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The calving, drifting, and melting of icebergs has local, regional, and global implications.

Besides the impacts to local ecosystems due to changes in seawater salinity and

temperature, the freshwater influx and transport can have significant regional effects

related to the ocean circulation. The increased influx of freshwater ice due to increase

calving from ice shelves and the destabilization of the continental ice sheet will affect

sea levels globally. In addition, drifting icebergs pose threats to offshore operations

because they could damage offshore installations, e.g., pipelines and subsea manifolds,

and interrupt marine transportation. Iceberg drift and deterioration models have been

developed to better predict climate change and protect offshore operations. Iceberg

shape is one of the most critical parameters in these models, but it is challenging to

obtain because of iceberg movement caused by winds, waves, and currents. In this

paper, we present an algorithm for iceberg motion estimation and shape reconstruction

based on in-situ point cloud measurements. The algorithm is developed based on

point cloud matching strategies, policy-based optimization, and Kalman filtering. A

down-sampling method is also integrated to reduce the processing time for possible

real-time applications. The motion estimation algorithm is applied to a simulated data

set and field measurements collected by an Unmanned Surface Vehicle (USV) on a

free-floating, translating, and rotating, iceberg. In the field data, the above-water iceberg

surface was measured with a scanning LIDAR, while the below-water portion (0–50

m) was profiled using a side-looking multi-beam sonar. When applying the motion

estimation algorithm to these two independent point cloud measurements collected

by the two sensing modalities, consistent iceberg motion estimates are obtained. The

resulting motion estimates are then used to reconstruct the iceberg shape. During the

field experiment, additional oceanographic measurements, such as temperature, ocean

current, and wind, were collected simultaneously by the USV. We have observed water

upwelling and a colder and fresher water plume at the sea surface downstream the

iceberg. Combining the iceberg shape rendering and the surrounding environmental

measurements, we estimated the iceberg melting parameters due to the sensible heat

flux and surface wave erosion at different iceberg sections.

Keywords: marine robotics, unmmaned surface vehicle, iceberg mapping, shape reconstruction, iceberg drift and

deterioration
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1. INTRODUCTION

Icebergs calve off glaciers in cold polar regions. During their life
span, they drift and rotate due to forces from winds, waves and
ocean currents. While drifting, icebergs melt, bringing freshwater
that affects the local freshwater budget and the environment
(Gladstone et al., 2001; Silva et al., 2006; Stern et al., 2015; Moon
et al., 2018). Recent studies have revealed that the acceleration of
ice calving events from polar ice shelves plays a vital role in sea-
level rise (Rignot and Kanagaratnam, 2006; Rignot et al., 2011).
Therefore, knowing iceberg shapes, drifting patterns and melting
parameters is essential to quantify the influence of icebergs not
only to the local oceanography but also globally.

Beside environmental and climate influences, icebergs also

affect marine operations. Off the coast of Newfoundland and
Labrador, Canada, offshore operations, such as subsea drilling

and marine transportation, are threatened by icebergs (Bruneau

and Dempster, 1972). Icebergs could collide with offshore
structures and damage vulnerable seafloor infrastructures, such
as pipelines, wellheads, and manifolds (Crocker et al., 1998).
For safe offshore operations, iceberg surveys are an essential
part of an effective ice-management on the Grand Banks
(Eik, 2008). Multiple and long-term iceberg surveys, acquiring
information about shape, environment and drift, could lead
to significant improvements in iceberg drift models (Wagner
et al., 2017); and therefore, a potential for improved iceberg
risk assessment in terms of probability of collisions, damages
to seafloor infrastructure and potential impact forces. For a
high-risk iceberg near an offshore platform, knowing the overall
iceberg shape is required to determine the most appropriate and
the safest towing parameters, i.e., anchoring points and towing
direction and speed.

Since the 1970s, the majority of iceberg surveys have been
conducted from ships. The above-water shape is normally
measured using photogrammetry (Farmer and Robe, 1975).
Statistical equations (EL-Tahan and EL-Tahan, 1982; Barker et al.,
2004) have been developed to estimate iceberg draft and cross-
sectional areas based on the above-water characteristics, such
as the height, length, and width. However, the lack of available
data results in low-confidence in these models compared to
direct measurements. In the 1980s, a vertical sonar profiler was
designed to measure below-water iceberg shapes (Hodgson et al.,
1998). The overall iceberg shape could be created by merging the
measurements from 4 to 8 deployments around the iceberg. In
addition, satellite-based altimetry has been used for measuring
the above-water shapes of larger icebergs and monitoring their
melting (Jansen et al., 2007).

In recent years, unmanned marine vehicles, e.g., Unmanned
Surface Vehicles (USVs) and Autonomous Underwater Vehicles
(AUVs), have been proposed as potential candidates for iceberg
mapping; especially for the underwater portion (Norgren and
Skjetne, 2014, 2018; Zhou et al., 2014). Using unmanned
systems could reduce the risk to personnel for operations
in the harsh environments around icebergs. These unmanned
platforms could also accommodate a suite of sensors, providing
high quality multi-modal spatial-temporal measurements (Zhou
et al., 2014; Kimball and Rock, 2015), with the potential to

improve our knowledge about the iceberg mechanisms, i.e.,
drift and deterioration. There has been some real progress in
using unmanned platforms for iceberg profiling. In Forrest et al.
(2012), an AUV was deployed to transit underneath a tabular
ice island. A section, about 700 by 500 m, was found to have
a draft between 30 and 50 m. In Norgren and Skjetne (2015),
an edge-following guidance system was developed based on the
iceberg shape measured by a side-looking multi-beam sonar. The
algorithm was evaluated in a simulated environment with simple
blocky and rounded iceberg shapes. In Zhou et al. (2016a), an
adaptive heading controller was developed for a hybrid Slocum
underwater glider to perform autonomous iceberg wall-following
and collision avoidance. Advancements have been made to
improve the iceberg wall-following capability (Zhou et al., 2016b)
with field evaluation on a grounded iceberg presented in Zhou
et al. (2019). Similar work was done by McEwen et al. (2018),
where a larger AUV equipped with a side-looking multi-beam
sonar and a wall-following algorithm was deployed to survey a
floating iceberg.

Besides vehicle control and navigation, another challenge for
iceberg mapping is to estimate the iceberg motion in order to
reconstruct the overall shape. Remote sensing methods, such as
satellite images (Marko et al., 1986), radars (Larssen, 2015), or
aircraft surveys (International Ice Patrol, 2014), only provide a
occasional observations at a coarse temporal resolution, which
is insufficient for iceberg shape reconstruction. Recently, several
types of iceberg beacons (Forrest et al., 2012; Canatec, 2015)
have been developed to determine the iceberg motion in-situ.
However, beacon anchoring only works reliably on relatively
flat surfaces on floating icebergs. In Crawford et al. (2018), the
topside of an ice island was measured by a laser scanner. The
authors presented a new way to correct iceberg motion to enable
accurate iceberg shape estimation and deterioration. As part of
a NASA funded project on automated exploration on asteroids
and comets, analogous experiments were conducted on icebergs
(Kimball and Rock, 2008, 2011). The authors presented a method
to extract the mean iceberg motion via topography matching.
The method was applied to the actual iceberg mapping data
collected from a ship-mounted side-looking multi-beam sonar in
the Scotia Sea. The algorithm has been extended to incorporate
additional measurements from a Doppler Velocity Log (DVL)
that measures the relative speed between the AUV and the
moving iceberg (Kimball and Rock, 2015). The algorithm was
validated in a surrogate seabed mapping mission without the
heading estimates from the compass. Further research to improve
the terrain-matching robustness for better loop-closure detection
is also presented by the same research group (Hammond and
Rock, 2014a,b; Hammond et al., 2015).

In this paper, we present a new approach, using an
Unmanned Surface Vehicle for iceberg mapping, in which multi-
modal measurements on iceberg shape and surrounding water
parameters are collected to provide detailed iceberg shape and
melting information. We also introduce an algorithm to estimate
the iceberg motion from in-situ LIDAR and sonar data. The
proposed method has a low computational cost that could
potentially be implemented on an onboard computer inside
unmanned robotic platforms, e.g., AUVs and USVs, for real-time
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iceberg-relative navigation and mapping. We highlight our work
with field experimental results for iceberg reconstruction and the
observations of several detailed iceberg-related oceanographic
features, e.g., freshwater mass, upwelling water, and detailed
iceberg melting parameters.

The remaining paper is organized as follows. In section 2,
we present a brief system description with the mathematical
framework as well as the used nomenclature. A detailed
discussion of the iceberg motion estimation algorithm is
presented in section 3, while the validation results on the
simulated data and real-world measurements are presented in
section 4. In section 5, we present our detailed investigation into
the relevant scientific measurements collected by the USV during
the iceberg survey. We conclude the paper with a discussion on
future research directions in section 6.

2. PROBLEM STATEMENT

Figure 1 shows the sensor configuration on the USV
SEADRAGON (Smith et al., 2014). A scanning LIDAR and
a multi-beam sonar are mounted above and below the water,
respectively. Meanwhile, meteorologic and oceanographic
sensors, i.e., a weather station, a Conductivity-Temperature-
Depth (CTD), and an Acoustic Doppler Current Profiler
(ADCP), are integrated as shown in Figure 1.

Here, three coordinate frames are defined. The earth-fixed
coordinate frame (Xe−Ye−Ze) is selected in a North-East-Down
(NED) convention with its x-axis pointing toward geographic
North, y-axis pointing East, and z-axis pointing downward. The
origin of this coordinate frame can be freely chosen but is fixed at
the earth’s surface with known latitude and longitude. The vehicle
coordinate frame (Xv−Yv−Zv) is located at the center of gravity
of the USV SEADRAGON with the x-axis pointing forward, y-
axis pointing starboard, and z-axis pointing downward. For each
sensor, we define a sensor coordinate frame (Xs − Ys − Zs)
having the same orientation as the vehicle coordinate frame, but
is offset by a translation vector v

sT from the origin of the vehicle
coordinate frame.

More detailed information about the transformation between
coordinate frames is presented in Supplementary Section 1. For
a range vector, rt , as reported by the sonar or the LIDAR at time
t, we convert it into a point vector, vPt , in the vehicle coordinate
frame using Equation (1) with σt being the angle between the
range vector and Xs − Ys plane and βt being the angle between
the range vector and Ys − Zs plane. The point vector,

vPt , could
be converted into the earth coordinate frame using Equation (2)
where φt , θt , and ψt are the vehicle roll, pitch, and yaw, and e

vT

is the displacement of the origin of the vehicle coordinate frame
relative to the chosen origin of the earth-fixed coordinate frame.

vPt = Rz(βt)Rx(σt)rt +
v
sT (1)

ePt = Rx(φt)Ry(θt)Rz(ψt)
vPt +

e
vTt (2)

During operations, the USV SEADRAGON navigates using a
Global Positioning System (GPS), located on the top deck. Its
orientation is estimated using an Attitude Heading Reference

FIGURE 1 | Sensor configurations on the USV SEADRAGON.

System (AHRS) calibrated to the origin of the vehicle coordinate
frame, at the center of gravity of the vehicle. The sonar and
LIDAR both produce range measurements from the vehicle to
the iceberg surface. The sonar is mounted on the lower hull with a
vertical field-of-view on the starboard side of the vehicle. Its view
angle covers from horizontal (0 deg) to 130 degrees downwards
with a resolution of 1.8 degrees. The sonar data is processed in
real-time with a sonar ping rate of 0.5 Hz at a profiling range of
150 m. The LIDAR is located on the top deck with the maximum
profiling range of 100 m. It has a vertical field-of-view of 30
degrees with a 2-degree angular resolution, and it scans 360
degrees at 600 Revolution Per Minute (RPM) with a stepping
angle of 0.4 degrees. In Supplementary Table 1, we present
detailed information on the measurements and specifications of
the sensors.

The range measurements obtained from the sonar and the
LIDAR can be converted into the earth-fixed coordinate frame,
creating a point cloud of the iceberg surface. However, because
of the self-motion of the iceberg, the point cloud will be
distorted in the earth-fixed coordinate frame representation. For
shape representation, we introduce another coordinate frame the
iceberg coordinate frame (Xb − Yb − Zb), as shown in Figure 2.
Its origin is located at the centroid of the water-plane of the
iceberg. The iceberg motion is constrained to three degrees of
freedom, a northward speed, ẋb(t), an eastward speed, ẏb(t),
and an angular velocity, ψ̇b(t) around the Zb axis. The heaving,
rolling and pitching motion can be neglected because our iceberg
survey is conducted in less than 2 h, during a period of calm sea
state. In addition, sea-state conditions under which the vehicle
can conduct mapping mission will cause negligible iceberg
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FIGURE 2 | Iceberg coordinate frame moves and rotates in the Earth

coordinate frame. An identical point is observed by the USV SEADRAGON at

different time.

rolling and pitching. To account for minor rolling, pitching or
heaving, we implemented a gridding filter in section 3 to remove
possible outliers.

A top-view sketch of a moving iceberg is offered in Figure 2.
At the beginning of the mission, t = 0, the iceberg coordinate
frame is located at e

b
T0 relative to the origin of the earth-

fixed coordinate frame with the x-axis pointing north and y-
axis pointing east. Equation (3) shows the conversion between
a point in the iceberg coordinate frame and in the earth
fixed coordinate frame. After the conversion, the resulting
point cloud, b

P0 : t = {bP0,
bP1, . . .

bPt} presents the actual
iceberg shape. Since instantaneous motion of the iceberg is not
available, the integration of the iceberg motion in Equation (3)
can be approximated with time averaged angular and linear
velocities, ωb(t), ub(t), and vb(t). The transformation between
the coordinate frames is then rearranged through Equation (4),
where the integration is replaced with the multiplication of time
(t) and the averaged velocities, and the rotation matrix, RT

z , is
inverted. In the next section, we present an algorithm to estimate
the averaged iceberg motion at different times such that all the
points can be accurately converted into the iceberg-centered
coordinate frame.

ePt = RT
z

(∫ t

0
ψ̇b(t)dt

)

bPt +
e
bT0 +





∫ t
0 ẋb(t)dt

∫ t
0 ẏb(t)dt

0



 (3)

bPt = (RT
z )

−1
(

t ωb(t)
)





ePt −
e
bT0 − t





ub(t)
vb(t)
0







 (4)

3. ICEBERG MOTION ESTIMATION

In order to fully cover an iceberg, multiple circumnavigations
are normally conducted during a survey. By detecting identical
regions surveyed during different passes, iceberg motion
information could be extracted for shape reconstruction. In
our algorithm, we have a reference point cloud collected at the
beginning of the mission, e.g., in the first 10 min. We refer
the reference point cloud to as e

P0 : t0 where t0 is the time-span
that controls the point cloud size. Another point cloud is called
the current point cloud referred to as e

Pt−1t : t that is collected
from time, t − 1t, to the current time, t. We denote that they
are affiliated to the earth-fixed coordinate frame using the left
superscript. The algorithm presumes that the two point clouds
cover the same region on the iceberg; then, its objective is to
search an iceberg motion solution that best aligns the two point
clouds in the iceberg coordinate frame.We treat this process as an
optimization problem inspired from the gradient descentmethod
(Bryson and Ho, 1975). In addition, we designed a Kalman filter
(KF) to fuse the iceberg motion estimates from the optimization
into a linear iceberg motion model. Therefore, uncertainty in our
motion estimation algorithm is also incorporated.

Figure 3 shows the flowchart for the overall motion
estimation procedure. During initialization, we define several
global parameters. The time coefficient, t0, controls the size of the
reference point cloud, 1t0 controls the initial size of the current
point cloud, α1, α2, and α3 are the step sizes during the iterations.
Also, we initialize the Kalman filter with the iceberg state, x0,
initial covariance, P0, and innovation covariance, Qk, as shown
in Equation (5) and (6).

x0 = [ub, vb,ωb, u̇b, v̇b, ω̇b] = 0 (5)

P0 = I6×6 and Qk = 0.01 I6×6 (6)

The next step is data preparation. Based on the time parameters,
the program obtains two point clouds, eP0 : t0 and

e
Pt−1t : t . The

algorithm will then perform down-sampling as follows:

1) The program will bin the two point clouds into 3-m depth
bands starting from zero depth.

2) It will compare the total numbers of points within each depth
bin, then, select the points inside the depth bin containing the
highest numbers of data points.

3) The selected points will be further separated into 1-m 2D
binned cells. For a cell that contains multiple data points, the
associated timestamp of the latest observation will be kept. For
LIDAR measurements, the program further filters the data set
because outliers reflected from ships have been observed in the
field experiment (see Figure 7 in section 4.2). Therefore, the
cells that contain less than 25 observations are excluded.

After the down-sampling, two new smaller point clouds, eP′
0 : t0

and e
P
′
t−1t : t , are obtained. Before the iteration starts, the

programwill check if the size difference between them is less than
100. Otherwise, the program will update the time interval, 1t
to increase the size of eP′

t−1t : t , and repeat the down-sampling
procedures described above.
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FIGURE 3 | The flowchart of the motion estimation algorithm.

After proper point clouds have been identified, the algorithm
will update the iceberg state and covariance in the KF as indicated
in Equation (7) to (8) where the state matrix, Fk, is defined in
Equation (9). The algorithmwill then enter the iteration to search
for the possible iceberg motion solution that matches the two
input point clouds.

x̂k|k−1 = Fk x̂k−1|k−1 (7)

Pk|k−1 = Fk Pk−1|k−1 F
T
k +Qk (8)

Fk =

[

I3×3 δt I3×3

03×3 I3×3

]

(9)

In each iteration, the program first converts the two point clouds
into the iceberg coordinate frame based on the most-recent
iceberg motion estimates. Then, it applies the Iterative Closest
Point (ICP) algorithm (Bergstrom and Edlund, 2014) to compute
the 2D rotation matrix, R, and the translation matrix, T, between
two iceberg-related point cloud, b

P
′
0 : t0 and b

P
′
t−1t : t . Based

on the transformation information from the ICP, the program
updates the iceberg motion, as shown in Equation (10), where
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α1, α2, and α3 are the step size, and the subscript in R2,1 indicates
the row and column of the element. In the validation presented
in section 4, α1 and α2 are defined to be 1/15,000. In contrast,
α3 is defined to be 1/150 because the rotation discrepancy has a
smaller range from −1 to 1 compared to the range of T which is
in the hundreds.





ub
vb
ωb



 : =





ub
vb
ωb



 −





α1 0 0
0 α2 0
0 0 α3









T

R2,1



 (10)

At the end of each iteration, the program checks if the estimate
is converged or diverged. A convergence is found if the most
recent 50 estimates have a standard deviation of less than 10−5

m/s or 10−5deg/s. In contrast, if the estimation grows beyond a
threshold, a divergence is found and the program will end the
iteration with a conclusion of an invalid estimate. The program
will then move to the next time step.

When testing the algorithm, we observed that the estimate
overshoots before converging, especially when using a large step
size. A large step size will result in a faster convergence but
larger fluctuations and significant overshoot during iteration.
Therefore, the iceberg motion threshold is set to ±3 m/s
and ±3 deg/s to tolerate the large step size as needed for
computational speed. A wider limitation would also allow our
future investigation in the algorithm’s performance on fast-
moving and rotating objects besides icebergs. From the literature,
iceberg drift was typically observed at 0.1 m/s in Robe (1980)
and 0.3 m/s in Crawford et al. (2018), and rotational motion was
observated at 0.003 deg/s (Crawford et al., 2018) and 0.005 deg/s
(Kimball and Rock, 2011). It is clearly highly variable.

As illustrated in Figure 3, the program will perform a KF
observation update only if the estimate has converged or the
program has reached the defined maximum iteration (500 in
our case). The observed iceberg velocity, ub, vb, ωb, will be
the mean values from the last 50 iterations, and the iceberg
acceleration u̇b, v̇b, ω̇b will be the iceberg velocity changes divided
by the elapsed time since the last valid motion estimate. After
that, the algorithm will update the iceberg states, x̂k|k−1, and
the covariance using Equations (11) and (13) with zk being
the iceberg motion observations from the iteration, Kk being
the Kalman gain calculated in Equation (12), and Hk being the
observation matrix. After the calculation, the iceberg motion
states are updated from x̂k|k−1 to xk|k where the hat symbol
denotes the difference between a model-predicted value and
an observation-updated value. In Equation (12), the current
covariance of the state estimation is Pk|k−1 that is later updated
in Equation (13), and the measurement uncertainty is Rk, which
is explained next.

xk|k = x̂k|k−1 + Kk (zk −Hk x̂k|k−1) (11)

Kk = Pk|k−1H
T
k (Hk Pk|k−1H

T
k + Rk)

−1 (12)

Pk|k = (I− KkHk)Pk|k−1 (13)

Instead of defining a constant measurement uncertainty, the
program determines Rk dynamically based on the output using
ICP results. Previously during the iteration, we obtained a 2D
rotation matrix, R and translation matrix, T. Now, we apply the
ICP again but switch the reference and current point cloud around
with current point cloud being the model and the reference point
cloud being the data. By changing the initial condition, the
program could detect local minima, which may provide a false
matching solution in the ICP (Fitzgibbon, 2003). The second

ICP application gives another transformation matrix, R̂ and T̂.
The algorithm computes the observation uncertainty, Rk, using
the two transformation matrices and a Sigmoid function, as
shown in Equations (14) and (15) where the subscript in the
transformation matrices indicates the row and column number
of the element. The Sigmoid function could scale any real
number into a specific bounded range to limit our measurement
uncertainty in the KF. Here, we define the Sigmoid coefficients,
a and b, which are equal to 0.1 and 100, respectively. The
coefficients control the shape of the Sigmoid function curve.
In our scenario, S(x) is converged to 1 when the input, x,
is larger than 200. In the case that the ICP yields a large
translation or rotation discrepancy between two point clouds,
the corresponding measurement uncertainty will approach 1
which is 100 times larger than the innovation covariance shown
in Equation (6). As a result, the iceberg motion found during
the iteration will have less impact on the state update since
the Kalman gain will approach 0 in Equation (12). After the
observation update shown in Equations (11) and (13), the
programwill check the updated covariance. The program records
the iceberg state estimate if all the diagonal elements in the state
covariance, Pk|k, are less than 0.0049. This threshold value is
determined based on the outcomes from running the algorithm
offline. A larger value will result in more but nosier records of
valid motion estimates, whereas a smaller value will result in less
recorded motion estimates. For the simulation and the field data
validation, we used the same value defined above. As indicated by
the outermost feedback loop in Figure 3, the motion estimation
algorithm runs at a constant interval, δt, which is set at 10 s
in section 4.

S(x) =
1

1+ exp(−a(x− b))
(14)





σ 2(ub)
σ 2(vb)
σ 2(ωb)



 =





σ 2(u̇b)
σ 2(v̇b)
σ 2(ω̇b)



 =





S(|T1,1 ∗ T̂1,1|)

S(|T2,2 ∗ T̂2,2|)

S(| sin−1(R2,1) ∗ sin
−1(R̂2,1)|)





(15)
Of course, limitations exist in the proposed algorithm. First,
the algorithm relies on the assumption that the iceberg surface
is heterogeneous and irregular. Therefore, uniform objects,
such as sphere and cubes, will cause ambiguous point cloud
matching results, producing a false motion estimation. Moreover,
different survey strategies will be required for larger systems,
such as ice islands, because shape changes due to a “foot
loose” mechanism (Wagner et al., 2014) and melting may
happen between revolutions. As a result, the point matching
algorithm proposed here may fail in finding the identical
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FIGURE 4 | A summary of the results from the simulation data. Panel (A) shows the vehicle track (gray-scale track) and the iceberg surface measurements (blue dots)

presented in the earth-fixed coordinate frame. The initial and ending iceberg pose is shown in cyan and red surface. Panel (B) shows the top view of the iceberg

surface points and the vehicle track after iceberg motion correction. Panel (C) shows the recorded iceberg motion estimations (markers) extracted from the simulation

data. The dashed lines and the equations show the least-squares fitting result with outlier detection enabled. Panel (D) shows the standard deviation of the iceberg

velocity states over time.

region from different revolutions. To overcome this limitation,
repeated sectional iceberg scans may be conducted over a
short time before there are significant shape changes. The
proposed algorithm could then be used to estimate the ice-island
drift by finding repeated features in different sectional scans.
Finally, the sea state also affects the algorithm performance.
The algorithm will work better at sea state equal or less
than 4 (up to 2.5-m wave height). Such a limitation is
determined based on the depth band (3 m) defined in the
down-sampling and the assumption of negligible iceberg heave
motion. With significant iceberg heave motion at higher sea
state, the down-sampling may misrepresent a correct 2D cross-
sectional profile at the selected depth. As a result, the iceberg
motion estimated from matching two point clouds may contain
increased errors. Moreover, excessive vehicle heaving motion
caused by waves will influence the quality of the profiling
sensors as well as the vehicle altitude estimate, which may
downgrade the overall quality of the data product. To apply
the algorithm to iceberg mapping data collected at higher
sea states, one could extend the point cloud matching into
3D and include iceberg heave motion into the estimation.
However, more computational resources are needed for 3D point
cloud matching.

4. ALGORITHM VALIDATION

4.1. Simulation
We have performed simulations in an iceberg mapping simulator

(Zhou et al., 2014) with the ground truth iceberg shape from

Barker et al. (1999) and a user-defined iceberg motion. Hence,

we could compare the motion estimated from the proposed

algorithm to the ground truth without considering any sensor-
posed noise. In the simulation, an USV equipped with a side-
looking multi-beam sonar is modeled. The vehicle is assumed

moving at a constant speed of 1 m/s and follows the contour
of the water-plane of the iceberg at a standoff distance of 50 m.

The sonar is simulated with 45 rays equally separated from the

horizontal direction to a downward-looking angle of 45 degrees.
In the simulation, the iceberg is assumed to have a northward

speed of 0.05 m/s, an eastward speed of 0.02 m/s and a clockwise
rotational speed of 0.025 deg/s.

Figure 4A shows the top view of the resulting vehicle

trajectory with the gray-scale color indicating the elapsed time.

In the same figure, we also show the point cloud obtained from

sonar range measurements, and the initial and final iceberg
orientation and position. It can easily be seen that the point

cloud representation in the North-East-Down coordinate frame
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FIGURE 5 | Distance error between the reconstructed point cloud and the ground truth point cloud. Panel (A) Shows the histogram of the separation distance

between the restored iceberg point cloud and the actual iceberg shape. Panel (B) shows the color-coded distance errors in the reconstructed point cloud.

is distorted due to the iceberg motion. Therefore, we applied
the motion estimation algorithm in section 3 to derive the
iceberg motion and restore the iceberg shape. The time related
parameters in the algorithm are set as follows, t0 = 600
1t0 = 120, and δt = 10, which are in seconds. Meanwhile,
the dimensionless step sizes, α1, α2, and α3 are set to 1/15,000,
1/15,000, and 1/150.

Figure 4C shows the valid motion estimates during the
mission. The dashed lines show the estimated time-varying
iceberg drift equations which are derived by applying the least-
square fitting with outlier detection enabled to the valid motion
estimates (markers). The root-mean-square error normalized
by the ground-truth value is 0.49, 1.7, and 0.25% for the
northward, eastward and rotational velocities, respectively. As
shown in Figure 4C, the algorithm has identified three loop-
closure occurrences, around 1,500, 2,500, and 3,300 s. This agrees
with the simulation where the vehicle circumnavigated the
moving iceberg four times.

With the estimated iceberg velocity shown in Figure 4C,
we have converted all iceberg surface points into the iceberg
coordinate frame using Equation (4). The motion-corrected
iceberg point cloud is presented in Figure 4Bwith a color scheme
showing the points at different depth and the black track presents
the vehicle track relative to the iceberg. We compared this point
cloud with our ground truth iceberg profile in the CloudCompare
software (CloudCompare, 2019) using the default method, the
nearest neighbor distance. Figure 5A shows the histogram of the
distance errors, where the 99.7% line is located at 8.3 m and the
mean value is around 3 m. Meanwhile, Figure 5B depicts the
spatial distribution of distance errors.

4.2. Field Experiment
In June 2017, the USV SEADRAGON was deployed to map
a floating iceberg near Portugal Cove (47.637 N 52.883 W),
Newfoundland, Canada. Figure 6 shows the four images taken

FIGURE 6 | Above water iceberg shape shown in four images taken from

different directions (A–D).

from different directions around the target iceberg. The height
of the iceberg gradually decreases from the South to the North
end with a concave feature on the Northern side. The above-
water portion is about 120 m long, 100 m wide, and 20 m high.
The water depth in the area exceeds 60 m allowing for iceberg
drift. In the Supplementary Figure 3, we presented the raw sonar
point cloud in the earth coordinate frame where the seafloor
topography could be observed.

As shown previously in Figure 1, the USV carries a LIDAR
and a side-looking multi-beam sonar for profiling the above
and below water portion of the iceberg. For environmental
assessment, a weather station, a downward-looking Acoustic
Doppler Current Profiler (ADCP), a conductivity-temperature-
depth (CTD) sensor was operational during the trial.
In Supplementary Section 2, we summarize the sensor
configuration for the iceberg mapping mission.

Figure 7 shows the vehicle track (black lines) and the iceberg
surface measurements obtained from the sonar and the LIDAR.
All these measurements are presented in the North-Earth-Down
coordinate frame with the origin located at 47.626oN 52.875oW.
The iceberg drifted toward the Northeast during the survey.
Overall, the vehicle circled around the iceberg 4 times for about
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FIGURE 7 | The topview of the point cloud collected from the multi-beam sonar (A) and the LIDAR (B). The vehicle trajectory is shown in black.

1.5 h. A wall-following algorithm was implemented to maintain
the desired standoff distance of 50 m with minimum human
control. Such a standoff distance was determined such that
LIDAR (maximum 100 m range) and sonar (maximum 300
m range) could both collect sufficient measurements for cross-
validation. The wall-following algorithm uses the local iceberg
profile from the LIDAR scans. The LIDAR acquired data is
collapsed onto the horizontal plane to present the local 2D
iceberg contour. From the collapsed data, the desired vehicle
track is generated by shifting the contour toward the vehicle.
The line-of-sight guidance law (Norgren and Skjetne, 2015) was
used to compute the low-level heading commands based on the
desired track. Manual control was required several times during
the mission because the algorithm misinterpreted other targets,
e.g., ships, detected by the LIDAR. This problem can be solved by
integrating a high-level system to manage vehicle operations in
the presence of marine craft or other obstacles, e.g., by limiting
the LIDAR scanning angle.

We applied the motion estimation algorithm to the two
separated data sets collected by the LIDAR and the sonar. The
initial time is set to be the sonar on time, UTC 15:23:19. The time
parameter, t0, for the reference point cloud is 1,100 s while other
parameters remain unchanged from the simulation.

The left panel of Figure 8 shows the motion estimated from
the two data sets, while the linear equation parameters are
summarized in the right panel of Figure 8. Comparing the results
obtained from the LIDAR and sonar dataset, we found that (1)
both estimations show a decrease in the iceberg drift, and (2)
more valid estimates and smaller uncertainty are obtained from
the LIDAR point cloud because LIDAR data has less noise and
higher data density than the sonar measurements.

Next, we convert the two point clouds shown in Figure 7

into the iceberg coordinate frame using the velocity functions
presented in Figure 8. The overall motion-corrected point cloud
and vehicle track are shown in Figure 9. We separated the data
into 1-m cubic bins to reduce computer memory. We removed
outliers manually in MeshLab (MeshLab, 2018). The left panel in
Figure 9 shows the isometric view of the processed point cloud,
while the right panel shows the top view of the point cloud
with the iceberg-referenced vehicle trajectories. The observed
freeboard portion (topside) has an averaged height of 6.9 m with
a maximum value of 21 m. As mentioned in Rackow et al. (2017),
the draft (D) of an iceberg can be estimated with the equation
D = Hρi/ρw, where H is overall height of the iceberg, ρi is the
density of the iceberg, and ρw is the density of the water. Using
the mentioned equation and the freeboard measurements, the
draft is estimated to be 57 m with ρi being 850kg/m

3 (Silva et al.,
2006) and ρw being 1, 024.7kg/m3 from the CTD measurements
on the USV. In the USV observation, the below water portion has
an averaged depth of 19.8 m and a maximum observed draft of
48m. There are two main reasons that can explain the difference
between the observed draft (48 m) and the estimated draft (57
m). On the observation side, the actual keel of the iceberg may
be deeper than 48 m given the seafloor depth lies between 60
and 85 m shown in Supplementary Figure 3. This occurs mainly
because the USV is limited to move at the water surface. As a
result, the distance between the USV and the deeper portion of
the iceberg may exceed the sonar range, and the increased angle
of incident at the sonar footprint on the iceberg at the deeper
depth will cause low acoustic returns (sonar dropouts). On the
other hand, Rackow et al. (2017) assumed that the iceberg is in
cubic shape rather than the ram shape observed by the USV.
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FIGURE 8 | The left panel shows the motion estimated from the sonar (red) and LIDAR (blue) datasets. The markers show the valid estimates, the dashed lines show

the curve fitting results with shaded area indicating the 95% confidence zone. Right panel summarizes the parameters of the dashed lines.

FIGURE 9 | Processed iceberg point cloud shown in the isometric view (A) and top view (B). The red and blue tracks in (B) shows the vehicle tracks corrected using

the iceberg velocity estimates obtained from the sonar and LIDAR dataset, respectively.

Therefore, the relation between the drag (D), above-water height
(F), water density, and the iceberg density will be slightly different
for our data set.

Next, we assumed that our reconstructed iceberg represents
the actual shape.

We computed the overall volume of the below-water (5.12 ×
105m3) and the above-water portion (8.31 × 104m3) with the
assumption that the iceberg is in 1-m stacked layers. Based on
the volume and the Archimedes’ principle, the iceberg density is
estimated to be 881kg/m3. If the deeper portion of this iceberg
is not mapped by the USV, the potentially unmapped portion
will create a positive buoyant to the overall iceberg. In order
maintain the same freeboard volume that is fully observed, the
iceberg has to be denser. Therefore, 881kg/m3 will be the lower
bound of the density of the mapped iceberg which is denser than
Antarctic icebergs (850kg/m3 mentioned in Silva et al., 2006) and
somewhat closer to other icebergs observed in the Labrador Sea
(910kg/m3 mentioned in Barker et al., 2004).

Figure 10 presents a local comparison between two subsets of
iceberg points. The blue and the red point cloud are collected
from 2,000 to 3,000 s and 3,000 to 4,000 s, respectively. The
measurements from 10 m depth to the height of 5 m were
excluded since they are noisy due to the signal reflections from
the ship and the water surface. The point clouds were also
gridded into 1-cubic meter bins. We computed the distance
between two above-water subsets and two below-water ones
in the CloudCompare (CloudCompare, 2019) with the nearest
neighbor distance. In Figure 10, we show histograms of the
distance errors for the above-water and below-water portion.
Overall, the maximum mismatching between the two subsets is
about 9 m. We observed that the misalignment in the LIDAR
point clouds is slightly smaller than that from the sonar point
clouds where the error is up to 10m.

Finally, we applied the surface reconstruction method (Zhou
et al., 2019) to the processed point cloud. Figure 11 shows
multiple views of the final iceberg rendering. The resulting
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FIGURE 10 | Comparing the point clouds collected between 2,000–3,000 and 3,000–4,000 s after the correction for the iceberg motion. The data points are binned

into 1-m cubic cells.

FIGURE 11 | Multiple views of the reconstructed iceberg shape.

shape is comparable to the photos shown in Figure 6. In
Supplementary Figure 4, the common features in the iceberg
render and the pictures in Figure 6 are highlighted.

5. FIELD ENVIRONMENTAL
OBSERVATIONS

During the icebergmapping experiment, the USV SEADRAGON
was also equipped with other scientific instruments, including a

RDI ADCP (600k Hz), a Seabird pumped CTD and an Airmar
Weather Station. The locations of these sensors are depicted
in Figure 1. In this section, we present the collected scientific
measurements and derive iceberg melting estimates.

The ADCP data was first corrected for the vehicle motion

(velocity and orientation) using the USV’s GPS and the AHRS

measurements. The ocean current velocity is then corrected

for the iceberg’s translational speed (estimated in section 4.2).

After these corrections, we obtained the ocean current velocity
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FIGURE 12 | The averaged velocity of the water flowing around the iceberg. The row indicates the different revolutions while the column indicates the velocity

components in Northward, Eastward, and downward directions.

relative to the iceberg. Next, we performed a moving average
at 3 min interval in each depth bin (2 m) to eliminate the
wave disturbances. After that, we binned the ocean current
measurements based on the depth (2 m) and its azimuth angle
(1 deg) relative to the origin of the iceberg. Finally, we applied
2D Gaussian filtering (Shapiro and Stockman, 2001) to smooth
the binned data with the final result shown in Figure 12 where
the overall ocean current around the iceberg is presented. The
left, middle, and right plots present the Northward, Eastward and
Downward components of the processed ocean current. From
these color plots, we could observe that the water is mainly
following toward Northwest with small sections of Southward
and Eastward flow, which may be caused by the turbulence
induced by the iceberg. Interestingly, the water in the upstream
is found moving downward in contrast to the upwelled water
found in the downstream on the Northeast side. This finding
agrees with the icebergmechanism discussed in Stern et al. (2015)
andMoon et al. (2018). The other discovery is the upwelled water
in the deeper portion (around 50 m) in the upstream. This may
occur due to the basal iceberg melting that produces a buoyant
water mass.

In Figure 13, we show the processed CTD, current and wind
measurements in 1-cubic meter bins. In each bin, the value is
the mean of all the data points in the bin. In Figures 13A,B,
the surface water temperature and salinity are measured by the
CTD (submerged at 1 m) on the USV. A water plume that
is 1 degree colder and slightly fresher was identified in the
downstream of the iceberg. We attribute this anomaly to the
iceberg melting and heat flux. Figure 13C shows the depth-
averaged current derived from Figure 12. The length of the
arrows presents the magnitude of the planar component, and
the color indicates the depth-averaged vertical components. In
Figure 13D, we show the airflow around the iceberg. The weather
station was sampling at 2 Hz, and we applied the moving average
to the value at 3 min intervals (same as the ADCP processing)
before gridding. Overall, the wind is blowing toward Northeast
with a difference of about 2 m/s in speed between the windward
and the leeward side. We found the iceberg drifting direction
(about 28 degrees from North to the East), estimated in section

4.2, is more coincident with the wind blowing direction rather
than the current flowing direction (toward Northwest), which is
also discussed by Wagner et al. (2017) using an analytical iceberg
drift model.

Combining all these environmental measurements, we further
quantified relevant melting characteristics. Instead of taking
the mean value of water properties, we estimated the melting
parameters in different iceberg sections as different water
properties, current, wind, temperature, and salinity, resulting
in uneven iceberg melting affecting the iceberg stability and
resulting in iceberg rolling. Stern et al. (2015) presented an
approach to compute the melting metrics for an iceberg. Here,
we estimate the melting caused by the surface wave erosion
and the sensible heat flux in both above and below water. For
the underwater portion, we only included the results from the
mapped portion up to the maximum observed draft (48m).

The ocean current estimates in Figure 12, water temperature
and salinity in Figures 13A,B, and the wind speed in Figure 13

(D) are used in our melting estimation. These measurements
are separated into different sections (10 degrees each) based
on the azimuthal angle relative to the origin of the iceberg
coordinate frame that is located at the geometry center of the
iceberg cross-section at zero depth. In each section, we computed
the mean water temperature, T(θ); salinity, S(θ); water pressure,
P(θ); water density, ρw(θ); the depth-averaged current, Vb(θ);
and wind speed, Va(θ). Using the binned point cloud shown
in Figure 9, we computed the sectional iceberg surface area
above and below the water, Aa(θ) and Ab(θ), and the effective
area for the surface wave erosion, As(θ). For simplicity, we
approximated the iceberg into 1-m stacked layers. In each layer,
the cross-section remains the same. Therefore, the total surface
area is the sum of the sectional contour lengths multiplied by the
layer height.

For each section, we computed the deterioration rate due to
the surface wave erosion and the melt rates due to sensible heat
flux. The deterioration rate (Equation 16) caused by the surface
wave erosion, ṁs was about 1m/day per degree above the freezing
temperature (Savage, 2001; Scambos et al., 2008). The freezing
temperature, Tf , is related to the salinity and water pressure.
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FIGURE 13 | The surface water temperature (A), salinity (B), current field (C), and wind pattern (D) around the USV SEADRAGON. The data are averaged value in

1-cubic meter bins.

From our CTD measurements, Tf is estimated to be about −1.7
degrees. Here, we only consider the effective area of the wave
erosion is from 5 m above the water (average height) to 15 m
(assumed thermocline boundary). The effective area will be later
used when computing the total melt volume in Equation (19).

ṁs(θ) = T(θ)− Tf (S(θ), P(θ)) (16)

ṁa(θ) =
1

Lρi
ρacpaAVa(θ)(T(θ)− Tfa) (17)

ṁb(θ) =
1

Lρi
ρw(θ)cpwSt∗

√

CdVb(θ)(T(θ)−Tf (S(θ), P(θ)) (18)

V̇ =

360o
∑

θ=0o

ρi

ρw(θ)
(ṁs(θ)As(θ)+ṁa(θ)Aa(θ)+ṁb(θ)Ab(θ)) (19)

Above the water, the melt rate due to the sensible heat transfer is
given by Equation (17), where the numerator is the sensible heat

flux with ρa being the air density, cpa being the specific heat of
air,A being the dimensionless transfer coefficient for air,Tfa being
the freezing temperature in air. In the denominator, L is the latent
heat of fusion of ice, ρi is the iceberg density. For the below-water
portion, themelt rate due to the sensible heat is given by Equation
(18) where the numerator is the sensible heat flux with cpw being
the specific heat of the water, St∗ being the Stanton number
(McPhee, 1992), Cd being the drag coefficient (Stern et al., 2015),
Tf being the freezing point of the water. The total melt volume is
then computed using Equation (19) from the melt rates and the
related iceberg surface area. Using the coefficients presented in
Stern et al. (2015), we computed the mentioned iceberg melting
parameters given by Equation (16) to (19). All the constants and
related parameters used in the computation are summarized in
Supplementary Table 4.

In Figure 14, we present the melt rates and total melt volume
in 10-degree sections around the iceberg. We observed that the
melt rate due to the sensible heat flux above the water, ṁa(θ),
is much higher on the southern side due to the high wind
speed observed in Figure 13D. In contrast, the below water melt
rate due to the sensible heat flux is higher in the downstream
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FIGURE 14 | Melt related parameters at different azimuth angle (θ ) around the iceberg. Aa(θ ) and Ab(θ ) are the above-water and below-water surface area, V̇θ is the

total melt volume, and ṁa(θ ), ṁb (θ ), and ṁs(θ ) are the melt rates caused by above-water sensible heat, below-water sensible heat, and the wave erosion.

on the Northwest side due to the higher flow speed shown in
Figure 13C. The deterioration caused by the surface wave is
more evenly distributed due to the small temperature difference
of about 1.2 degrees. Overall, the below-water melt rate due
to the sensible heat flux is about ten times higher than that
for the above-water part. The total melt volume around the
iceberg is also presented in the top-right plot in Figure 14. The
melt volume is observed higher on the Northwest, Southwest
and Southeast side where larger iceberg surface area are found
either underwater (top-middle plot in Figure 14) or above the
water (top-left plot in Figure 14). The inconsistent melting, both
around the iceberg and between above and below water, reveals
an uneven iceberg shape changes that can cause iceberg instability
and lead to possible iceberg rolling events. By summing the
sectional melt volume, the total melt volume is estimated to be
1.088× 105m3/day. For comparison, the total iceberg volume of
the mapped portion is about 5.87× 105m3.

6. CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to profiling floating
icebergs using an unmanned surface vehicle (USV), the USV
SEADRAGON. Our work has an emphasis on estimating iceberg
motion and characterization of the iceberg shape.

First, we presented an algorithm to estimate iceberg motion
which is needed to correctly reconstruct the shape of surveyed
icebergs. During the implementation, we added a down-sampling
method to reduce the computational cost and time. The
algorithm was running on a typical PC (3.1 GHz Dual-Core
Intel i7 and 16GB 1867MHz DDR3) in data playback mode. We

believe that the algorithm is applicable for in-situ computation
on an embedded computer that could be integrated onto marine
robotic platforms for real-time processing. Instantaneous results
will greatly help in-situ decision making for iceberg management
and adapting strategies of sampling the surrounding water near
an iceberg, e.g., conducting follow-up measurements on the
freshwater plume in the downstream.

The algorithm was first evaluated with a simulated data
set based on a real iceberg shape without sensor noise. We
simulated the iceberg translation and rotational motion during
the simulation. The algorithm has successfully detected the
loop-closure from consecutive revolutions with a maximum
normalized RMS error under 2% between the estimated motion
and the simulated values. Such an estimation error caused a
misalignment up to 8 m between the estimated iceberg shape and
the ground truth shape (presented in Figure 5). Subsequently,
the algorithm has been applied to the field data collected by
the USV SEADRAGON in June 2017. The presented algorithm
successfully extracted the iceberg drift, both translation and
rotation, which is further used for iceberg shape reconstruction
and iceberg melt studies.

Meteorological and oceanographic data collected by the USV
SEADRAGON was analyzed. This data provides a detailed
picture of the environment around the iceberg. We have
discovered several important features, such as freshwater pond
and upwelling water in the downstream. We also reveal
inconsistent melting parameters between above and below
portion around the iceberg, which can lead to iceberg instability
that may cause a roll-over event. Overall, the total melt volume
is estimated to be 1.088 × 105m3/day with a volume of
about 5.87 × 105m3 from the mapped portion, from 20 m
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above-water to 50 m under the water. At the estimated melt rate
and measured volume, the lifespan of the iceberg will be less
than 6 days.

While these results for iceberg reconstruction and melting
estimates are promising, more measurements and data are still
needed to understand the iceberg melting mechanism, e.g., the
vertical extent of the freshwater plume and its influence to
iceberg deterioration. We propose the following future research
directions to advance the iceberg mapping and relevant scientific
studies. The results presented in this paper showed that a side-
looking multi-beam sonar attached to a surface vehicle is not
sufficient to obtain the overall submerged shape because of the
sonar dropouts at greater depth due to the increased grazing
angle. We, therefore, propose to combine the surface vehicle
with a sonar-equipped autonomous underwater vehicle (AUV)
in order to profile the deeper regions of the iceberg. Explorations
with field experiments have already been conducted by Zhou
et al. (2019), McEwen et al. (2018), and Forrest et al. (2012).
Complementary to direct measurements, artificial intelligence
algorithms may be developed to predict the “missing” portion
based on the survey data. The algorithm would reconstruct
the unsurveyed portion based on established iceberg stability
conditions and empirical equations, such as the stability theories
discussed by EL-Tahan and EL-Tahan (1982). For iceberg
deterioration studies, we suggest performing more CTD casts in
the downstream in order to quantify the water mass at increased
spatial and temporal resolution. In order to do that, a new type
of platform may be necessary to accommodate the horizontal
moving mode and the vertical profiling mode, such as the vehicle
designed by Bachmayer et al. (2018).
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