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Floating offshore wind turbines (FOWTs) still face many challenges on how to better

predict the dynamic responses. Artificial intelligence (AI) brings a new solution to

overcome these challenges with intelligent strategies. A new AI technology-based

method, named SADA, is proposed in this paper for the prediction of dynamic responses

of FOWTs. Firstly, the methodology of SADA is introduced with the selection of

Key Disciplinary Parameters (KDPs). The AI module in SADA was built in a coupled

aero-hydro-servo-elastic in-house program DARwind and the policy decision is provided

by the machine learning algorithms deep deterministic policy gradient (DDPG). Secondly,

a set of basin experimental results of a Hywind Spar-type FOWT were employed to

train the AI module. SADA weights KDPs by DDPG algorithms’ actor network and

changes their values according to the training feedback of 6DOF motions of Hywind

platform through comparing the DARwind simulation results and that of experimental

data. Many other dynamic responses that cannot bemeasured in basin experiment could

be predicted in higher accuracy with this intelligent DARwind. Finally, the case study of

SADA method was conducted and the results demonstrated that the mean values of

the platform’s motions can be predicted by AI-based DARwind with higher accuracy,

for example the maximum error of surge motion is reduced by 21%. This proposed

SADA method takes advantage of numerical-experimental method and the machine

learningmethod, which brings a new and promising solution for overcoming the handicap

impeding direct use of traditional basin experimental technology in FOWTs design.

Keywords: floating offshore wind turbines (FOWT), artifical intelligence (AI), reinforcement learning (RL), software

in the loop (SIL) simulation, DARwind, basin experiment, machine learning

INTRODUCTION

The floating wind farms are beginning to flourish as offshore wind energy technology gradually
matures. Due to water depth, seabed geology, visibility and noise impacts, the fixed offshore wind
turbines are technically or commercial unfeasible at suitable sites, which also inspired further
research into FOWTs (Spring, 2020). Being dependent on the way of supporting the platform to
obtain stability and restoring force, four substructure designs were proposed for FOWTs: barge,
semi-submersible, spar buoy and tension leg platform. Liu et al. (2016) presents a comprehensive
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review on the semi-submersible foundation, which includes the
conceptual design and the projects currently under operation.
Thiagarajan et al. (2014) summarized the above three types of
floating platforms in terms of stability, resonance considerations
and technology. Pérez-Collazo et al. (2015) and Tomey-
Bozo et al. (2015) reviewed and compared different floating
combinations between FOWTs and WEC. For example Semi-
Submersible Flap Combination (Luan et al., 2014; Michailides
et al., 2014) and Spar Torus Combination (Wan et al., 2015,
2016), etc. However, FOWTs encountered some notable hurdles
and set-backs, where these were due to fundamentals of design or
analysis in terms of R&D, cost, operation and maintenance.

FOWTs is a highly complex system, which accounts for
the coupling between aero-hydro-servo-elastic dynamics. Due
to the high cost of the floating substructure and foundations,
there is a large overall cost difference (Wu et al., 2019). More
precisely the inadequate design or analysis may cause cost of
operation and maintenance of the wind farm increase, such
as gearbox failures; grounted connections; accelerated blade
surface erosion; accidental ship collision (Zhang et al., 2020).
The deterioration of the mooring line over time will lead
to an increase in the failure of single or multiple lines as
well (Lugsdin, 2012). Regardless of the aspect, only based on
reasonable and reliable R&D can minimize exposure to technical
risks and reduce the cost. In an earlier stage, the significant
R&D effort of FOWTs has been made with the appearance
of coupled numerical tools (Jonkman and Sclavounos, 2006;
Wayman et al., 2006; Jonkman and Technology, 2009). With
several projects, it has greatly promoted the development of
FOWTs. For example, Hywind and DeepCwind in the OC
projects (Jonkman and Musial, 2010; Robertson et al., 2014,
2017, 2020) and OO-Star Wind Floater (Pegalajar-Jurado et al.,
2018), Nautilus steel semisubmersible (Galván et al., 2018),
IDEOL concrete floater (Beyer et al., 2015) in LIFES50+
project, etc.

However, there are still some challenges impeding the
success of more accurately predict the dynamic responses
of FOWTs and validate a new full-scale concept under high
coupling effects. These challenges have been receiving great
attention and led to many efforts by both academia and
industry. Chen et al. (2020) summarized several intrinsic
challenges and validation techniques in terms of on-site
measurement, numerical simulation and basin model scale
experiment. Among these challenges, how to use basin
experimental technology conducting FOWTs test and
transfer the model-scale testing results data to full-scale
data, is one of the most critical ones. The impossibility of
applying traditional basin testing data-processing technology
directly for FOWTs testing is due to the reasons listed
as below.

Abbreviations: FOWTs, Floating Offshore Wind Turbines; AI, Artificial

Intelligence; SADA, Software-in-the-loop combined Artificial intelligence method

for Dynamic response Analysis of FOWTs; KDPs, Key Disciplinary Parameters;

DARwind, Dynamic Analysis for Response of Wind Turbines; DDPG, Deep

Deterministic Policy Gradient; ST method, Single Training method; CT method,

Combing Training method.

• Scaling issues:
Froude number and Reynolds number cannot be satisfied
simultaneously, but aerodynamic performance and
hydrodynamic performance of FOWTs are both important
and neither can be neglected. Coupling effects between aero-
hydro and structural dynamic responses are also important.
Thus, the full-scale performance cannot be obtained by
transferring model-scale data directly by using traditional
method, who normally neglects Reynold number and uses
Froud number as the unique dominating factor.
• Blade pitch control strategies:

Simulation of pitch control is very difficult to conduct
under basin testing scenario, due to the mass sensitivity and
signal delay.
• Experimental facilities and calibration methods:

There are also some other challenges, including mass property
simulation, installation of measurement devices and wind-
wave generator techniques.

In response to these existing challenges, scholars have made
many efforts and summarized the existing experimental and
numerical progresses (Stewart and Muskulus, 2016). Müller
et al. (2014) listed some representative basin experiments and
projects in the past and put forward a methodology for the
existing problems by redesigned model scale rotor. Table 1

shows the different methodologies to conduct the experiment of
FOWTs. For numerical methods, the balance between accuracy
and speed (calculation time) is also an important consideration
for evaluating the dynamic response of FOWTs. The linear
(or quasi-linear) method is used in the preliminary research
phase. And Non-linear methods are suitable for non-moderate
design situations (e.g., wave-structure interaction under extreme
events). Cruz and Atcheson (2016) gave a detailed explanation on
the principles and applications of numerical methods and related
experimental verification. They also summarized the specific
issues that the designers are concerned about (for example: design
load (Nichols et al., 2016) and certification (Ronold et al., 2010).

FOWTs is a novel engineering structure involving a wide
range of multi-disciplinary technologies. A reliable design
does not only save costs in construction and installation,
but also effectively avoid various problems that may occur
in later operation and maintenance. It is an urgent demand
for establishing an innovative and reliable hybrid numerical-
basin experimental method to predict the dynamic responses of
FOWTs. It will be therefore essential to thoroughly select the
adequate setup for each test and include features and effects
where possible. Basin experiment and numerical calculation
have been regarded as useful and reliable methods. But they
both have advantages and disadvantages as well. Under current
experimental technical conditions, only some fractional physical
quantities are available, including platform motions, fairlead
tensions and nacelle accelerations, etc. However, the designer
is concerned about the large number of physical quantities of
FOWTs, which cannot be obtained by experiments directly, such
as blade responses and tower responses, etc.

In recent years, AI technology has successfully made some
progress in the wind industry. Machine learning (ML) is one

Frontiers in Marine Science | www.frontiersin.org 2 January 2021 | Volume 7 | Article 628225

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Chen et al. SADA for FOWTs

TABLE 1 | Different methodologies to match the wind and wave loads.

Methods Methodologies Advantages Disadvantages Instances

Replace the

thrust

Use static lines or cables to replace a

static thrust from a given turbine’

thrust curve.

Easy to simulate static wind loads.

Easy layout and preparation.

Lack of control or wind variability.

No coupling effect (wind loads and the

platform response).

Inertial problems.

No gyroscopic effects.

Roddier et al., 2010;

Guanche et al., 2011;

Wan et al., 2016

Use drag discz to reproduce the

static wind loading.

Easy to calibrate wind loads.

Any wind turbine can be simulated.

Easy to simulate steady wind loads

for the first part of the thrust curve

(below rated speed).

The gyroscopic effect available by

means of a spinning disk.

Need a low turbulence wind generation

system.

The drag disk generates vortex shedding

behind the disk induced vibrations.

No control system.

No negative damping (wind speed above

the rated speed).

Scaled wind

turbine

Use scaled wind turbines Better represents the real scheme.

Avoid anomalous phenomena due to

vortex shedding.

Easy to simulate gyroscopic forces.

Complex mechanical system (complex to

calibrate wind loads).

Low flexibility due to various blade

geometry.

Need a low turbulence wind generation

system.

Wind variability (intensity and directional

variations) cannot be simulated with

standard wind generation systems.

Limited control strategies.

Chujo et al., 2013; De

Ridder et al., 2014;

Duan et al., 2016; Li

et al., 2018

Real-time

Hybrid method

Use synchronized numerical models

and actuator (fans and winches) to

replace wind turbine loads without

using wind generators.

The scalability and fidelity of basin

experiment can be improved.

The dissimilar scaling issue can be

avoided.

Any scale can be modeled.

The accurate estimation of the influence of

sensor cables.

The quality of virtual subsystems will affect

results.

Almost all the theories are adopted in

numerical simulation which relies on

assumptions.

More problems (design, manufacture and

optimization) may come, due to the need to

find alternatives actuation system.

Azcona et al., 2014;

Bachynski et al., 2016;

Sauder et al., 2016

Use a hydraulic transmission system

to simulate 6DOF platform motions in

a wind tunnel with a scaled wind

turbine model.

Bayati et al., 2017,

2018

of the most important extensions of the AI field, which can be
divided into the following methods (Alpaydin, 2020): Supervised
Learning, Unsupervised Learning and Reinforcement Learning
(RL). Stetco et al. (2019) reviews the recent literature on
machine learning (ML) models that have been used for condition
monitoring in wind turbines. Related to the power generation
of wind turbines, the AI model is a good choice for short-term
wind power forecasting and pre-diagnosis of wind turbine (Khan
et al., 2020). Pelletier et al. (2016) modeled wind turbine power
curves by an multi-stage modeling techniques. In addition, there
is no shortage of excellent innovative attempts in a control system
(Jafarnejadsani and Pieper, 2014; Ma et al., 2018; Merabet et al.,
2018; Sclavounos and Ma, 2018) Li et al. (2019) studied the wave
energy control algorithm with an artificial neural network to
implement the real-time wave force prediction (Li et al., 2020).
The corresponding prediction of the motion of the platform is
also carried out directly through the neural network (Chen et al.,
2019b).

However, in addition to the combination of wind turbine
power generation and control strategies, few researchers

have explored other technical problems of FOWTs by
machine learning.

Therefore, on purpose of proposing an efficient and
functional method, an innovative hybrid basin experimental with
software-in-the-loop combined reinforcement learning method,
named SADA, is introduced in this paper. It mainly includes
the introduction and classification of KDPs concepts, the
methodology of SADA including introducing of an in-house
programDARwind and AI technology Deep Deterministic Policy
Gradient (DDPG) algorithm. Cases study was conducted by
employing two models, namely discrete model and continuous
model, respectively. SADA employed experimental data to train
the reinforcement learning model and made the DARwind
intelligent. It not only can predict 6DOF motion of FOWTs
more accurately, but can also analyze the working conditions not
conducted in the basin experiment. SADA method will benefit
FOWT design greatly because SADA can help designers to obtain
more accurate forecasts of dynamic responses of FOWTs system
for many critical design factors under a wide range of different
sea state.
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FIGURE 1 | The overall layout of proposed SADA method.

METHODOLOGY OF SADA

Conceptual Proposal
This section aims to introduce where the concept comes from
in terms of design and verification of FOWTs. The theoretical
analysis results of FOWTs need to be compared with the
basin model test and on-site measurement to determine the
feasibility, accuracy, and promote the development of the
theories. Conversely, theoretical guidance can improve the
methodology of experiment and numerical simulation. However,
it is challenging tasks to make results from basin experiment and
those from numerical analysis matching well, due to the strong
non-linearity of FOWTs system, especially facing a completely
new concept. This will inevitably lead to many unreasonable
phenomena in the research and development process, but
the existing theories cannot fully explain. Basin experimental
technology can be used to obtain non-linear dynamic responses
of FOWT and validate numerical tools. However, due to the
intrinsic unresolved ratio scaling problems described in Section
Introduction, the experimental results cannot be transferred to
prototype data based on traditional way. Therefore, the validation
of numerical software with prototype data from basin experiment
is not an easy task. This unsolved problem puts forward higher
challenges to FOWT designers, requiring them to design and
confirm the critical parameters based on their experiences but
without a direct support from experimental results. Fortunately,
the emergence of AI technology provides a potential solution
for the combination of using numerical simulation and basin
experiment in a proper way.

This paper proposes a new method on the utilization of AI
technology in the analysis of dynamic responses of FOWTs,
named Software-in-the-loop combined Artificial intelligence

method for Dynamic response Analysis of FOWTs (SADA). The
overall layout of SADA is presented in Figure 1. Different from
the traditional numerical calculation process, the SADA method

incorporates AI technology into the combination of numerical

program and basin experimental results, and make the numerical

program intelligent by weighting the critical design parameters

named KDPs in SADA method. As shown in Figure 1, SADA

starts form the green button by selecting the initial critical KDPs

by FOWTs designers. AI technology discussed in this paper

is a reinforcement learning algorithm named DDPG. An in-

house program named DARwind is utilized to run the dynamics

response analysis of FOWTs with the initial critical KDPs. For

more information of the DARwind program, please refer to

the published literature (Chen et al., 2017, 2018, 2019a). Then,

some physical quantities such as 6DOF motions are chosen
as the states in DDPG to conduct AI training for DARwind

program. According to the states, the actor network will give the

corresponding action probability distribution, which will be used
to adjust the KDPs values properly to run next loop if the error
analysis is not satisfied.

From software-in-the-loop concept, SADA can effectively
adjust KDPs values to reduce errors between numerical analysis
results and basin experimental results. Consequently, when the
errors are reduced to a satisfiable status, it means SADA method
has trained the DARwind program good enough to conduct
intelligent numerical analysis. In addition, some other physical
quantities that cannot bemeasured directly in the experiment can
be predicted with AI-trained DARwind program as well. Besides,
through the training process, the AI-trained DARwind can also
exclusively complete the FOWTs dynamic response analysis in
the sea states different from those used in basin experiment. The
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specific introduction and discussion of the SADAmethod will be
listed in the following sections.

Key Disciplinary Parameters Selection
This section summarizes key disciplinary parameters (KDPs)
used in this paper, through theoretical analysis of each discipline
used in dynamic analysis of FOWTs. Dynamic responses
prediction of FOWTs involves multiple disciplines, including
aerodynamics, hydrodynamics, structural mechanics, multi-body
dynamics and kinematics, mooring dynamics, etc. Many of
the functions and formulas involved in these theories are
determined based on assumptions and empirical parameter
values. However, these empirical parameters values may not be
proper for FOWTs due to its high non-linear coupling effect.
For example, the empirical aerodynamic parameter values such
as wind resistance coefficient of blades, can bring potential
problems to the later numerical simulation of the entire FOWTs
system. Many other key environmental parameters such as wave
parameters in hydrodynamics and mooring line damping values
etc. are difficult to be issued unique values during the analysis.
Therefore, as the first step of using SADA method it is of great
importance select these key discipline parameters properly. This
paper demonstrates an example of SADAmethod application and
some key KDPs selections are also presented in this section.

Multidisciplinary KDPs

Aerodynamics
Wind load calculation is of critical significance in FOWTs
dynamic responses analysis. The wind profile index n andGlauert
correction coefficient for high axial induction factor ac are
chosen. Taking into account the viscous effect of sea level on wind
speed, change of the average wind speed gradient along the height
conforms to the logarithmic rate:

ū (z) = ū
(

h
)

( z

h

)
1
n

Where, h is the reference height above sea level is usually 10m;
ū

(

h
)

is the average wind speed at the reference height; z is above
sea level; ū (z) is the average wind speed at z; n is the wind profile
index, which characterizes the sea level roughness. For the open
coastal area, the value is usually 3, and for the uncovered sea area,
the value is usually 7 ∼ 8. But its real value varies and depends
quite a lot on experience in simulation, so parameter n is chosen
as one KDP.

In addition, for aerodynamic calculation, when the axial
induction factor becomes larger than ∼0.4, the simple
momentum theory breaks down. Different empirical relations
between the thrust coefficient CT and a can be made to fit with
measurements, for example:

CT=

{

4a(1− a)F a ≤ 1
3

4a
(

1− 1
4 (5− 3a) a

)

F a > 1
3

or:

CT=

{

4a(1− a)F a ≤ ac
4a

(

1− 1
4 (5− 3a) a

)

F a > ac

F is Prandtl’s tip loss factor and corrects the assumption of an
infinite number of blades. The last expression is found in Spera
and Ny (2009) and ac is∼0.2. Because ac is an empirical value, so
it is chosen as one KDP.

Servo Dynamics
Control operation will induce some unexpected dynamic
responses of FOWTs, so some control parameters are selected as
KDP in this paper. The generator torque constant k2 in the rated
wind speed operation region (high speed shaft side) is chosen as
one of the KDP in SADA method.

In this region, the generator torque is calculated by a quadratic
relationship proportional to the rotation speed.

TGen = k2ω
2 N ·m

The value of parameter k2 is normally determined as 2.332287 as
an empirical value of Hywind. But it varies for different type of
FOWTs. Therefore, k2 is chosen as one KDP.

Hydrodynamics
The current exponential coefficient c and added linear
viscous damping matrix coefficient CH

ld are chosen as
hydrodynamic KDPs.

For the current model, the velocity of the current varies with
the depth of the power function, and the velocity at the bottom of
the ocean is zero.

UC (z) = U0

(

z + h

h

)c

z is the vertical depth below the water surface; h is the depth of
the water to the bottom;U0 is the velocity of the water. Parameter
c normally uses empirical value 1/7, but it varies for different sea
states. Thus, c is chosen as one of the hydrodynamic KDPs.

Potential flow damping cannot consider the viscous effect of
fluids on underwater structures, and platforms of FOWTs usually
have a truss or buoy structure with a small diameter, so the
calculation of viscous damping force needs to be paid attention
to. FromMorrison’s equation correction we can get:

dFVm = −
1

2
CM
DDdz · (vw − vs) · |vw − vs|

FV =

[ ∑n
M=1 dF

V
m

∑n
M=1 dF

V
m · lm

]

Where,D is the diameter of the cylinder; vw and vs are the velocity
component of the fluid velocity when the water mass is not
disturbed and the cross-sectional slice velocity of the underwater
component perpendicular to the cross-section axis; CM

D is drag
coefficient; lm is the radius from the center point of the section
to the unified coordinate system. From added constant viscosity
damping coefficient matrix we can get:

FV = −CLD · Ẋ − CSD · Ẋ·
∣

∣Ẋ
∣

∣

CLD is linear coefficient matrix; CSD is quadratic
coefficient matrix.
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TABLE 2 | KDPs in SADA.

No. Discipline KDPs Symbol Initial Unit Class

1 Aero Wind speed Vw – m/s d

2 Glauert correction ac 0.2 – b

3 Hydro Current speed Vc – m/s d

4 Added linear viscous damping matrix CH
ld(1,1) 7E4 Kg.m a

5 CH
ld(2,2) 1E5

6 CH
ld(3,3) 9E4

7 CH
ld(5,5) 3.5E8

8 CH
ld(6,6) 3E7

9 Mooring Wet density wm 22.7 Kg/m d

10 Kinematics & structural Polynomial flap modes 1 ϕx1 0.0622 – c

11 Servo Generator torque constant in region 2 (HSS side) k2 2.332287 N −m/(rad/s)2 b

Class definition: a. From Experiment; b. Other empirical formula; c. Other numerical result; d. Manual Setting.

The Morrison equation more accurately considers the
coupling effect and non-linear of the viscous damping. The
values of coefficients matrix CLD and CSD are chosen as
hydrodynamic KDPs.

Kinematics and Structural Dynamics
The mode superposition method (Andreaus et al., 2016) is
used in DARwind to approximate the finite DOF of the three-
dimensional beam deformation U0, as follows:

U0= ϕ •Q

Among them, the axial and lateral deformation are as follows:

l1 =

n
∑

i=1

ϕT
xiqxi = ϕT

x qx = qTx ϕx

l2 =

n
∑

i=1

ϕT
yiqyi = ϕT

y qy = qTy ϕy

l3 =

n
∑

i=1

ϕT
ziqzi = ϕT

z qz = qTz ϕz

Where, spatial shape function matrix:

ϕ=





ϕT
x 0 0

0 ϕT
y 0

0 0 ϕT
z















ϕx =
[

ϕx1 ϕx2 · · · ϕxn

]T

ϕy =
[

ϕy1 ϕy2 · · · ϕyn

]T

ϕz =
[

ϕz1 ϕz2 · · · ϕzn

]T

The coefficients of polynomial mode ϕx1 value is 0.0622 as an
empirical value of Hywind. But it varies for different type of
structure and material. Therefore, ϕx1, will be adopted as one
KDP in kinematics & structural module, which is the x-axis
component of spatial shape function.

Summary of KDPs
In addition to some of the parameters described, wet density
(w) in mooring dynamic is also selected as one KDP. Table 2
summarizes 11 KDPs used in this paper. Certainly, there aremore
KDPs that have not been considered, such as static force and
restoring force in hydrostatics, tower drag coefficient, Young’s
modulus coefficient of mooring lines and so on. They can be
added in KDPs in further analysis.

Although KDPs cover a wide range of disciplines, they can be
effectively classified. Through classification, designers can study
which type of KDPs has the greatest impact on errors in future
research. In general, KDPs can be divided into four categories:

a. Experimental correction: to modify the relevant parameters
of the numerical simulation based on the experimental results.
For example, still water decay test for added viscous damping
matrix and added mooring line restoring stiffness matrix.

b. Empirical formula: Empirical coefficient or an
empirical formula, such as tower resistance coefficient,
polynomial coefficients.

c. Numerical correction: Parameters are obtained from
other numerical tools, such as physical blade element
parameters (Bladed software), hydrodynamic parameters
(WAMIT software).

d. Manual setting: Some physical quantities that are known
to have small changes with the environment and time,
such as gravitational acceleration, wet weight or stiffness of
mooring line.

Deep Deterministic Policy Gradient
Deepmind (Lillicrap et al., 2015) proposed an improved version
of the actor–critic algorithm named DDPG, which uses the deep
neural networks to estimate the optimal policy function instead
of choosing the action based on a specific distribution (Qiu et al.,
2019). Luo et al. (2019) give a brief literature review on DDPG
method. DDPG can avoid the curse of dimensionality compared
with Markov decision process (Van Otterlo and Wiering, 2012)
and Q-learning (Watkins and Dayan, 1992) which require the
discretization of the state. Therefore, it is attractive to study
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whether DDPG can resolve the continuous coupled problems in
FOWTs. The specific algorithm of DDPG is shown in Appendix
by Lillicrap et al. (2015). Below are the notations and nouns of
SADA in this paper:

• Agent: DARwind (use KDPs to run the dynamic
response analysis)
• State(S): The numerical results from DARwind (for example

6DOF platform motions).
• Action(A): The act of weighting KDPs according to state and

other considerations.
• Reward(R): The reward and punishment obtained by error

assessment between numerical and experimental results.

There are 7 states in each observation, including average 6DOF
platform motions and work done signal. The work done signal
is used to demonstrate whether the error between experimental
results and simulation results can be reduced to a tolerable range.
At the same time, an interval range is set for each KDPs, which
is used to determine that the KDPs are still within the available
range after each weight. If the output value of the action exceeds
the range, it will be truncated. It is necessary to determine the
boundary of each KDPs, which can be derived theoretically and
experimental data, for example, the still water decay test. When
KDPs touched the boundary, action cannot further change KDPs
across the boundary. For example, the current wind speed is 11.4
m/s, and the boundary of wind speed is [11.35, 11.45]. After one
action, the wind speed will not become 11.3 m/s even though the
action is −0.1 m/s. The model will force it to become 11.35 if
the weighted value lower than 11.35. But exceeding the boundary
conditions does not mean that the KDPs stop optimization.
In addition, the situation of touching the boundary will be
avoided as much as possible, because the maximum value of
each corresponding action is different. Some KDPs cover arrays
and matrices in this paper, for example, the added linear viscous
damping matrix coefficient and polynomial flap modes of tower.
However, each element in these arrays and matrices will be set
as an independent value according to each action and part of
element in them may be ignored.

SADA
Based on DDPG algorithm and DARwind, SADA can be applied
in different demands. Two models are discussed in this paper,
which are:

• Discrete model: Suitable for analysis of a single known sea
state and working condition. For example, optimize KDPs to
further reduce errors in a single case.
• Continuous model: Suitable for analysis of known
(implement in the experiment) and unknown (not implement
in the experiment) sea states and working conditions. For
example, the optimizable working conditions are not limited
to experiment. Two method will be discussed in continuous
model in this paper, which are:

a. Single training (ST) method: train model by each known
working condition in a certain order.

b. Combined training (CT) method: train model by each
known working condition in a random order.

The flow chart of SADA method is listed in Figure 2, and the
main loop is the thick black solid line.

The specific process in Figure 2 is as follows:

• Step 1. Manual selection of KDPs from disciplines.
• Step 2. Correspond each action to the KDPs and locate the

position of these KDPs in DARwind program.
• Step 3. Use initial KDPs to run dynamic response analysis in

DARwind program to obtain state.
• Step 4. KDPs in DARwind program are weighted by actions by

the actor network in DDPG.
• Step 5 Use weighted KDPs to run dynamic response analysis to

obtain next state.
• Step 6. Use experimental data for error analysis and train

neural networks.
• Step 7. Determine whether the error meets the requirements.

If yes, output KDPs, if not, return to Step 4.
• Step 8. Use final KDPs to run dynamic response analysis in

DARwind program.

In the specific process, the designers should first select the initial
KDPs artificially among different disciplines. On this basis, find
the corresponding positions of these KDPs in dynamic response
tool DARwind. The physical variables calculated by DARwind
are regarded as “state.” Subsequently, the KDPs in DARwind are
weighted by the actions output by the actor network. For the
weighted KDPs, the second dynamic response analysis and error
analysis are performed again.

The SADA method includes dynamic response analysis,
reinforcement learning algorithms and experimental data
utilization. The traditional dynamic response algorithm can only
analyze based on the KDPs provided by the designer, but cannot
consider some phenomena and changes that may exist in the
actual environment changes in the basin experiment. AI-based
DARwind can overcome the limitations of traditional software,
and optimize its own from the basic theoretical part through the
training of experimental results. The intelligence of DARwind
-SADA is reflected in its self-training to optimize errors. It
can realize the interaction between itself and the environment,
instead of just passively setting parameters manually by the
designer. In addition, the trained AImodel can not only deal with
the existing experimental environment, but also work well in the
undeveloped environment.

CASE OF STUDY AND DISCUSSIONS

This section gives a case of study for the SADA methodology
proposed in this paper. The experiment data is provided by
an experiment conducted at the Deepwater Offshore Basin
at Shanghai Jiao Tong University using OC3 Hywind model.
Figure 3 shows the experimental model and sensors and main
dimensions of the spar-type floater.

More details on the test executions, such as the model blades
fabrication, wind field tests, restoring tests of the mooring
system can be found in references (Duan et al., 2015, 2016).
Two numerical models will be discussed in this section, which
are Discrete model and Continuous model. In continuous
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FIGURE 2 | The flowchart of SADA.

model, Single training (ST) method and Combined training (CT)
method will be used to run the prediction.

Discrete Model
This section gives case-of-study for application of SADAmethod
on discrete model. 9 testing cases are selected for AI training
and are shown in Table 3. These testing cases include the cases
of wind only, wave only, current only, wind and wave, wind
and wave and current (WWC). In Table 3, the irregular wave is
based on the JONSWAP wave spectrum, wherein H represents
the significant wave height, Tp represents the spectral peak wave
period, and γ represents the spectral peak parameter. Vw, Vr and
VC are the speed of wind, rotor and current, respectively.

In error analysis, the variation of error (Errorvariation ) will be
defined as:

Errorinitial

=

∣

∣

∣

∣

Outputmodel test − OutputDARwind(inital KDPs)

Outputmodel test

∣

∣

∣

∣

× 100%

Errorpresent

=

∣

∣

∣

∣

Outputmodel test − OutputDARwind(weighted KDPs)

Outputmodel test

∣

∣

∣

∣

× 100%

Errorvariation = Errorinitial − Errorpresent

The Outputmodel test is the experimental physical quantity. The
OutputDARwind(inital KDPs) is the numerical results by initial KDPs

by DARwind. Correspondingly, OutputDARwind(weighted KDPs) is

the numerical results by the weighted KDPs by DARwind.
The Errorvariation is used to measure whether the results of
SADA is better than the original DARwind. If the Errorvariation is
positive, it means that the error between experiment and
numerical simulation has decreased by SADA, otherwise the
error has increased.

In Table 4, the positive value shows that SADA reduced
the error between numerical calculation and experiment by
percentage, and vice versa, it represents the percentage of error
increase. The number of actions taken in each case is different,
which is determined according to the specific case. From the
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FIGURE 3 | Experimental model & sensors and main dimensions of spar-type Floater.

TABLE 3 | Test matrix.

No. Classified Vw Wave Vr Vc

m/s H(m) γ m/s m/s

1 Current only – – – – – 0.3

2 – – – – – 0.5

3 Wind only 9.4 – – – 7.9 –

4 Wind only 12.8 – – – 14.42 –

5 Wind and current 11.1 – – – 10.9 0.85

6 Wind & irregular wave 10.9 7.1 12.1 2.2 10.6 –

7 12.8 7.1 12.1 2.2 14.42 –

8 WWC 11.4 2 8 3.3 11.2 0.6

9 10.9 7.1 12.1 2.2 10.6 1.2

perspective of the motions, the Errorpresent of surge is less than
Errorinital, especially significant in case 1, 2, and 5. The Errorpresent
of pitch basically maintains a relatively stable variation range.

TABLE 4 | Errorvariation of FOWT platform motions (%).

Case No. Surge Heave Pitch Yaw

1 21.065 −0.84 0.629 0.021

2 9.937 0.787 1.239 0.001

3 4.324 10.615 0 −0.964

4 0.939 −2.227 0.792 1.631

5 12.666 −14.725 0.244 −0.115

6 0.947 −1.01 0.73 1.151

7 2.053 −1.322 1.527 0.64

8 4.05 −4.261 1.706 1.587

9 1.62 −8.184 1.875 1.213

Case Analysis
In case 1 (Figure 4), SADA weighs the KDPs 7 times. In the first
4 actions, the error of surge has changed significantly by each
action. However, the fifth action is unchanged compared to the
fourth one. It is because the weighted KDPs has been chosen as
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FIGURE 4 | Comparison in each action under case 1 & 8.

FIGURE 5 | Average surge amplitude change in case 9.

most suitable one. Therefore, the error of each step is unchanged
from the previous step. In some case, only part of sea state has
been considered, for example in wind only (case 3 &4), which will
not be changed with some KDPs (current speed, wave loads, etc.).

Figure 5 shows the trend of the average amplitude of surge
with each action. As showed, the red solid line is the average
experimental value of 7.07m, and the red dashed line is the
5% tolerance in range of 6.7165m. Similar to the situation
encountered in case 1, the amplitude of surge remains unchanged
after the fourth weighting action in a fully coupled environment
(WWC). It can be seen from Table 4 that the error of heave in
case 9 is increased, while the experimental result of heave in case
9 is only 0.307m, so the slight change is within the tolerable
error range. The results of other cases are not listed, which are
all provided in Table 4.

Platform Motions Analysis
This section analyzes the Errorvariation of the average amplitude
of the specific platform motion in all 9 cases. From Figure 6,
the entire FOWTs system is in a shutdown state, without
influence of wind and waves in case 1 (current only).
Compared with wind only and case 5, it shows that in the
coupled environment of wind and current, weighted KDPs
can effectively reduce the error of surge. In the last four
couple cases, the amplitude of the surge is very close to
the experimental value in these coupled cases. Therefore,
the error remains stable. Although the heave is decreasing
in most cases, its experimental value is only 0.065m. In
general, the amplitude of heave in all 9 cases is basically
two decimal places. In addition, there are not many KDPs
that directly affect the heave. Therefore, the added static force
and added linear restoring matrix can also be considered for
further optimization.

Comparing case 6 and case 7, the higher the wind speed,
the better the optimization of pitch in wind and wave
environment. At this time, the average amplitude of pitch is
6.42 deg and 4.512 deg in case 6 and case 7, respectively.
In last two cases, the 11 KDPs can achieve the greatest
optimization. If KDPs are expanded from 11 to 31 and more
factors included, then it is conceivable that there will be
a very large change in pitch in WWC environment. The
Errorvariation of yaw is more dramatic. In current only case,
the Errorvariation did not change which shows that the current
speed does not impact the yaw motion a lot. In wind only,
it has a greater impact due to the difference in wind speed.
But comparing experimental results (−0.281 deg and −0.866
deg), the larger wind speed causes the amplitude of yaw to
increase. In addition, the errors are all reduced under the
combined wind and wave conditions. Not only because wind
will inhibit the motion of the platform under wave conditions,
but also the hydrodynamic parameters in KDPs have been more
accurately corrected.
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FIGURE 6 | Variation of error of platform motions in 9 cases.

TABLE 5 | Test matrix.

No. Ve
w Wave

m/s H(m) P(s) γ m/s m/s

1 11.4 2 8 3.3 11.2 0.6

2 12.8 7.1 12.1 2.2 14.42 0.8

3 10.9 7.1 12.1 2.2 10.6 1.2

4 11.1 7.1 12.1 2.2 10.9 0.85

Continuous Model
A multi-combination training mechanism is set according to the
selected cases in continuous model. Not only the cases conducted
in the experiment, but also the undesigned cases can also be
optimized. As Table 5 shown, the first three cases are training
cases and case 4 is the forecast cases.

Two continuous methods were proposed for comparing their
efficiency. The single training (ST) method, which is to use

3 independent cases for training in a specific permutation.
In combining training (CT) method, the three cases will
be selected in a random order for training the model
(Figure 7). For example, case 1 gets a new state through
action, and the number of this action is manually set (if
10). However, after 10 actions, the training does not end,
but the model automatically and intelligently updates the
new numerical calculation settings according to the given
case list, starts the calculation of the next case and loops in
turn. This also means that the three cases do not necessarily

represent only three loops. Instead, it can train over and

over in three cases in several loops. There is no fixed exit

condition in actual operation. Generally, only one maximum
number of loops is set. Unlike classification and identification
problems, due to the limitations of numerical software, it
is currently difficult to define the exit conditions, which is
determined according to the needs of the designer. It can
be the error of the platform’s motions between numerical
results and experimental results, or any other conditions they
care about.
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FIGURE 7 | Two training method in Continuous model.

TABLE 6 | Variation of error of two methods (%).

Case No. Surge Heave Pitch Yaw

ST CT ST CT ST CT ST CT

1 0.517 4.749 0.226 −19.601 −0.12 9.944 0.158 14.074

2 0.675 2.684 −0.055 −2.546 −0.154 0.859 −0.157 1.139

3 1.125 3.974 −0.458 −15.375 −0.025 11.318 0.145 12.739

Platform Motions Analysis
From Table 6, the optimization effect of CT method is more
significant than STmethod. The case 2 has a general performance
in the variation of error of each motion. This may be caused by
the wind load and the high rotor speed. Wind load can effectively
restrain the motion of the platform, but too high rotor speed will
increase the influence of gyro moment.

The three cases belong to the combination of wind, wave
and current, and the Errorvariation of platform motions is carried
out according to each action. In Figure 8, the CT method has
the advantages of rapid convergence compared with the ST
method. For example, in case 1, the KDPs of the CT basically
reach the boundary after the sixth action, and no longer change.
The ST model still has a tendency to change after the 11th
action. This also means that the CT method can judge the next
step more effectively according to the state obtained after each
action. However, the ST method obtains the best KDPs after 25
operations which did not show in Figure 8. The error in the first
action of the CT method drops by 11%. In the next 5 actions, the
error gradually increased, but the percentage increase was very
small (within 2%). This is also a reflection of the intelligence of
the CT method. The model itself measures how to act to obtain
better benefits. According to the reward engineering, as long
as the error of surge reaches within 10%, which represents the
acceptable range.

For heave, the ST model performed well at the beginning,
and the error gradually decreased, but after the fifth action, it
remained basically unchanged. For the CT method, the error
increases rapidly after the first action, but it remains stable

afterwards. However, the heave amplitude is only 0.411m in
case 1, even if the error of the first action increases by 12%,
the impact on the entire FOWTs system is very small. This is
also the intelligence of the CT model, which can effectively filter
the weight of the maximum benefit, by choosing between surge
and heave.

For pitch and yaw motions, the optimization effect of CT
method is much better than that of ST model, in case 1. The
error reduction of each step in ST method is only kept in
a very small interval. The CT method is consistent with two
motions discussed above. In the first action, SADA made a very
wise choice, reducing the error by about 8%. In subsequent
actions, on the one hand, the KDPs may reach the boundary,
and it weighs other factors and benefits. Therefore, the error no
longer changes greatly, and basically maintains fluctuations in
a small range.

Prediction
The previous section discussed two continuous method for
known cases. This section will use the trained model to
numerically optimize an unknown continuous case 4. Although
case 4 is also part of the experimental case, here we assume that
it is an unknown case. Case 4 does not participate in the previous
training process, which will be directly used for optimization
by the trained continuous model. In order to understand the
Errorvariation more intuitively, Figure 9 shows 3 time-history
curves of surge. Through different actions, the final numerical
calculation result of the weighted KDPs has changed. Although
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FIGURE 8 | Actions of platform motions in three cases.

FIGURE 9 | Comparison of surge motion in case 4.
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the error reduction is limited (due to the setting of the boundary),
it is still desirable.

In CT method, surge and pitch are reduced by 6.662% and
1.94%, respectively. In ST method, pitch and yaw motion is
greatly increased. And the heave motion remains unchanged.
In Figure 9, the CT method maintains a 1.5–1.8% drop rate
in the first four actions. By the fifth action, the error remains
basically unchanged. The ST method is known to maintain a
rate of about 0.05% until the 11th action. The CT method
can more intelligently screen effective and high-yield actions
according to different cases when facing unknown continuous
working conditions.

CONCLUSION

Summary of SADA
The traditional dynamic response software can only analyze
based on the KDPs provided by the designer, but cannot
consider some phenomena and changes that may exist in
the actual environment changes in the basin experiment.
This article proposes an innovative and intelligent method to
optimize the numerical calculation of FOWTs by reinforcement
learning method. SADA can overcome the limitations of
traditional software, and optimize its own from the basic
theoretical part through the training of experimental results.
Based on the DDPG algorithm and DARwind program,
discrete model in SADA can effectively reduce the error
of platform motions. Two continuous methods in SADA
are proposed, namely ST and CT. A comparison of these
two methods:

• ST: The method is simple; each step is relatively stable; not
too much fluctuation. However, it contains hyper-parameters;
work not well-under unknown conditions and errors increase
in some quantities.
• CT: The optimization effect is remarkable; the convergence is

rapid; the unknown cases can be better optimized. However,
it contains many hyper-parameters and errors increase in
some quantities.

The intelligence is reflected in its self-training to optimize
errors. It can realize the interaction between DARwind and the
environment, instead of just passively setting parameters
manually by the designer. In addition, the trained AI
model can not only deal with the existing experimental
environment, but also work well in the undeveloped
environment. However, there are some limitations in
this research:

• Limitation of selected KDPs: Only 11 KDPs have been
selected in this paper. The more KDPs are added to the
training, the better performance will SADA show. For
example, the optimization of heave needs more KDPs (static
force, restoring force)
• Limitation of boundary condition of KDPs: It is basically

plus or minus 0.5 or 1–2 orders of magnitude smaller
than the initial KDPs. The boundary conditions of different

KDPs are inevitably different. For example, the coefficients in
aerodynamics and the damping coefficients in hydrodynamics
can differ by up to 1E10. In addition, KDPs can be changed
from unified to independent. For example: various coefficients
between different positions of blades and towers (11 tower
stations share a resistance coefficient of 0.5).
• Limitation of cases: For continuous model, the more training

cases, the more accurate and the better optimization.
• Hyper-parameters are used: For neural network training,

different numbers of neurons and neural layers will affect the
convergence effect of the model. For example, in this study,
two actor networks are three-layer neural networks, the first
layer of neuron nodes is 50, and the second layer is 200. The
activation functions are all ReLU, and the output layer is tanh.
The two critic networks are two-layer neural networks, the
number of nodes in the first layer is 100, and the activation
function is ReLU. The output layer is 200 and activation
function is ReLU as well.

Future Work
In response to the above problems, more work can be carried out:

• Expand more states: in addition to the platform motions,
some other physical quantities in experiment can be selected
as states. For example, in addition to platform motions as a
standard, physical quantities that can be easily obtained in
experiments such as fairlead tension can also be considered.
• Comparemore physical quantities:muchmore results can be

added as well, such as power generation, blade deformation,
tower deformation, etc.
• Impact on different disciplines of KDPs: the impact of the

KDPs of each discipline can be analyzed.
• Debugging of hyperparameters in AI module: For this

study, the selection of KDPs and the simulation of overall
FOWTs dynamic response are one of the most critical
studies. However, in future research, this is also one of the
essential links.

In general, SADA can combine experiments with numerical
simulations and make them intelligent. However, although the
AI technological changes brought new ideas to our traditional
research. It is undeniable that no matter how excellent AI
technology is, it must be based on the theoretical knowledge
and engineering application of various disciplines in the
field of FOWTs. For example, the optimization of heave
motion mentioned in this article. The selected KDPs in this
paper did not select parameters that are strongly related to
heave, which in turn reflects the importance of the choice
of KDPs.
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APPENDIX

Algorithm 1 The algorithm of DDPG.

Randomly initialize critic network Q(s; a|θQ) and actor µ(s|θµ)
with weights θQ and θµ.

Initialize target network Q′ and µ′ with weights θQ
′
← θQ,

θµ′ ← θµ

Initialize replay buffer R
for episode= 1, M do

Initialize a random processN for action exploration
Receive initial observation state s1
for t= 1, T do
Select action at= µ (st|θ

µ)+Nt according to the current
policy and exploration noise

Execute action atand observe reward rt and observe new state
st+1

Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions
(st, at, rt, st+1)from R

Set yi=ri+γ •Q
′
(si+1,µ

′
(si+1| θ

µ
′

)|θQ
′

)
Update critic by minimizing the

loss:L = 1
N

∑

i

(

yi−Q
(

si, ai⌋ θ
Q
))2

Update the actor policy using the sampled policy gradient:

∇θµI ≈
1

N

∑

i

∇a Q
(

s, a⌋ θQ
)⌋

s=si , a=µ(si)
∇θµµ

(

s|θµ
)⌋

si

Update the target networks:

θQ
′

← τθQ+(1−τ )θQ
′

θµ
′

← τθµ+(1−τ )θµ
′

end for
end for
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