AUTHOR=Clementson Lesley A. , Richardson Anthony J. , Rochester Wayne A. , Oubelkheir Kadija , Liu Bingqing , D’Sa Eurico J. , Gusmão Luiz Felipe Mendes , Ajani Penelope , Schroeder Thomas , Ford Phillip W. , Burford Michele A. , Saeck Emily , Steven Andrew D. L. TITLE=Effect of a Once in 100-Year Flood on a Subtropical Coastal Phytoplankton Community JOURNAL=Frontiers in Marine Science VOLUME=8 YEAR=2021 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2021.580516 DOI=10.3389/fmars.2021.580516 ISSN=2296-7745 ABSTRACT=

Subtropical systems experience occasional severe floods, dramatically altering the phytoplankton community structure, in response to changes in salinity, nutrients, and light. This study examined the effects of a 1:100 year summer flood on the phytoplankton community in an Australian subtropical bay – Moreton Bay – over 48 weeks, from January to December 2011. Immediately after maximum flood levels were reached on the rivers flowing into the bay, the lowest salinity, and highest turbidity values, in more than a decade, were measured in the Bay and the areal extent of the flood-related parameters was also far greater than previous flood events. Changes in these parameters together with changes in Colored Dissolved Organic Matter (CDOM) and sediment concentrations significantly reduced the light availability within the water column. Despite the reduced light availability, the phytoplankton community responded rapidly (1–2 weeks) to the nutrients from flood inputs, as measured using pigment concentrations and cell counts and observed in ocean color satellite imagery. Initially, the phytoplankton community was totally dominated by micro-phytoplankton, particularly diatoms; however, in the subsequent weeks (up to 48-weeks post flood) the community changed to one of nano- and pico-plankton in all areas of the Bay not usually affected by river flow. This trend is consistent with many other studies that show the ability of micro-phytoplankton to respond rapidly to increased nutrient availability, stimulating their growth rates. The results of this study suggest that one-off extreme floods have immediate, but short-lived effects, on phytoplankton species composition and biomass as a result of the interacting and dynamic effects of changes in nutrient and light availability.