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Biological reference points (BRPs) derived from per-recruit analyses are commonly used
in inferring stock status and serve as the target or threshold in fisheries management.
However, the estimation of BRPs may be impacted by the variability in life history
processes, and particularly, individual growth rates often display substantial seasonal
oscillations but are seldomly considered in per-recruit analyses. Using four commercial
fish species Lophius litulon, Saurida elongata, Hexagrammos otakii, and Larimichthys
polyactis in coastal China Seas as examples, this study examined the effects of
seasonal growth variability on per-recruit analyses and on the estimation of BRPs.
We developed an individual-based modeling framework to simulate growth patterns
with and without variations at the seasonal and the individual levels and adopted
two common assessment methods, age-based analysis and length-frequency analysis,
to estimate growth parameters regarding data availability in data-rich or data-poor
fisheries, respectively. We found that ignoring seasonality could lead to substantial
errors in the estimation of BRPs for the small-size species H. otakii and L. polyactis
in our evaluation; when seasonal growth was considered, the estimation could be
largely improved. Length-frequency analysis might yield considerably less reliable
estimations than age-based method. The time of year when fast growth occurs
determines positive or negative bias in estimation, and the amplitude of seasonal
growth determines the degree of biases. In general, ignoring the seasonality of growth
when there is can lead to underestimated growth parameter K and trigger biases that
propagate in stock assessment and management, whereas incorporating seasonality
falsely in assessment when there is no seasonal variation will have little influences on
the estimation of BRPs. This study contributes to demonstrate the risk of ignoring
seasonality in stock assessment and the approaches accounting for seasonal variability
in fishery management.

Keywords: seasonality, per-recruit analyses, biological reference points, data availability, model improvement,
growth parameters
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INTRODUCTION

Successful management of global fish and invertebrate species
relies on quantitative stock assessment, which aims to maintain
stocks at sustainable levels while yielding optimal catch (Brooks,
2013; Punt et al., 2016). Even in data-limited situations
that lack sufficient data supporting a comprehensive stock
assessment, numerous data-limited methods are developed
to meet management objectives. However, these models are
commonly developed on specific assumptions or simplification
of biological processes, some of which may be violated in
realistic fisheries. For instance, heterogeneity of fish life-history
and fishing activities is prevalent in fisheries (Truesdell et al.,
2016), but it is not usually considered in assessment models.
Management advices obtained from these models, consequently,
may be misleading if the risks of violating assumptions are
not sufficiently understood. To achieve valid management
decision, uncertainty in stock assessment models needs to be
widely tested in terms of robustness (Patterson et al., 2001;
Magnusson et al., 2013).

Uncertainties in stock assessments may come from multiple
sources, including methods, biological processes, and observation
error. Regarding process uncertainty, there has been increasing
studies to investigate the effect of seasonal variability in life-
history processes on stock assessment and ecological models
(Hufnagl et al., 2013; Datta and Blanchard, 2016). In particularly,
numerous species in temperate seas display seasonal oscillations
in growth on account of fluctuations of temperature, light,
and food supply (Adolph and Porter, 1996; Coma et al., 2000;
Carmona-Catot et al., 2014). Even at tropic latitudes, strong
seasonal growth oscillations exist resulting from estivation or
minor temperature changes (Pauly et al., 1992). Growth is one
of the basis life-history processes that is often required in data-
limited methods, understanding of which is fundamental to the
knowledge of life histories, demography, and productivity (Pardo
et al., 2013). Thus, seasonal growth variability has been a concern
in stock assessments for a long time. Sparre (1990) indicated
that length-converted catch curves (LCCC) could overestimate
total mortality (Z) when growth was seasonal. Accordingly,
Pauly (1990) proposed an approach to seasonal length converted
catch curves (sLCCC). Recently, Hufnagl et al. (2013) evaluated
the performance of length-based total mortality estimators and
showed that the tested methods were sensitive to seasonal growth
and recruitment. In spite of the established methods to account
for seasonal growth, the common applications appear to be
resistant to changing. For instance, Von Bertalanffy growth
function (VBGF) (Beverton and Holt, 1957) doesn’t routinely
incorporate this feature but instead assume a constant growth
coefficient K, which impose crucial problems for assessment
methods. However, there is still limited understanding about
the effect of seasonality on stock assessments, i.e., estimation of
biological reference points (BRPs).

In addition to the process errors, there are substantial
observation errors in stock assessments from sampling, especially
in data-poor situations. For example, estimation of growth
parameters is commonly dependent on age determination, by
counting annual increments of otolith rings or other hard tissue,

which is assumed to be relatively accurate but not invulnerable
to measurement errors. Besides, species with accurate age
estimates are limited by high costs and technical difficulties.
In this circumstance, length-based methods, such as electronic
length frequency analysis (ELEFAN), are useful in estimating
growth parameters, as length composition data are more easily
obtained than age data. However, the effectiveness of length
frequency data may be affected by diverse issues, i.e., sample
size, selectivity, and uncovered distribution area (Schwamborn
et al., 2019). In addition, both methods can be impacted
by the variations in growth at the individual level, which
largely contributes to uncertainty in the studies of growth. In
practice, the different aspects of errors are likely to influence
stock assessments altogether, whereas their interactions and
overall effects remain unknown. Therefore, explicitly accounting
for seasonality and individual variability is desired in the
considerations of stock assessment.

This study examines the effect of seasonal growth when
using classic per-recruit analyses. We consider two models,
yield-per-recruit (YPR) and spawning-stock-biomass-per-recruit
(SSBPR) analyses, which reflect the trade-off between fisheries
yields and stock status, emphasizing growth-overfishing (King,
2013) and recruit-overfishing (Katsukawa, 2005), respectively.
Combined with BRPs, per-recruit analyses are widely used
in guiding fisheries management, especially in data-limited
situations (Gabriel and Mace, 1999; Moreau and Matthias,
2018; Zhai and Pauly, 2019), due to its light data requirement
(Chrysafi and Kuparinen, 2016) and partially the widespread
application of FiSAT II (FAO-ICLARM Fish Stock Assessment
Tools; FAO, 2006). In a recent evaluation for data-limited
length-based methods (Chong et al., 2019), TB method (length-
structure per-recruit analyses) could provide the most accurate
assessment. However, it should be noted that per-recruit analyses
are based on several strong assumptions such as equilibrium,
including constant vital rates (i.e., growth, natural mortality,
spawning, and recruitment) (King, 2013). In these types of
models, seasonal variability in growth is not incorporated in
most cases. As YPR analyses has been proved to be sensitive to
the choice of growth function (Spence and Turtle, 2017), such
unawareness of seasonal conditions may result in misleading
management guidelines.

In this study, we selected four species in coastal China Sea
to investigate how seasonal variability in growth affected per-
recruit analyses. We developed an individual-based modeling
framework to simulate seasonality and individual variations
in the process of growth. Additionally, regarding the possible
sources of information in data-rich and data-poor stocks, we
evaluated how two types of data, length-at-age data and length-
frequency data, contribute to estimating growth functions and
subsequent per-recruit analyses. With a range of simulation
scenarios about process and observation errors, we aim to
evaluate the risk of ignoring seasonality when using per-
recruit analyses in guiding management and to demonstrate
the uncertainty of BRPs. This study may contribute to
understanding uncertainties of BPRs in fisheries management
under the circumstance of seasonal variability and data-
poor stocks.
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MATERIALS AND METHODS

Data Sources
We considered four species in China’s coastal area, including
anglerfish (Lophius litulon), slender lizardfish (Saurida elongata),
greenling (Hexagrammos otakii), and small yellow croaker
(Larimichthys polyactis). They were all commercially important
and dominant species in ecosystem. These species had different
life-history traits, ranging from slow-growing and long lifetime
to short-lived fast-growing species. H. otakii represented
a cold-temperate species differing from other three warm-
temperate species.

A suit of biological data was collected from a trawl-
based fishery-independent survey in coastal waters of Shandong
Peninsula, China (See Supplementary Material for more details),
from which life-history parameters of those species were derived
with different methods. Length at recruitment (Lr) was set
according to the range of minimum length caught in fisheries
landings. Length-weight relationship was used to convert length
into weight, and parameters a and b were calculated from size
data using linear regression. Growth and maturation parameters
were gathered from literature (Table 1). Total mortality (Z), as
well as length-specific selectivity, was estimated by LCCC (Pauly,
1983). Natural mortality (M) was calculated by Pauly’s empirical
equation (Pauly, 1980). The parameters were listed in Table 1 and
in Supplementary Material for detailed formula.

A General Framework of Simulation
We designed an individual-based modeling framework to
investigate how seasonal and individual growth variability
affected the per-recruit analyses and accounted for different
amplitude of seasonality and data availability for different
scenarios (Figure 1). In the following sections, we described each
component of our simulation study.

Operating Model
The operating model is developed to account for the variability
of growth rate at the seasonal and individual levels. The model
is developed on the basis of “fishdynr” package (version 0.4.1,
Taylor, 2016) in R (version 3.5.3, R Core Team, 2018) with
modifications on sub-models of the sampling process and types
of available data.

Our model describes the primary life history processes, i.e.,
growth, mortality, and reproduction of fish species. With a time
step of 1 month, individual grows following a given growth
function and has probabilities to be caught in fishery or die of
natural mortality. At specific time of year, reproduction occurs
and new cohort is generated. Individuals caught by fishery are
sampled as survey data for subsequent assessments. Detailed
life-history processes are described as follows:

Seasonal growth
Seasonal growth models are generally based on the
modifications of the basic VBGF. Extensions that incorporate a
seasonality component into the model are used to describe
seasonal oscillation of growth, and many of them use
sine functions. This study adopts the model proposed by

Hoenig and Hanumara (1982) and described by Somers (1988),
so-called seasonal oscillation growth function (soVBGF):

Lt = L∞(1− e−K(t−t0)−( CK
2π

)(sin2π(t−ts)−sin2π(t0−ts)))

where Lt is the average length at age t, L∞ is the asymptotic length
(cm), K is the growth coefficient (year−1), t0 is the theoretical
age at length of zero, C modulates the amplitude of the seasonal
oscillation, and ts is the so-called summer point, indicating
the start of the convex portion of the first sinusoidal growth
oscillation. In this study, t0 is set to zero, assuming that fish has
zero length at birth. The “summer point” ts could be calculated
by: ts = Tfast − Tspawn, where Tfast is the fastest-growing time
of the year and Tspawn is the peak spawning time. Here, Tfast
is assumed to be 7/12 for warm-temperate species, and 1/12
for cold-temperate species (H. otakii), according to their life-
history characteristics. Tspawn is set based on known life-history
information (Table 1).

Individual variability
The growth function describes the average growth parameters
of the whole population, whereas individual growth trajectory
may be considerably different from the mean growth curve,
which may substantially bias the estimation of growth parameters
(Pilling et al., 2002). Here, individual growth variation is
introduced into growth parameters K and L∞ of each simulated
individual i, by multiplying the average growth parameters with
the coefficient of variation (CV): L∞ i = L̄∞ ∗ εi, where εi is a
random number generated for individual i following a log normal
distribution with mean = 0 and standard deviation = CV on the
log scale. The same procedure is used to generate the growth
parameter Ki for each individual i. CV of both K and L∞ is set to
0.1 in this study (Taylor and Mildenberger, 2017). The remaining
growth parameters, variables t0, C, and ts are set constantly for
all individuals.

Mortality and recruitment
Individual survival rate S = e−(M+F)1t , where M and F indicate
annual natural and fishing mortality coefficient, respectively.
1t is the time step on a yearly basis. For each time step,
individual stochastically dies from fishing or natural cause, with
a probability consistent with their relative proportions ( M

(M+F)

versus F
(M+F) ).

The model coupled a Beverton–Holt stock–recruitment
relationship, combining spawning stock biomass with parameters
for maximum recruitment, rmax, and a steepness coefficient,
beta. In order to focus on the effects of growth variability, beta
was set to 1 to imply constant recruitment at rmax level, as
the assumption is not concerned for per-recruit analyses. In
addition, recruitment was assumed to occur in single month,
Tspawn, instantaneously. When recruitment occurred, individual
had a length of zero. More detailed information about model
description can be found in Taylor and Mildenberger (2017).

Simulation Process
We set six gradients of seasonal growth oscillation, C = 0,
0.2, 0.4, 0.6, 0.8, and 1, to simulate different magnitudes of
seasonal variability. According to whether individual variation
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TABLE 1 | Input parameters used in per-recruit analyses and simulation.

Parameters Meanings (unit) Lophius litulon Saurida elongata Hexagrammos otakii Larimichthys
polyactis

Lr Length at first recruitment
(cm)

8.00 4.00 5.00 4.00

Growth a Length-weight relationship
constant

0.007 0.003 0.004 0.006

b Length-weight relationship
power

3.21 3.24 3.35 3.13

L∞ Asymptotic length (cm) 154.70 56.70 38.00 27.00

K Growth coefficient (year−1) 0.06 0.19 0.36 0.56

ts “Summer point” (year−1) 0.25 0.08 0.17 0.25

Tfast Fastest-growing time of the
year (year−1)

7/12 7/12 1/12 7/12

Mortality M Natural mortality coefficient
(year−1)

0.14 0.38 0.64 0.94

Z Total mortality coefficient
(year−1)

1.52 1.00 1.97 2.43

Selectivity S50 Length at 50% fishery
selectivity (cm)

25.43 12.92 7.04 12.14

rs Constant in selectivity
function

0.41 0.44 2.20 0.79

Maturation M50 Length at 50% sexual
maturity (cm)

56.7 21.18 20.67 14.16

rm Constant in maturity
function

0.24 0.13 0.46 0.68

Tspawn Peak spawning time of the
year (year−1)

3/12 6/12 11/12 4/12

References Yoneda et al.,
1997; Yoneda

et al., 2001

Sakai et al., 2009;
Du et al., 2011

Shan et al., 2017 Sun et al.,
2018

Length-specific variable were used in per-recruit analyses.

FIGURE 1 | Flowchart of the simulation in the present study. Six gradients of variable C (amplitude of the seasonal oscillation, 0, 0.2, 0.4, . . ., 1) are set in this study.
Deterministic section (scenario baseline) runs 1 time for each gradient of C, as the output is a deterministic value without uncertainty. Stochastic simulation runs
1000 times for each gradient of variable C, incorporating with individual growth variations (variability of K and L∞).

was incorporated, simulation process was divided into two parts
for each gradient (Figure 1).

Deterministic scenario
Before the simulation, the performance of estimation method was
evaluated without incorporating individual variations. The result

proved the validation of the estimation model (Supplementary
Figure 2). In this scenario, growth parameters were set unbiased.
The biological parameters and pre-designed variable C (using
soVBGF) in simulation were used directly as input of per-
recruit analyses. Therefore, the parameters represented the
“true” vital rates of biological processes, and this scenario thus
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served as a baseline to examine BRPs. Parameters other than
growth were assumed to be constant (this and the stochastic
scenarios in this study).

Stochastic section
With the same biological parameters as deterministic section, we
conducted the individual-based model (“operating model”) to
account for individual growth variations and errors in sampling.
In each simulation run, we generated two types of data, length-
at-age data and length-frequency data, from which growth
parameters were estimated and used for per-recruit analyses
(Figure 1). The former represented the cases of data-rich stocks
where ages were determined from otoliths, scales, or dorsal fin
spines, and the latter represented a data-poor situation, where age
data were unavailable but length data were collected.

To evaluate the bias resulting from growth seasonality
and sampling errors, we developed four simulation scenarios
(Table 2) that were based on length-at-age data (scenario I,
II) versus length-frequency data (scenario III, IV) and that
considered seasonality (using soVBGF as growth functions,
scenario II, IV) versus ignoring seasonal growth (using VBGF
as growth functions, scenario I, III), respectively. It should be
noted that no additional observation error or other source of
uncertainty was incorporated into simulation process, except the
stochasticity in mortality. The simulations were run 1000 times
for each gradient of variable C.

Assessment
Parameter estimation
In the simulation, the size and age of caught individuals were
recorded to generate length-at-age data and length-frequency
data (Figure 1). For length-at-age data, age was assumed to be
accurately estimated to the unit of seasons to estimate seasonal
growth. The growth parameters were estimated by non-linear
regression, using the “port” algorithm in R function “nls,” in
which the values of C and ts were constrained between 0 and
1 (Ogle, 2017). For length-frequency data, ELEFAN was used
to estimate growth parameters (Pauly and David, 1981), using
“ELEFAN_GA” in R package “TropFishR” (Mildenberger et al.,
2017). Regarding the common practices of seasonal surveys,
simulation data were selected from 4 months, January, April,
July, and October. Regarding the typical cost of aging, 400
individuals per species were age-determined to generate length-
at-age data, and all length measurement of catch was used as
length-frequency data.

Length-structure per-recruit analyses
Traditional per-recruit analyses are generally age-structured,
requiring age-dependent parameters, including age at
recruitment to the fishery and age-specific selectivity. However,
processes such as recruitment and selectivity are more closely
associated with individual size, rather than age-dependent
for many species (Hilborn and Walters, 1992). Thus, length-
structure per-recruit analyses is considered as better reflecting
biological and fishery-related processes (Kvamme and Bogstad,
2007), and this study re-parameterizes age-structure per-
recruit analyses to length-structure model to better reflect
length-dependent fishing and seasonality.

The length-structure per-recruit model uses length cohort
instead of age cohort in analyses. Interval between length at
recruitment (Lr) and asymptotic mean length (L∞) can be
divided into n segments (L1, L2, . . ., Ln), and L1 and Ln+1
represent Lr and L∞, respectively. Let d represent the width of
each class, and thus, dj = Lj+1 − Lj. d is set to equal in this
study for convenience while it should be noted that width d does
not necessarily to be equal. Combining above, length-structure
per-recruit analyses can be calculated as:

Y
R
=

n∑
j=1

[
WjSjF

SjF +M
(1− e−(SjF+M)1Tj)e−

∑j−1
k=1(SkF+M)1Tk

]

SSB
R
=

n∑
j=1

[
Wjmje−

∑j−1
k=1(SkF+M)1Tk

]
where j (k) represents the length class, Wj indicates the average
weight of length class j, Sj is the selectivity coefficient for length
class j, and mj is the maturation proportion for length class j. The
average time that species takes to grow from Lj to Lj+1, 1Tj, can
be estimated from growth function. When growth is modeled
by VBGF, 1Tj can be estimated as 1Tj =

1
K ln L∞−Lj

L∞−Lj+1
. When

growth is modeled by soVBGF, 1Tj cannot be estimated directly,
because of the complication resulting from sine function. The R
function “fzero” is used to convert length into age, and 1Tj can
be obtained for SOGF through a similar approach presented by
de Graaf and Dekker (2006). The full description of per-recruit
analyses can be found in Supplementary Material.

Biological reference points
Four typical BRPs were calculated by per-recruit analyses: Fmax,
the fishing mortality rate which produces the maximum YPR;
F0.1, the fishing mortality coefficient corresponding to 10% of the
slope of the YPR curve at the origin; F20% and F40%, the fishing
mortality coefficient at which SSBPR is 20% and 40% of the
SSBPR when fishing mortality coefficient is zero. The estimated
BRPs were compared to the corresponding true values to evaluate
the effects of diverse factors considered.

RESULTS

Risk of Ignoring Seasonality
We simulated four species under six gradients of seasonal
growth and four scenarios of data analyses (Figure 1) and
herein showed the results of F0.1 and F40% as example
(Figure 2). Ignoring seasonality (scenario I) could lead to
underestimation of BRPs when seasonality existed, and this
bias trended to increase dramatically with amplitudes of
seasonal oscillation, which implied that the species was less
productive than expected. The pattern was consistent for
all four BRPs considered. Incorporating seasonality (scenario
II) could largely reduce the bias, whereas certain level of
bias remained compared to the “true” values (deterministic
scenario). The bias could be attributed to the errors in the
estimation of growth parameters, i.e., overrating L∞ and
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TABLE 2 | Simulation scenarios for testing the impact of seasonality on estimation of biological reference points.

Scenario Data for growth estimation Estimation methods Seasonality Levels of seasonality

Deterministic section Baseline “True” values None Yes 0, 0.2, . . ., 1

Stochastic section I Length-at-age data Non-linear regression No 0, 0.2, . . ., 1

II Length-at-age data Non-linear regression Yes 0, 0.2, . . ., 1

III Length-frequency data ELEFAN No 0, 0.2, . . ., 1

IV Length-frequency data ELEFAN Yes 0, 0.2, . . ., 1

Growth parameters are calculated by two methods: non-linear regression for length-at-age data and electronic length frequency analysis (ELEFAN) for length-
frequency data.

FIGURE 2 | Relative bias of estimated BRPs F0.1 and F40% for four case species in the case of ignoring seasonality (scenario I) and considering seasonality (scenario
II) under different gradients of seasonal growth amplitude.

underrating K (Supplementary Figure 5). In addition, the
results revealed that seasonal growth could cause systematic
deviation in per-recruit analyses (Supplementary Figures 3, 4).
Besides, the extent of bias caused by seasonality varied
substantially among different species. Ignoring seasonality had
minor influence on the estimation of BRPs for the large-
size species (L. litulon and S. elongata), while it could lead
to serious under-estimation for small-sized species (H. otakii
and L. polyactis).

Risk of Falsely Incorporating Seasonality
Not all species display seasonal growth oscillation, and the
consequences of incorporating seasonality falsely were showed
in the case where seasonal amplitude C was zero but soVBGF
was adopted (scenario II when C = 0). Our results showed that
the inappropriate procedure would not substantially bias the
estimation, although leading to little overestimation in H. otakii
(Figure 3). The overestimation was similar or less for other
species. However, when seasonality was absent, fitting soVBGF

was likely to fail (Supplementary Table 1) because the length-
at-age data did not support fitting additional seasonal growth
parameters, which also reduced the risk of misdiagnose.

Effects of Data Types
To investigate the effect of seasonal growth in data insufficient
situation, we designed scenarios III and IV, in which only
length-frequency data were used for analyses. The estimations of
BRPs were generally biased in these two scenarios regardless of
the amplitude of seasonal oscillation (Figure 4). Incorporating
seasonality in ELEFAN might have little improvement for the
estimation of BRPs. Furthermore, ELEFAN cannot track the
changing of seasonal amplitude C properly (Supplementary
Figure 6), and its estimation for ts was highly volatile, indicating
its sensitivity to sample data.

How Seasonality Works
Our “baseline” scenario indicated that seasonality could result
in biased BRPs estimate even if the growth parameters were
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FIGURE 3 | Comparison of estimated BRPs between ignoring seasonality (scenario I) and considering seasonality falsely (scenario II) when seasonality was absent,
shown as density plot. X-axis denotes the value of BRPs, Y-axis denotes the density of each value. The dashed gray lines indicate the “true” values in deterministic
scenarios.

FIGURE 4 | Relative bias of the estimation of BRPs F0.1 and F40% in data insufficient situation. Scenario III and IV indicated ignoring and considering seasonality,
respectively.

accurately obtained, and the extent was affected by seasonal
oscillation amplitude (Supplementary Figure 3). We therefore
explored two additional sub-scenarios to investigate how

seasonality affected the estimation of BRPs (see Supplementary
Material for details), and H. otakii were used as an example.
Fitting VBGF with data of seasonal growth oscillation could lead
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FIGURE 5 | (A) Fitting growth function by VBGF and soVBGF within dataset that display seasonal growth oscillation, the amplitude of seasonality is 0.8. (B) Similar
plot with panel (A) except that the amplitude of seasonality is 0.4. (C) Scatterplot of the deviation caused by ignoring seasonality. Full line indicates trend line
generated by generalized additive models (GAMs). (D) Deterministic estimation of reference point Fmax for H. otakii under different ts. Black points and gray points
indicate that C is 0.8 and 0.4, respectively.

to higher L∞ and lower K, because algorithm could not handle
the deceleration phase of growth (Figures 5A,B, illustrating an
amplitude of seasonality of 0.8 and 0.4, respectively). In addition,
a remarkable correlation was observed between the range of
deviation in reference points and the value of parameter ts
(Figure 5C), and reference points also showed obvious patterns
with the change parameter ts and parameter C according to
numerical computation (Figure 5D). The results suggested ts
might be associated with the direction of bias and C determined
the magnitude of errors.

DISCUSSION

Seasonality in growth has been widely observed in aquatic
organisms, including marine and freshwater fish and
invertebrate (e.g., crustacean), as responses to variations of
environment conditions (e.g., fluctuations of temperature,
light, and food supply) and individual life history process
(e.g., molting). However, seasonality is seldomly incorporated
into routine practices of stock assessment for many reasons,
including that additional parameters used for incorporating
seasonality may increase the difficulty of model fitting.
Nevertheless, given the demand for accuracy of stock assessment
and success of management strategy, our results suggest
the influence of seasonality cannot be ignored in deriving
management references.

Our finding demonstrates that ignoring seasonality in growth
when it exists may result in misleading estimation of BRPs,
which may lead to further errors in management, such as the
under-estimation results in the loss of potential yield. Meanwhile,

the risk of misleading was different among the four species.
Seasonality showed negligible impact on the large-size species
L. litulon and S. elongata, but for medium or small-size species
H. otakii and L. polyactis, the mis-estimation could reach up
to 20% and thus was hard to be overlooked. The conclusion
was consistent with a previous study (Sparre, 1991), although
that focused on fisheries yield. This situation suggests that
management of some species (especially small-size one) may
be exposed to high risk when fishing-mortality based reference
points are used as proxies for MSY due to data insufficient. As
seasonality in growth is quite common for small-size short-lived
species (Veale et al., 2015; Yard et al., 2015; Tremont et al., 2016),
we recommend a prior test of seasonality for stock assessment on
those species to avoid possible bias.

This study explores how seasonal variability affects the
estimation of reference points and demonstrated that the effect
is associated with seasonal parameters C and ts. When seasonal
variability is considered in per-recruit analyses, the time span of
each length cohort 1T is distorted, suggesting that slow-growing
phase will be exposed to longer periods of fishing pressure before
moving into next cohort, which can be reflected in the tumbling
decrease within length composition (Figure 6). The position
of distortion can influence the population length composition,
for instance, population with a value of 0.95 for ts (shown in
Figure 6B) has earlier gone through the first “slippery slope”
than population of which ts is 0.15 (shown in Figure 6A) before
reaching length at first capture, which is why the former has
higher overall survival. The position is in control of variable ts, as
thus, position parameter ts regulates the direction of misleading
(if theoretical age at zero length is not equal to 0, position should
be controlled by both ts and t0). This perspective could explain
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FIGURE 6 | Growth curve and survival rates of each length group for H. otakii. (A) The population has a constant fishing mortality coefficient F = 0.4. C and ts are
set to 0.8 and 0.15, respectively. (B) ts is set to 0.95, and other parameters are same as former.

the interspecific difference on response to seasonality. Short-lived
species have shorter length group and higher mortality than long-
lived species, which made the distortion of growth rate and 1T in
per-recruit analyses more influential.

Our results reveal a potential risk of serious mis-estimation
of growth parameters L∞ and K if seasonality is ignored.
These parameters have been proved as the key parameters that
affect accuracy of estimated BRPs (Lin et al., 2015), implying
that management plans for those species may need to be re-
considered. Specifically, the misleading may cause the loss of
securable yield, as the estimates of growth rate tend to be biased to
lower values when ignoring seasonality. Furthermore, the growth
rate K is considered to correlate with natural mortality, and in
data-limited stocks, natural mortality coefficient is often derived
from empirical estimators on the basis of K (Kenchington, 2014),
e.g., Pauly’s estimator (Pauly, 1980). The combination of two
effects above may lead to serious under-estimation of BRPs and
undermine the demand of maximum sustainable catches (United
Nations, 2002). On the contrary, we illustrated that incorporating
seasonality falsely might not bias the estimation of growth
parameter as well as the BRPs, although fitting soVBGF with
two additional seasonal parameters requires data with higher
accuracy. We emphasize that seasonality should be considered
to ensure the validity of fishery management, especially for stock
management based on fishing mortality-based BRPs.

Reliable stock assessment requires accurate input parameters,
which depends on the quality of data collected from monitoring
programs (Li et al., 2019) and effective methods for parameter
estimation (Schwamborn et al., 2019). In the present study,

parameter estimations were conducted according to a regular
seasonal sampling, and age-based methods was superior
to length-based methods. The results suggested that the
estimation based on age-structure data could track the change
of seasonal growth parameters, whereas ELEFAN were less
effective (Supplementary Figure 6). Compared with Taylor
and Mildenberger (2017) which conducted a similar ELEFAN
simulation process with monthly observation and showed
accurate estimation of seasonal parameters, we assume the
monitoring programs matter, that is, quarter sampling may
be insufficient to calculate seasonal parameters using ELEFAN.
Sampling design need to be adjusted to satisfies the requirements
of such research objective, which need further examination.

The individual-based modeling framework proposed in this
study aims to reflect realistic population dynamic and improve
understanding the effect of uncertainty from multiple sources
on per-recruit analyses. Meanwhile, there are many issues
that worth further consideration. For example, incorporating
seasonality in growth requires selecting suitable growth function.
Several functions have been proposed to account for seasonal
growth, wherein the models from Hoenig and Hanumara (1982)
and Somers (1988) were most popular. Despite that, proper
growth functions may be species-specific, for example, the
seasonal growth function proposed by Pauly et al. (1992) allows
individuals to stop growing over a particular period of time
(which is called as “no-growth time,” NGT), which can be useful
to describe growth cessation of some species. In addition, the
models modified from VBGF were criticized for inappropriate
choice of the exponent relating the allometric relationship
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between anabolism and size of the organism (Chowdhury
et al., 2013). Some novel models might be considered, e.g.,
Powell et al. (2019) conducted two new model to account
for seasonality in a rate:state form, and Spence and Turtle
(2017) used a flexible equation to represent the proportion of
growth already occurred to describe growth function. Further
comparison study for above models should benefit to the model
selection. In addition, some assumptions and simplifications
in our simulation should be noted for improvement. Input
parameters except for growth parameters were assumed to
be constant, and some parameters such as natural mortality
coefficient and stock-recruitment relationship were considered
to vary substantially due to environment changes. The effects of
varying parameters may interact with that of seasonal growth,
thus the integrative effects need to be further examined. To
this end, the energy budget theory may be crucial to avoid
the burden of examining numerous patterns of interactions
and correlations among life-history parameters. Seasonality and
correlations of vital rates may be better reflected with respect
to body condition such as food shortage and starvation and
ambient environment such as temperature (Brown et al., 2004).
A mechanistic individual-based model may further improve our
understanding of seasonal growth variability and its influence on
fisheries assessment and management.

CONCLUSION

This study demonstrated that unawareness of seasonal growth
could lead to biased BRPs estimation when it existed.
Incorporating seasonality into consideration could largely
improve the model estimation. The bias could occur at two
processes: the biased estimation of growth parameters and the
systematic error in per-recruit analyses caused by seasonality.
Thus, the knowledge for life history traits should be better
introduced in stock assessment to reduce the possible bias, as
seasonal growth has been observed in many marine organisms.

The mechanism of effect of seasonal growth on population
dynamic was discussed. The distortion caused by seasonal
growth impacted the overall length compositions of fish stock.
This inference could explain the observed situation: seasonal
parameters ts were associated with the direction of bias and
C determined the magnitude of errors. Under this condition,

other length-based methods, that is, using length frequency data
as model input, should be tested to identify the sensitivity to
seasonal variability. In addition, this study observed interspecific
difference on response to seasonal growth. Further research was
required to investigate the biological mechanisms behind it.
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