PC1
(5.0–6.0 leaves) (Figure 4), with slope (positive relationship),
days above 23◦C (negative relationship), mean light attenuation
(negative relationship), and the tidal temperature range (negative
relationship) as the most important determinants (Figure 3 and
Table 2).

Sheath length, leaf length, and canopy height largely showed
similar patterns across sites (sheath length = 96.3–296.5 mm,
leaf length = 328.8–1022.5 mm, canopy height = 30.0–80.5 cm)
(Figure 4). None of these metrics strongly reflected the
environmental gradient in PC1, however, they more strongly
reflected the gradient in PAR represented by PC2 (Figures 2,
4 and Table 2), being longest at the deeper cooler sites and
the warmest, shallowest sites compared to shallow cool sites.
HF:MF temperature variability and mean PAR were the top two
ranking variables in all three models, with shorter plants at sites
with higher short-term temperature variability and higher PAR

(Table 2). The next highly ranked variables in these models were
the tidal temperature range, minimum current speed, slope, and
wave exposure, with the daily temperature range, mean water
current speed, mean temperature, GDD, and percent sand also
being selected, but ranking lower in importance (Figure 3 and
Table 2). Vegetative shoot density did not strongly vary along
the environmental gradient represented by PC1 (14.0–57.5 shoots
0.0625 m−2) (Figure 4), and was most strongly influenced by a
positive effect of HF:MF temp variability and tidal temperature
range, with the percent sand (negative relationship), mean
currents (negative relationship), mean temperature (negative
relationship), slope (positive relationship), and the number of
days above 23◦C (negative relationship) also being selected, but
ranking moderately to low in importance (Figure 3 and Table 2).

Metrics of Resilience
Phenolics weakly decreased across the environmental gradient
represented by PC1, with the exception of low values at Croucher
Shallow and Deep (8.35–52.02 mg GAE mg−1 DW) (Figure 5).
The most important determinants included mean temperature
(negative relationship), wave exposure (positive relationship),
percent sand (negative relationship), water currents (mean and
minimum) (positive relationships), and the daily temperature
range (positive relationships), with the other selected variables
(slope and depth) being lower in importance (Figure 3 and
Table 3). The percent of nitrogen in leaves did change along
the environmental gradient represented by PC1 (1.0–1.62%),
and was highest at the warmer, shallower sites and the deepest,
coolest sites (Figure 5). Values were consistently below the
threshold for nitrogen enrichment (1.8% dry weight) (Short,
1987; Duarte, 1990). Percent nitrogen was influenced by mean
light attenuation (positive relationship), max PAR (negative
relationship), slope (positive relationship), percent sand (positive
relationship), maximum temperature (positive relationship), and
minimum currents (positive relationship), with the daily and
tidal temperature ranges and wave exposure being selected, but
ranking lower in importance (Figure 3 and Table 3). WSC
in plant rhizomes generally increased along the environmental
gradient represented by PC1, ranging from 18.18 to 36.33% dry
weight (Figure 5). The environmental metrics driving variation
in WSC were slope (negative relationship), tidal temperature
range (positive relationship), the number of days above 23◦C
(positive relationship), percent sand (positive relationship),
mean light attenuation (negative relationship), depth (negative
relationship), and currents (mean and minimum, positively
correlated) (Figure 3 and Table 3).

The ratio of above to belowground biomass increased along
the environmental gradient represented by PC1 (0.17–2.73),
with higher values at the warmer, shallower sites as compared
to the deeper, cooler sites (Figure 5). The most important
environmental metrics driving variation were the mean PAR
(positive relationship), percent sand (negative relationship), and
mean water current speed (positive relationship) (Figure 3
and Table 3). Reproductive shoot densities showed no trend
along PC1 (0.1–2.8 shoots 0.0625 m−2) (Figure 5), being
influenced mainly by water current speed (minimum and mean,
negative relationships), percent sand (positive relationship), the
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TABLE 3 | Regression results for biological metrics of resilience.

Response

Predictor Coeff Beta rs
2 Unique Common r2 GenDom RLW Rank

Phenolics
mean.temp −13.956 −0.737 0.220 0.047 0.087 0.134 0.163 0.129 1

REI 0.071 0.382 0.177 0.024 0.084 0.108 0.102 0.111 2

per.sand −0.244 −0.372 0.125 0.022 0.055 0.076 0.125 0.117 3

min.currents 14.926 0.427 0.064 0.021 0.017 0.039 0.051 0.064 4

daily.temp.range 9.096 0.514 0.009 0.025 −0.020 0.005 0.081 0.072 5

mean.currents 0.749 0.080 0.059 0.002 0.034 0.036 0.021 0.028 6

Depth −1.955 −0.243 0.011 0.009 −0.002 0.007 0.026 0.041 7

Slope −2.918 −0.385 0.000 0.032 −0.032 0.000 0.039 0.046 8

Nitrogen
mean.Kd 0.298 0.417 0.220 0.017 0.169 0.186 0.158 0.152 1

max.PAR −0.002 −1.012 0.111 0.188 −0.094 0.094 0.150 0.138 2

Slope 0.103 0.893 0.085 0.129 −0.058 0.072 0.132 0.124 3

per.sand 0.001 0.128 0.156 0.005 0.127 0.132 0.070 0.075 4

max.temp 0.025 0.606 0.055 0.010 0.037 0.047 0.114 0.105 5

min.currents 0.012 0.023 0.074 0.000 0.063 0.063 0.077 0.076 6

tidal.temp.range −0.215 −0.178 0.027 0.005 0.017 0.023 0.043 0.049 7

daily.temp.range 0.128 0.475 0.001 0.007 −0.007 0.001 0.055 0.074 8

REI −0.002 −0.656 0.008 0.096 −0.090 0.006 0.048 0.054 9

Slope −2.402 −0.850 0.257 0.106 0.069 0.175 0.105 0.104 1

tidal.temp.range 37.630 1.270 0.190 0.295 −0.166 0.129 0.155 0.150 2

n.days.23C 0.476 0.407 0.214 0.043 0.102 0.146 0.080 0.099 3

per.sand 0.050 0.206 0.227 0.015 0.139 0.155 0.055 0.050 4

mean.Kd −20.398 −1.165 0.010 0.297 −0.290 0.007 0.133 0.108 5

Depth −0.822 −0.275 0.207 0.022 0.119 0.141 0.053 0.074 6

min.currents 11.365 0.873 0.083 0.088 −0.031 0.056 0.058 0.057 7

mean.currents 0.832 0.237 0.000 0.020 −0.020 0.000 0.043 0.040 8

AGBM:BGBM
mean.PAR 0.006 0.257 0.451 0.056 0.046 0.102 0.082 0.083 1

per.sand −0.013 −0.306 0.378 0.073 0.013 0.086 0.082 0.083 2

mean.currents 0.190 0.319 0.132 0.090 -0.060 0.030 0.063 0.061 3

Reproductive Shoot Density
mean.currents −0.212 −0.280 0.443 0.028 0.144 0.171 0.114 0.118 1

min.currents −1.096 −0.391 0.209 0.023 0.058 0.081 0.074 0.079 2

per.sand 0.030 0.570 0.124 0.176 −0.128 0.048 0.149 0.128 3

tidal.temp.range 0.609 0.095 0.133 0.003 0.048 0.051 0.031 0.041 4

mean.PAR −0.003 −0.103 0.042 0.008 0.009 0.016 0.019 0.021 5

Patch Size

mean.currents −4.740 −0.480 0.444 0.187 −0.042 0.146 0.173 0.172 1

mean.Kd −25.044 −0.503 0.164 0.182 −0.129 0.054 0.125 0.121 2

REI −0.039 −0.203 0.059 0.029 −0.009 0.019 0.031 0.036 3

Patch Density

GDD 0.001 2.103 0.238 0.368 −0.163 0.205 0.260 0.221 1

daily.temp.range −0.116 −1.425 0.160 0.211 −0.073 0.137 0.100 0.084 2

per.sand −0.004 −1.337 0.072 0.332 −0.270 0.062 0.129 0.105 3

mean.Kd 0.085 0.395 0.109 0.024 0.069 0.094 0.049 0.086 4

min.currents 0.181 1.151 0.010 0.171 −0.163 0.008 0.103 0.094 5

tidal.temp.range 0.140 0.394 0.083 0.030 0.041 0.071 0.035 0.062 6

mean.currents 0.005 0.116 0.019 0.004 0.012 0.016 0.076 0.079 7

mean.PAR 0.001 0.553 0.072 0.040 0.022 0.062 0.046 0.066 8

REI 0.001 1.244 0.022 0.153 −0.134 0.019 0.063 0.063 9

Selected predictor variables identified by lasso regression for each response variable are shown along with their coefficients, beta weights, Pearson’s correlation (r),
structure coefficient (rs), the squared structure coefficient (rs2), commonality coefficients (Unique, Common), the sum of the commonality coefficients (r2), general
dominance (GenDom), and Relative Importance Weights (RIW). Also shown is the overall rank of each predictor based on rs2, r2, General Dominance, and RIW. Variable
abbreviations are defined in Table 1.
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FIGURE 4 | Biological metrics of production plotted against each site’s score along the first principal component in the PCA of environmental variables. The
least-squares fit straight line is given in black. Point color corresponds to Figure 2, demonstrating a gradient from cooler, deeper sites (blue) to warmer, shallower
sites with higher light attenuation (red).
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FIGURE 5 | Biological metrics of resilience plotted against each site’s score along the first principal component in the PCA of environmental variables. WSCs were
measured in rhizomes, while % Nitrogen was measured in leaves. The least-squares fit straight line is given in black. Point color corresponds to Figure 2,
demonstrating a gradient from cooler, deeper sites (blue) to warmer, shallower sites with higher light attenuation (red).

Frontiers in Marine Science | www.frontiersin.org 13 February 2021 | Volume 8 | Article 597707

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-597707 January 30, 2021 Time: 17:39 # 14

Krumhansl et al. Drivers of Eelgrass Productivity and Resilience

tidal temperature range (positive relationship), and mean PAR
(negative relationship) (Figure 3 and Table 3). Eelgrass patch
size showed no trend along PC1 (1.9–50.0 m2) (Figure 5), and
was most strongly influenced by negative relationships with mean
water current speed, mean light attenuation, and wave exposure
(Figure 3 and Table 3). Patch density increased along the
environmental gradient represented by PC1 (0.02–0.28 patches
m−2), primarily driven by high patchiness at Port Joli muddy
and sandy. Here high patchiness was mainly due to high GDD,
low percent sand, and high light attenuation, with minimum
and mean water current speed (positive relationship), the tidal
temperature range (positive relationship), mean PAR (positive
relationship), and wave exposure (positive relationship) being
selected in the model, but ranking moderate to low in importance
(Figure 3 and Table 3). Daily temperature range also ranked
highly in this model, but is likely a suppressor variable, defined
as a variable with weak predictive power on its own, but which
modifies the predictive power of the other predictors in the model
(Kraha et al., 2012). This was evidenced in a mismatch in sign
between Beta and r, and a negative Common coefficient (Table 3)
(Ray-Mukherjee et al., 2014).

Relative Importance of Environmental
Metrics
Metrics of Production
Mean PAR was the most important variable influencing metrics
of production, having the highest overall ranking (closest to
1) when averaged across models where it was included as a
predictor variable, but it was only selected in three models of
seven (Figure 6 and Table 2). HF:MF temperature variability
was the second highest ranked metric, occurring in four of the
seven models (Figure 6 and Table 2). Mean light attenuation
was also among the most important predictors in two models,
but ranked lower than six other metrics (Figure 6 and Table 2).
Five other metrics of temperature were included in models of
production, including the tidal temperature range (ranked 6th,
occurring in five models), the number of days above 23◦C
(ranked 8th, occurring in two models), the mean temperature
(ranked 9th, occurring in three models), daily temperature range
(ranked 12th, occurring in two models), and GDD (ranked 13th,
occurring in one model) (Figure 6 and Table 2).

Metrics of water motion, including current speed (minimum
and mean), slope, and wave exposure (REI) were commonly
selected in models for production metrics and were relatively
highly ranked (3rd, 10th, 4th, and 5th, respectively) (Figure 6
and Table 2). Percent sand (also correlated with REI and water
currents) was selected in four of the seven total models, but
ranked low in importance (Figure 6 and Table 2). Depth was not
selected in any models of production metrics, but is correlated
with wave exposure, light, and water currents, and to some
degree, percent sand and slope (Figures 3, 6 and Table 2).

Metrics of Resilience
There was higher variability in the importance of environmental
variables for resilience metrics than for production, with five
variables appearing in only one of the seven models, indicating
no single metric influences all aspects of resilience (Figure 6).

Other temperature metrics included in the models were mean
temperature, GDD, the number of days above 23◦C, and max
temperature, which were selected in only one model each, but
generally had high relative importance (Figure 6 and Table 3).
Tidal temperature range and the daily temperature range were
selected in three and four models respectively, but generally
ranked lower in importance (Figure 6 and Table 3). Mean light
attenuation and maximum PAR were the third and fourth highest
ranking environmental metrics, with light attenuation appearing
in four of the seven models, where it was highly ranked (Figure 6
and Table 3). The percent sand and slope (highly correlated)
were moderately ranked relative to other environmental variables
for metrics of resilience, appearing in six and three of the seven
models, respectively (Figure 6 and Table 3). Metrics of water
motion, including wave exposure and currents (minimum and
maximum) were also commonly selected in models, but had a low
relative importance (Figure 6 and Table 3). Depth was selected
in two models, but was less important than other environmental
metrics (Figure 6 and Table 3).

DISCUSSION

Our results demonstrate the strong interacting roles of
temperature, light, water movement, and sediment characteristics
in shaping metrics of eelgrass (Zostera marina) productivity and
resilience across a broad range of biological scales (physiological,
morphological, population, landscape). Eelgrass sites in this
study spanned environmental gradients defined by variation in
temperature and light conditions, water movement, depth, and
sediment characteristics. Sites with higher mean temperatures
also had higher temperature extremes and greater short-term
temperature variation (tidal and daily time scales), and were
shallower, less exposed to waves and water currents, and had high
light attenuation. Zostera marina beds at the warmest sites in our
study showed signs of temperature and light stress, which led
to apparent declines in photosynthetic efficiency and resilience.
This was in contrast to plants at deeper, cooler sites, which were
able to maintain high productivity and resilience under low
light conditions.

Acclimation to low light in Z. marina was evident at warmer
sites through the growth of longer sheaths, leaves, and canopy
heights relative to sites with higher light levels, which are
morphological changes that increase photosynthetic area (Ruiz
and Romero, 2003; Lee et al., 2007; Ochieng et al., 2010;
McMahon et al., 2013; Wong et al., 2020a). Plants can also
increase tissue pigment concentrations in low light to increase
the efficiency of light capture (Ruiz and Romero, 2003; McMahon
et al., 2013), but this response was not evident at the warmest
sites. Low chlorophyll at warm sites was associated with low
rETRmax and alpha, indicating a decline in photosynthetic
efficiency in these plants despite more photosynthetic area,
which may be linked to heat-induced damage to photosynthetic
apparatus (Marin-Guirao et al., 2016).

There were also indications that plants at warmer sites
had reduced resilience relative to cooler sites, as phenolic
concentrations were lower, the ratio of above to belowground
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FIGURE 6 | Boxplots of environmental variable ranks in multiple regressions of metrics of production (top panel) and resilience (bottom panel), with lower ranks
representing higher importance. Ranks represent averages across squared structure coefficients (rs

2), commonality metrics (r2), general dominance, and Relative
Importance Weights. Boxes show the median, first, and third quartiles. Upper and lower whiskers correspond to the largest and smallest values, meeting the
condition that they are no further than 1.5 IQR from the first and third quartiles. Numbers for each variable represent the number of models each variable was
selected in. Variable abbreviations given in Table 1.

biomass was higher, and beds were patchier. Low phenolic
concentrations can arise under low light conditions due to
reduced requirements for UV protection or from plants
redirecting energy toward more fundamental metabolic processes
(Vergeer et al., 1995; Wong et al., 2020a), and represent a reduced
defense capacity of plants (Agostini et al., 1998). Losses of
belowground biomass occur as carbohydrate reserves are utilized
or their production reduced during periods of low photosynthesis

to maintain a positive carbon balance (Wong et al., 2020b), and
as plants allocate less energy to belowground tissues to reduce
the respiratory burden (Fraser et al., 2014; George et al., 2018,
Strydom et al., 2020), leading to increases in the ratio of above to
belowground biomass in stressed beds. The consequence of this
are that plants have smaller energy reserves for times of stress and
are more likely to become uprooted. Patchier beds have a lower
capacity to recover from additional physical disturbance through
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asexual vegetative growth from rhizome elongation (Fonseca
and Bell, 1998; Rasheed, 2004), and therefore bed continuity is
considered a key attribute of resilience to future disturbances
(Unsworth et al., 2015).

Reproductive shoot densities were also higher at warmer
sites with lower water motion, consistent with a response to
stressful conditions intended to better enable population recovery
following loss (Díaz-Almela et al., 2007; Cabaco and Santos,
2012). Contrary to our expectations, WSC concentrations were
highest at the warmest sites. In fact, heat stressed plants can
have high sugar concentrations, which serve a protective function
for proteins, membranes, and the photosynthetic apparatus, and
therefore sugar metabolism can be downregulated in heat stressed
plants (Kaplan and Guy, 2004; Gu et al., 2012; Moreno-Marin
et al., 2018). Taken together, these results suggest that plants at
the warmest sites in our study are stressed due to a combination
of high temperatures, high light attenuation, and low water
flow, leading to declines in photosynthetic efficiency and overall
resilience relative to cooler sites.

Interestingly, we saw the fewest and shortest leaves at the
warmest site in our data set (Port Joli Muddy), likely reflecting
conditions that are persistently stressful over the time scale of
months to years, leading to a loss of biomass to reduce respiratory
demand (Ochieng et al., 2010; McMahon et al., 2013). This site
also had the lowest chlorophyll concentration, which, combined
with a reduction in tissue mass suggests a decline in plant ability
to acclimate to low light conditions (Ochieng et al., 2010). Plants
at this site also had the highest concentration of WSC and
ratio of above to below ground biomass, the lowest reproductive
shoot densities, and the patchiest bed, providing clear indications
of low productivity and resilience at the extreme end of the
environmental gradient present in our study.

Acclimation to low light conditions was also evident at
the coldest sites in our study through morphological changes
that increase light capture (e.g., increases in the length and
number of leaves), similar to what was observed under low
light conditions at the warmest sites. However, in contrast to
the warm sites, eelgrass at the coldest and deepest sites in our
study had relatively high tissue pigment concentrations and
photosynthetic efficiency (Ruiz and Romero, 2003; Lee et al.,
2007; Ochieng et al., 2010; McMahon et al., 2013; Wong et al.,
2020a). The cooler temperatures at these sites likely play a role in
increasing the ability of seagrasses to tolerate low light conditions
through decreases in respiratory demand (Lee et al., 2007). In
addition, high water movement may have contributed to higher
photosynthetic efficiency by thinning the diffusive boundary
layer and increasing photosynthetic carbon uptake (Jones et al.,
2000; Koch, 2001). Plants at cooler, deeper sites also had
higher concentrations of phenolics, low above to belowground
biomass ratios, and less patchy beds. Taken together, these results
suggest that cooler temperatures and higher water movement are
conducive to the maintenance of high productivity despite low
light conditions, and allow Z. marina to maintain high resilience
relative to warmer, shallower sites.

Vegetative shoot densities are linked to the overall capacity
of an eelgrass bed for growth and expansion, and low shoot
densities can indicate stress or disturbance (Lopez y Royo et al.,

2010; Ochieng et al., 2010; McMahon et al., 2013). We did
not observe a clear relationship between the environmental
gradients in this study and shoot densities, and there was no
indication that sites where plants displayed other indicators of
stress and reduced resilience had lower shoot densities. In fact,
shoot densities in some cases were higher where temperature
was warmer and light was lower, possibly reflecting a photo-
acclimation response to high stress by increasing photosynthetic
area, although this was not a consistent pattern. Previous
work has shown that seagrass structural metrics, such as shoot
density, are slower to respond to environmental stressors. While
shoot densities are good general indicators of long-term stress,
physiological, biochemical, growth, and morphological metrics
are typically more useful for detecting short-term changes in
environmental conditions and for identifying specific stressors
(Oliva et al., 2012; Roca et al., 2016). Consistent with our
results, this points to the importance of monitoring a variety
of biological metrics to capture a range of possible responses
to environmental change over varying time scales (Romero
et al., 2007; Roca et al., 2016). Our results suggest that
photosynthetic efficiency, number of leaves, WSC, the ratio
of above to below ground biomass, and eelgrass continuity
were the biological metrics most responsive in our system to
environmental conditions, and may be the most useful for
future monitoring.

Our analysis also shows that temperature and light play
important roles in influencing eelgrass production and resilience
(e.g., Lee et al., 2007; Marbà and Duarte, 2010; Lefcheck et al.,
2017; Strydom et al., 2020). Temperature and light metrics were
selected in nearly all models, and generally ranked high in
importance relative to other environmental variables. However,
there was no single temperature metric that was important
for all, or even the majority of biological responses. Mean
temperature, GDD, the maximum temperature, and the number
of days above 23◦C were each important determinants of
biological responses, but were selected in few models each.
Metrics relating to the magnitude of short-term temperature
variability (the ratio of high to mid frequency temperature
variability and the tidal and daily temperature ranges) were
the most commonly selected temperature metrics, and they
generally ranked high in importance. Spikes in temperature
associated with solar heating during low tides are characteristic
of shallow intertidal communities (Wong et al., 2013; Collier and
Waycott, 2014; George et al., 2018), and short-term exposure
to high temperatures has been linked to declines in seagrass
biomass and performance (Biebl and McRoy, 1971; Marsh et al.,
1986; Moore et al., 2014; George et al., 2018; Shields et al.,
2019). Most previous studies have characterized the effects of
high temperature exposure events associated with heat waves or
extreme low tides, rather than the effects of repeated thermal
stress during regular daily or tidal cycles throughout the growing
season (but see Stapel et al., 1997; Moore et al., 2014; Pedersen
et al., 2016; George et al., 2018). Our results suggest that gradients
of productivity, and to some degree resilience, were related to
the extent to which eelgrass beds experience large changes in
temperature over short time periods, and indicate that the effects
of repeated exposures to high and low temperature conditions
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should be more widely considered at a mechanism of stress in
eelgrass plants (Zimmerman, 2006; Lefcheck et al., 2017).

Water motion (water currents, wave exposure, and seafloor
slope) and sediment characteristics have been linked to spatial
patterns in eelgrass landscapes through relationships with
temperature, seawater and sediment chemistry, and rates of
physical disturbance (Goodman et al., 1995; Fonseca and Bell,
1998; Koch, 2001; Pérez et al., 2007; Krause-Jensen et al.,
2011), and were commonly selected in models of eelgrass
productivity and resilience in our analysis. Low water current
speed, slope, exposure, and percent sand in sediments were
associated with reduced eelgrass productivity and resilience, but
these environmental metrics were less important overall than
temperature and light. Temperature and light are influenced
by depth and water movement, and our analysis shows that
biological responses are likely not driven primarily by any explicit
effects of depth and water movement, but rather by the effects of
temperature and light directly.

In order to identify the most important environmental
predictor variables that explained the biological production and
resilience metrics, we made use of lasso regression for variable
selection. The selected variables were chosen on the basis of a
regularization weight which in each case was identified by cross-
validation and optimizing the predictive skill of the regression
model. We elected to use a suite of regression fit metrics
in our multiple regressions modeling to interpret the relative
importance of predictor variables. This was largely due to the
multicollinearity that arose from the correlation of the predictor
variables, which was an inherent feature of the system. A more
typical approach is to remove collinear variables before modeling,
but this requires an a priori value judgment as to which variable
is more important. Our use of a suite of fit metrics allows for
interpretations of how collinear variables work together, and
which variables play the strongest role in influencing variance
independently, as well as in concert with other variables (Kraha
et al., 2012). For instance, all metrics of temperature used in
our analysis were highly collinear, and were strongly correlated
with other environmental variables in our data set, but evaluating
their relative importance with a suite of fit metrics enabled a
robust assessment of how different aspects of temperature (mean,
extremes, ranges, variability at different frequencies) influence
seagrass emergent properties. This allowed a more nuanced
interpretation of temperature effects on eelgrass.

CONCLUSION

Our research is among the first to use suites of biological
metrics along environmental gradients to identify conditions
conducive to high eelgrass productivity and resilience. We
identify temperature and light as the primary factors that
drive variation in ecosystem status across a spatial gradient
of ∼225 km, linking warm water, high temperature variability
over daily and tidal cycles, high light attenuation and low
water movement to reduced productivity and resilience. Our
results demonstrate that one single environmental metric does
not explain variation in all biological properties across sites. In

particular, bioindicators showed unique responses to different
characterizations of temperature (e.g., mean, maximum, high
frequency temperature variability) pointing to a wide range of
temperature effects on eelgrass ecosystems. For example, we
show that short duration thermal stress repeated on tidal and
daily cycles has important negative consequences for eelgrass
productivity and resilience. These results highlight the complex
role of environmental factors in shaping coastal ecosystems, and
indicate that a complete understanding of the effects of global
climate change requires a more nuanced approach that not only
characterizes changes to the mean, but also to the extremes and
variability over different time scales. Moreover, analyses that
allow for collinearity enable a more detailed investigation of
how different characterizations of environmental change shape
ecosystem responses, and can elucidate the multiple ways in
which global climate change is impacting the processes that
support the function and resilience of coastal ecosystems.
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