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Many gregarious species require complex patterns of communication for maintaining
coordinated behaviors, articulated social structure and group cohesion. In mammal
species, social complexity has been considered the driving force for the development of
advanced acoustic communication systems. Striped dolphins are highly social, showing
large group size with females maintaining strong bonds with kin. Here, we tested the
hypothesis that more complex acoustic pattern plays a key role in social activity in
the striped dolphins. The production rate of clicks, whistles and burst pulses, and the
acoustic features of whistles have been related to the activity context (feeding, traveling,
resting, and socializing). Furthermore, complex calls, consisting of a combination
of frequency-modulated, and/or pulsed components were detected. Higher whistles
and burst pulses production rates were recorded during socializing. Also, the social
activity can be discriminated basing on the modulation of the whistle contour. Biphonic
calls were especially recorded during social interaction events, suggesting that these
phenomena can encode information about individual or group identity to conspecifics.
Outcomes indicate the pivotal role of vocal complexity during social context and elicit
further investigations of the communication system of small odontocetes from local to
wider spatial scale.

Keywords: acoustic behavior, dolphin, Mediterranean Sea, complex calls, social interactions, Ionian Sea

INTRODUCTION

Group living and the relationships between individuals imply the need to recognize each other
and to strengthen bonds (Kappeler, 2019). Many gregarious species require complex patterns of
communication for maintaining coordinated behaviors, articulated social structure, and group
cohesion (Brudzynski, 2014). Indeed, communication is pivotal in regulating dynamics within
a social group (Fichtel and Manser, 2010). Social complexity has been considered the driving
force for the development of advanced acoustic communication systems (Blumstein and Armitage,
1997; Freeberg et al., 2012a; Van Cise et al., 2018; Gustison et al., 2019). The “social complexity
hypothesis for communicative complexity (SCHCC)” posits that variations in communication
systems develop due to social structuring and that more complex social structures can lead to more
complex communication systems (Freeberg et al., 2012a; Bouchet et al., 2013). This approach bases
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on comparative research among species with different levels of
social complexity. For instance, analyses on the vocalizations
of several non-human primate species revealed a positive
correlation between the acoustic repertoire size, group size,
and time spent grooming, suggesting that vocal communication
system may shape increases in the levels of social relationships
(McComb and Semple, 2005). Also, social rodents showed a
higher number of different call types compared to the solitary
species (Vanden Hole et al., 2014).

However, estimating social and communicative complexity
faces a rising definition issue across taxa. A system is generally
considered more complex if it is made up of more parts, has
more connections between parts and vary greatly (Peckre et al.,
2019). A first approximation to estimating complexity has been
based on the group size, on the number of units and their
connections (Peckre et al., 2019), on the counting of discrete
behaviors and how they are arranged (Blumstein et al., 1997),
or on other social features, such as the type of relationships
among organisms (Kappeler, 2019). Proxies of communicative
complexity were identified especially in the vocal repertoire size,
in the number of signaling units, in the call rate and its variability,
in the combination of the call (simultaneous or in sequence), in
their stereotypy or flexibility, and the tonal sound modulation
(Peckre et al., 2019).

However, since signaling is likely the result of a combination
of several selective pressures, among which ecology, morphology
and phylogenetic (Freeberg et al., 2012b; Ord and Garcia-Porta,
2012; Ramsier et al., 2012; Manser et al., 2014), how social
factors directly affects signal variation may be poorly understood.
The study of communication signals during different social
activities can reveal specific links and dynamic changes in signal
structure across contexts (Wilkins et al., 2015; Papale et al.,
2017). Signals can connect several specimens within a group
that may communicate simultaneously. Therefore, isolating
individuals to study the acoustic repertoire might prevent
uncover communication interactions, especially in species living
in large groups.

This is true for dolphin species that show extensive range
in social group size and aggregations, in which individuals
maintain dynamic relations and affiliations (Gazda et al., 2015).
Vocalizations are a pervasive feature of odontocete social life
and vocal learning has also been recorded (Deecke et al., 2000;
Filatova et al., 2010; Musser et al., 2014). They use acoustic signals
to interact with conspecifics and produce a variety of sounds,
categorized as clicks, whistles, and burst pulses (Janik, 2009; Jones
et al., 2020). However, not all odontocetes’ vocal events fit into
this classification. Bottlenose dolphins, for example, produce a
variety of multi-unit signals, called bray series (dos Santos et al.,
1995; Luís et al., 2019; Jones et al., 2020). Killer and false killer
whales emit complex calls as a continuum from whistles to pulses
or vice-versa (Murray et al., 1998; Wellard et al., 2015, 2020),
by changing frequency modulation and inter-pulse intervals.
Furthermore, two sounds can be produced simultaneously (also
in a stereotyped manner) in the form of two overlapped tonal
signals, or combined whistle-burst pulses, or whistle-click train
(Wellard et al., 2020; Jones et al., 2020). Biphonation is a
phenomenon-occurring in the repertoire of several mammalian

species. Among the odontocetes, it was identified for Tursiops
truncatus (Reiss, 1988; Bojanowski et al., 2000; Kriesell et al.,
2014; Papale et al., 2015), Orcinus orca (Filatova et al., 2009),
Stenella frontalis (Herzing, 1996; Evans-Wilent and Dudzinski,
2013; Kaplan et al., 2018), Grampus griseus (Corkeron and Van
Parijs, 2001), and Inia araguaiaensis (Melo-Santos et al., 2019).

The tonal sounds, like whistles, are the signals more studied
as implicated in communication efforts, and their modulation
complexity has been related to the evolutionary level of social
structure (May-Collado et al., 2007). Furthermore, signature
whistles, individually distinctive stereotyped tonal signals, have
been found in some delphinid species (Caldwell and Caldwell,
1965; Janik and Slater, 1998; van Parijs and Corkeron, 2001)
often produced in sequences with 1–10 s intervals between them
(Janik et al., 2013).

Some species (such as G. griseus, Cephalorhynchus hectorii,
S. frontalis, T. truncatus), use also, or almost exclusively, burst
pulses (signals made up of a series of clicks) to coordinate during
some behaviors and to support social interactions (Dawson, 1991;
Herzing, 1996; Thomas et al., 2002; Lammers et al., 2003; La
Manna et al., 2013; Papale et al., 2017). Moreover, biphonic events
have been suggested to provide directionality and identity cues
(Filatova et al., 2013; Papale et al., 2015; Kaplan et al., 2018),
which are crucial during social interactions in large groups.

From Norris et al. (1994), a relation was observed among
the level of social activity and the complexity of the vocal
pattern in terms of calling rate (dos Santos et al., 2005),
whistle modulation (May-Collado et al., 2007) and presence
and number of complex signaling (Nemiroff, 2009; Wellard
et al., 2020), defined as the combination of more than
one signal or component, often stereotypically repeated
and overlapped (Hebets and Papaj, 2005). In particular, a
higher repetition rate and markedly modulated tonal signals
were recorded at increasing social interactions for Beluga
whale (Panova et al., 2012), T. truncatus (Hawkins, 2010;
López, 2011), Globicephala macrorhynchus (Sayigh et al., 2013;
Zwamborn and Whitehead, 2017), Sotalia guianensis (May-
Collado, 2013), Sousa chinensis (van Parijs and Corkeron, 2001),
and S. frontalis (Herzing, 1996; Dudzinski, 1998; Papale et al.,
2017; Kaplan et al., 2018). This increased complexity has been
observed not only during the so-called socializing behavior (i.e.,
when animals are engaged in direct physical contact, mating,
chasing, body inspections toward each other), but also during
cooperative interactions functional to feeding, or coordination
during movements (King and Janik, 2015; Eskelinen et al., 2016).

Even if the striped dolphin S. coeruleoalba is a worldwide
species, living in large social groups, there is a distinct paucity of
studies showing its vocal complexity. The species is highly social,
showing large group sizes (in the Mediterranean from less than
20 to more than 200 animals) and females maintaining stronger
bonds with female kin than with males (Gaspari et al., 2007).
For this species, the study of acoustic repertoire, in terms of
patterns and structural features of sounds in relation to behaviors,
can shed light on the role of social communication in the
group dynamics and can represent a crucial step for effective
Passive Acoustic Monitoring programs. However, although few
studies described striped dolphin’s sounds (Kastelein et al., 2003;
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Oswald et al., 2003, 2007; Gannier et al., 2010; Papale et al., 2013a,
2015; Azzolin et al., 2014), currently, no data link the behavior
to the acoustic complexity. To that regard, this study aims to
evaluate the hypothesis that striped dolphin’s vocal patterns can
function as a cue to acoustically distinguish social and other
behavioral activity. Therefore, we focused on the calling rate
of clicks, whistles and burst pulses, on whistle’s modulation,
and the type and occurrence of complex calls, in particular
biphonating events.

MATERIALS AND METHODS

Study Area
The Gulf of Taranto (Northern Ionian Sea, Central-Eastern
Mediterranean Sea) covers an area of approximately 14,000
km2 from Santa Maria di Leuca to Punta Alice (Figure 1).
A narrow continental shelf with a steep slope and several channels
characterizes the western sector, while the eastern sector shows
descending terraces toward the “Taranto Valley,” a NW–SE
submarine canyon with no clear bathymetric connection to a
major river system (Capezzuto et al., 2010; Russo et al., 2017;
Carlucci et al., 2018a). The striped dolphin regularly occurs in the
northernmost portion of the Taranto Valley (Azzolin et al., 2020),
most likely attracted by the high productivity of the sub-marine
canyon system and its upwelling currents (Carlucci et al., 2018c).

Data Collection
Acoustic recordings and behavioral data were collected during
standardized vessel-based surveys carried out in summers 2016,
2017, and 2019, investigating an area of about 960 km2.The
sampling effort was set at about 5 h/day along 35 nautical miles.
Speed was maintained between 7 and 8 knots and trips occurred
only in favorable sea-weather conditions (Douglas scale ≤ 3
and Beaufort scale ≤ 4). On board of a 12 m catamaran
research vessel equipped with two 75 hp inboard engines, three
experienced observers monitored the sea surface with the naked
eye or 7 × 50 binoculars. One observer searched for targets
around 180◦ and counted dolphins during each sighting, while
the others supported the activities of the former, searching in
a sector from the track-line to 90◦ on the starboard and port
sides, respectively. When a group of dolphins was encountered,
it was followed switching to off-effort (Irvine et al., 1981;
Buckland et al., 2004). Date, sea-weather condition, geographic
coordinates, depth (m), time of first contact, and group size
(number of individuals) were recorded. A group was defined
as dolphins within approximately 100 m radius of each other
(Irvine et al., 1981) that were observed in apparent association,
moving in the same direction and often, but not always, engaged
in the same activity (Shane, 1990). Acoustic data and behavioral
pattern were recorded with the engine switched off to exclude
the disturbance in recordings and minimize the impact on
dolphin’s activities.

FIGURE 1 | Map of the study area. In the square, the survey area investigated in 2016–2017 in the Gulf of Taranto (Central-Eastern Mediterranean Sea).
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The sampling of activity state of the focal group was carried
out by scanning instantaneously the focal group and then,
assigning the predominant group activity state. This step was
repeated every 3 min for at least 5 times (for a total session
of 15 min during which acoustic data were simultaneously
recorded). According to Altmann (1974), it should be considered
that in an ideal instantaneous sampling, the state of every
individual in the group would be noted at the same moment. In
practice, however, the observation, classification, and recording
of a state takes time (from few seconds to minutes) especially
when a group was composed of many individuals. After recording
the predominant activity state for each instantaneous scan
(Table 1 according to Carlucci et al., 2018b), the prevalent
behavioral category during the entire session was considered
as the activity state of the focal group during the encounter.
Thus, for example if we have recorded 3 out of 5 occasions the
socializing category, the prevalent behavior in that encounter
was defined as socializing. Sightings were excluded when the
predominant behavior was not undoubted defined. However, in
this study only in 2 out of 32 sightings, we have recorded a change
in the behavioral state.

The focal group was defined as aggregation of dolphins
engaged in the same activity within 100 m from the boat. This
prevent possible bias in the identification of behavioral activity
during sightings with a group size greater than 100 dolphins.
We limited the focal group to reduce the error that can deriving
in observing a large group (that can extend well beyond 100
m from the boat) and in associating to them the vocalizations
recorded from the boat.

Since the group size estimation ranged from 10 to 80
individuals, three classes were considered as: group 1 = × < 20
individuals, group 2 = 20≤×< 35, group 3≥ 35. Basing on data,
this classification allowed to lump data in well separated groups,
preventing close boundaries among them.

Acoustic data were collected simultaneously to behavioral
data, by using a mobile recording system made up of a pre-
amplified omnidirectional hydrophone (ColmarGP0190) with a

TABLE 1 | Activity class defined by observed behaviors.

Activity class Observed behaviors

Feeding Dolphin involved in chases or captures of prey items close to
the surface, showing erratic movements at the surface,
multidirectional diving, and rapid circle swimming.

Resting Dolphins observed in a tight group (<1 body length between
individuals) stay close to the surface, emerging at regular
intervals and swimming very slowly.

Socializing Physical interactions ranging from chasing to body contact,
such as rubbing and touching or copulation among dolphins.
Aerial behaviors such as breaching frequently observed.

Traveling Dolphins persistently swimming in the same direction at
sustained speed and making noticeable headway.

Milling behavior, usually defined as a transitional states in which dolphins do not
appear to be involved in a particular activity (Neumann, 2001) and encompasses
multi-directional movements was never recorded during field observations, as there
was always evidence of other behaviors attributable to the activity state considered.

sensitivity of –175 ± 5 dB re 1 V/µPa among 5 and 170 kHz,
a 20 m cable, and an onboard junction box with a USB cable
connected to a laptop for data recording and preliminary analysis
through its monitoring software. The software allowed a real
time monitoring via time domain waveform, audio listening and
the spectrogram of the signal. Also, an autonomous recorder
RASP12 (NautaTM) was deployed from the boat during the
sightings, for a set of data during summer 2017, by using
the same data collection protocol. It was made up of a
pre-amplified omnidirectional hydrophone (Sensor Technology
SQ26-05), with a sensitivity of−168.8± 5 dB re 1 V/µPa among
100 Hz and 50kHz. Recordings were digitized at a sampling
rate of 500 kHz with the first instruments, and of 96 kHz
with the second.

Data Analysis
All the recordings were down sampled at 96 kHz to homogenize
the dataset. Recordings were first manually analyzed using the
spectrogram (time vs. frequency graph) view in iZotopeRX3
(iZotope, Inc., Cambridge, MA, United States) (1024 Fast Fourier
Transform size and a Blackmann-Harris window), and only data
coupled with behavioral data were selected.

For the single clicks and the train of clicks identification
and count, a high pass filter of 5 kHz was applied. Clicks were
identified through the Pulse Train Analysis in Avisoft SAS-
Lab Pro (Avisoft Bioacoustics, Germany), using the methods
of envelope modification “RMS+decimation” and of pulse
detection “Peak search with Hysteresis,” setting the hysteresis at
12 dB, and the time constant at 0.3 ms. Due to the different
sensitivities of the hydrophones used, two different energy
thresholds were selected: 0.001 V for the first one and 0.03 V
for the second. All the impulsive signals that overpassed this
threshold were considered as possible clicks and labeled by the
software. In order to count only single clicks or clicks emitted
in train, excluding possible false positive errors due to noise
presence or clicks emitted in burst pulses, an expert operator
visually checked all the recordings, manually correcting the
possible errors.

Whistles and burst pulses with a good signal-to-noise ratio
[i.e., signals were considered only if they were well defined and
prominent in intensity of at least 20 dB over the background
noise (following Bonato et al., 2015)] were detected and counted
through visual inspection of the recordings by two expert
operators in iZotopeRX3. Signals too faint compared to the
background noise or signals which complete contour could not
be recognized were discarded (Papale et al., 2013a). Following this
selection we could reasonably detect the acoustic emission of the
focal group within 100 m from the boat (Papale et al., 2019).

Biphonating calls in the form of overlapped multiple
frequency-modulated and or pulsed components were detected.
Since group was often numerous, and signals can randomly
overlap because of simultaneous emissions by more individuals,
especially in the case of increasing arousal, we decided to
be conservative and considered the call only if it was clearly
independent by other signal emissions or if it was stereotypically
repeated. The overlap of the components could not necessarily
start and end together but were never recorded separately.
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The calling rates of clicks, whistles, burst pulses and complex
calls were calculated for each sighting as:

Number of signals/(Minutes ∗ Group Size)

In order to measure the whistle parameters to describe signal
complexity, signals not overlapping with others and completely
recognizable in their time-frequency contour were further
selected. Whistles considered with similar contours by two
experienced observers were measured only once. Agreement
between observers was evaluated and resulted 78%. The percent
of agreement was defined as the number of agreements between
observers in assigning contour similarity divided by the sum of
both agreements and disagreements, and then multiplied by 100.

Ten parameters [time duration (in seconds), beginning
frequency, end frequency, maximum, and minimum frequency
of the contour (in Hz), frequency range (as the difference among
maximum and minimum frequency), number of inflection points
(defined as the point where a slope change occurred), number
of steps (a discontinuity in frequency), number of maxima,
and minima in the contour (local maxima and minima within
the contour)] were manually measured by visual inspection of
the spectrogram.

Kruskall Wallis tests were applied to point out any variations
between behavioral categories in the whistle rate, burst pulses
rate, biphonic signals rate, and in the parameters of whistles.
The Tamhane post-hoc test was chosen for comparing data with
unequal variance and unequal sample size. Since the number
of clicks was automatically calculated by using two different
thresholds in relation to the hydrophones and thus could
influence the results, their calling rate under different behavioral
contexts was examined by using Generalized Linear Mixed
Models (GLMMs) with a Penalized-Quasi Likelihood (PQL) with
glmmPQL package in R (R core Team). In this case, the variable
hydrophone, was considered as a random effect of the model, and
the behavior as fixed effect.

Moreover, a Stepwise Cross-Validated Discrimination
Function Analysis was performed in order to investigate the
possibility of distinguishing behavioral activities classes through
the parameters of whistles. We considered each whistle within a
recording in order to have the sizes of the dependent variables
not grossly different and more than five times the number of
independent variables. Furthermore, a large sample allow data
distribution to be approximated to normality. The leave-one-out
procedure (Lachenbruch and Mickey, 1968) was then used for
cross validation.

Finally, Linear Models (LMs) were used to evaluate the single
and combined effect of the activity classes and of the group size
on the features of whistles. Parameters values were chosen as
the response variable and tested as a function of the predictors
“activity class” (discrete variable ranging from 1 to 4), and
“group size” (discrete variable ranging from 1 to 3). A Gaussian
distribution and identity link function were chosen. The model
assumptions were checked by examining the observed versus
predicted values plot (for linearity), the residuals versus predicted
values plot (for homoscedasticity), and the normal Q–Q plot (for
normality). The best fitting model was chosen basing on AICc TA
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criterion. Where 1AICc < 2 between the best models, we used
model averaging approach on the top set of models (Grueber
et al., 2011) to obtain robust predictions. All the analyses were
performed in R (R Core Team).

RESULTS

Overall Results
A total of 6 h and 47 min of acoustic recordings of
S. coeruleoalba were collected during 32 encounters. Selected
periods of undoubted activity with simultaneous acoustic data
were classified as follow: 5 during resting [20% group size 1 (<20
individuals), 60% group size 2 (20 ≤ × < 35 individuals), 20%
group size 3 (>35 individuals)], 13 during socializing (15.5%
group size 1, 30.7% group size 2, 53.8% group size 3), 10 during
traveling (10% group size 1, 40% group size 2, 50% group size
3), and 4 during feeding (75% group size 1, 25% group size
2). The presence and number of vocalizations were summarized
in Table 2, reporting the mean calling rate for each activity
class. Only 422 whistles were selected for analyzing acoustic
parameters. In details, 107 were collected during traveling, 37
during resting, 75 during feeding and 203 during socializing.

Biphonic calls recorded during the study were represented
by signals often stereotyped, made up of a combination of
whistle with burst pulsed, whistle with click train, or two
tonal fundamental frequencies (Figure 2). As noted before, we
univocally identified these signals only when clearly independent
from other sounds and if they were repeated at least once. Even
if this can lead to a lower count of these signals we preferred to
be conservative in identifying the biphonation and not a random

overlap of clicks and whistles as they both can frequently occur
and coming from different specimens. All the group size classes
were involved but an age discrimination cannot be performed
due to the simultaneous presence of calves, juveniles and adults
in all the observed groups. They prevalently occurred during
socializing activity (Table 2). Furthermore, a chorusing event
was recorded during traveling. In this case, the focal group size
was 30 individuals. The event was represented by a stereotyped
sequence of two overlapped complex calls, both combination
of whistle and click train (Figure 3). These two signals were
recorded independently before and after the chorus.

The calling rates of clicks did not show any variations during
the different activity classes (GLMM estimate among −0.37
and 0.31, t-value among −0.62 and 0.58, p > 0.5), while the
calling rates of whistles and burst pulses were significantly higher
during encounters when socializing was the dominant behavior
(Kruskall Wallis test p < 0.001, p = 0.03, respectively, Table 2
and Figure 4). However, the Multiple Comparison test revealed
a significant increase in the calling rate of whistles during
socializing behavior compared to traveling and resting (Tamhane
test: p < 0.05), while in the calling rate of burst pulses during
socializing behavior only compared to resting (Tamhane test:
p < 0.05). Also complex calls were recorded significantly more
during socializing (Kruskall Wallis test p < 0.001) compared to
feeding and resting (Tamhane test: p < 0.05).

Whistles Parameters and Behavioral
Context
Whistle modulation (the number of inflection points, the
number of steps and the number of minima and maxima)
supported activity class discrimination (total discrimination

FIGURE 2 | Spectrogram (1024 Fast Fourier Transform size and a Blackmann-Harris window) and waveform (graph energy vs. time) of two complex calls: (A) a
combined whistle-click train signal; (B) overlap of a tonal and a burst pulsed component.
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FIGURE 3 | Spectrogram (resolution of 1024 Fast Fourier Transform size and a Blackmann-Harris window) and waveform (graph energy vs. time) of a chorusing
event made up of two overlapped complex calls, both combination of whistle and click train. Both signals were also independently detected during the recording.

FIGURE 4 | Box plots of the values of the calling rate of the vocalizations in relation to the different activity classes. Black bars represent significant variations
between behaviors. The y scale of the whistles calling rate is the same for whistles, bursts and complex calls.

percentage: 42.0%, Standardized Coefficients: number of
inflection points =−0.950; number of steps = –0.712; number of
minima = 0.862; number of maxima = 0.911, p< 0.001). Feeding
was the best classified activity with a correct percentage of 48.0%,
followed by socializing and resting (43.8 and 40.6%, respectively).

Whistles emitted during socializing were characterized by a
more complex modulation compared to signals emitted during
feeding (Tamhane test: number of minima and of maxima
p < 0.001) and during traveling contexts (Tamhane test: number
of maxima p = 0.006) (Figure 5).

The lower number of minima characterized whistles recorded
during feeding also compared to all the other activity classes
(Tamhane test: p = 0.017 for resting behavior, p < 0.001
for traveling), while a higher number of steps were measured
during both feeding and resting (Tamhane test for feeding: vs.
traveling < 0.001, vs. socializing = 0.002; and for resting: vs.
traveling p = 0.03, vs. socializing p = 0.05). Mean values of the
parameters measured are summarized in Table 3.

Only the number of maxima were significantly affected by
the activity classes (LM: Conditional model Estimate = 0.285,
p < 0.001), while the duration and the number of minima

were influenced by the combined effect of both activity
and group size (LM: Conditional model Estimate = –0.153,
p = 0.008; Conditional model Estimate = –0.448, p = 0.002)
(Supplementary Material).

DISCUSSION

Although S. coeruleoalba is worldwide distributed, its vocal
emissions are almost unknown. Except for Anichini (2011)
that associated the click and whistle rate to its behavioral
states, no other comparable study is available for the species
at the Mediterranean and global scale. This study specifically
assesses the pivotal role of vocal complexity during social
context. In addition, these outcomes support the chance to detect
and remotely investigate through passive acoustic monitoring,
periods and areas potentially sensitive for social interactions,
crucial for the survival of the species.

Results demonstrated that the calling rate of clicks did not
show any variations among the investigated activity states.
This outcome was partially expected because of the biosonar
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FIGURE 5 | Box plots of the whistle parameters significantly varying among activity class. Black bars represent significant variations between behaviors.

TABLE 3 | Mean values (and Standard deviation) of the whistle parameters as a whole and in relation to behaviors.

Duration (s) Frequency (HZ) # Inflection points # Steps # Maxima # Minima

Beginning Final Minimum Maximum Range

Total

Mean 0.82 11289.63 11585.61 7880.23 16093.00 8212.77 1.61 2.01 0.89 0.71

SD 0.33 4385.27 3887.19 1926.58 3525.77 3541.81 1.35 2.03 0.88 0.85

Traveling

Mean 0.86 11033.44 11619.16 7732.63 16035.39 8302.76 1.60 1.64 0.77 0.68

SD 0.33 4866.58 3712.79 2064.54 3299.87 3240.33 1.11 1.59 0.80 0.69

Resting

Mean 0.87 10377.44 10801.88 7721.79 15034.78 7312.99 1.22 3.25 0.72 0.75

SD 0.35 4045.66 3310.95 1654.24 3650.46 3398.62 1.18 2.93 0.73 0.76

Feeding

Mean 0.83 10964.17 11661.08 8457.29 16507.41 8050.12 1.45 2.65 0.57 0.28

SD 0.39 4056.36 3863.29 2283.94 3107.40 3045.05 1.38 1.65 0.66 0.56

Socializing

Mean 0.78 11688.71 11663.59 7769.81 16137.07 8367.26 1.74 1.77 1.10 0.87

SD 0.31 4274.35 4077.80 1710.23 3749.56 3871.49 1.46 2.07 0.96 0.96

function of clicks. An increase of clicks calling rate is possible
during navigation and searching for prey especially in groups
relatively limited (Janik, 2009), but this result did not emerge
during this study. Instead, whistle and burst pulses rates
resulted higher during socializing. The observed differences in
the calling rate were in the range of what reported for the
congeneric S. frontalis, as well as T. truncatus and Delphinus
delphis, for which especially a higher number of whistles and
burst pulses is usually recorded during high-intensity social
activity (Jacobs et al., 1993; Jones and Sayigh, 2002; Cook
et al., 2004; dos Santos et al., 2005; Gridley et al., 2016).
These vocalizations are commonly used as communication
signals to provide conspecifics with social information regarding
identity, conflicting and sexual interactions (Nakahara, 2002;
Janik, 2009). They are also used to keep contact, and coordinate
the movements (Janik, 2009).

Furthermore, complex signaling, never reported before for the
species, was collected. They seem to be probably more present
and flexibly used than previously thought, and therefore worthy
of a more detailed description among different populations.
The identification of biphonating events is still a challenge, and

questions remain regarding the message encoded (Fitch et al.,
2002). They were recorded especially when the striped dolphins
were engaged in socializing activity, but also other behavioral
classes such as during traveling when the requirement of
maintaining contact among individuals increased. These signals
have been suggested to serve as the way to increase the potential
for identity recognition in mammal species (Volodina et al.,
2006; Papale et al., 2015; Kaplan et al., 2018). Signal redundancy
has been suggested to increase the chance to detect the signaler
in a noisy environment (Brumm and Slater, 2006), mostly in the
chatty context of a large dolphin social group. As for terrestrial
mammals, biphonic calls could compensate for the difficulty
of perceiving visual stimuli, providing cues to individuality
within large socializing groups. Therefore, an increase in this
kind of signals could be predictable when individuals should
communicate to keep in contact, cohesion or coordination
during social interactions. Also, the chorusing event recorded
should require a high level of coordination. As for the choruses
of songbird species, it may play a cooperative role allowing
groups to coordinate activities (Bradley and Mennill, 2009;
Farina and Ceraulo, 2017). This hypothesis agrees with what

Frontiers in Marine Science | www.frontiersin.org 8 November 2020 | Volume 7 | Article 584301

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-584301 November 9, 2020 Time: 11:33 # 9

Papale et al. Vocal Complexity in Striped Dolphins

reported for S. frontalis with similar events recorded during
feeding activity (Papale et al., 2013b).

As already observed for S. frontalis and T. truncatus (López
and Shirai, 2009; Azevedo et al., 2010; Papale et al., 2017), whistles
were more modulated when dolphins were engaged in social
activity. Similarly, we observed that striped dolphins emitted a
higher number of modulated whistles when the social contexts
predominated, and when the number of individuals increased.
Results demonstrated that the number of maxima in the contour
of the sound was strongly related to the social activity state,
while other modulation and duration parameters showed changes
because of both activity and group size.

For the bottlenose dolphin, changes in frequency modulation
of whistles have been suggested to indicate the transmission of
motivational information and individual differentiation within
a socio-behavioral context (Janik et al., 1994 or in Esch et al.,
2009; López, 2011; Heiler et al., 2016). This is especially linked
to signature whistle use (Cook et al., 2004). However, even if
stereotyped whistles have been recorded for striped dolphins
during this study, the certain use of signatures could not be
assessed because the methods used did not allow to assign calls to
individuals. The increasing in whistle modulation during social
events, as also the presence of stereotypically repeated biphonic
signals suggest the possibility that animals use more complex calls
to communicate signaler’s position, identity or group belonging.

During this study, the striped dolphins showed different group
sizes in feeding and resting compared to what occurred when in
traveling and socializing. As reported by Carlucci et al. (2018c),
they aggregate in the area in larger groups when socializing. Even
if a relation among the group size and the activity is not clear, the
number of individuals influenced the signal modulation. Large
groups engaged in other activity classes than socializing, imply
anyway a level of interactions among the individuals. Therefore,
it is likely that social interaction functional to different behaviors,
could be the driving force of the acoustic complexity more than
the pure socializing activity.

Therefore, results suggest that complex vocal patterns, in
the form of high calling rate, signal modulation and biphonic
signaling, can mediate social interactions in S. coeruleoalba.
These outcomes match studies on other dolphins species, such
as the spotted and bottlenose dolphins. Dolphin species can
represent a useful model for studying social communication,
since they exhibit high variation in their social structure: group
composition and cohesion change frequently within populations
(Connor et al., 2000), and they can show among populations
differences in sex and age segregation (with strong associations
between or within sexes, aggregations of nursery females, or
small groups of juveniles) (Wells et al., 1980; Wells et al., 1987;

Lusseau et al., 2003). In addition, the mixing of individuals,
genetically related or not, can also result in structured dolphin
sub-communities (Lusseau and Newman, 2004). Hence, the
evolution of the social communication system should be further
investigated looking to the small odontocetes from local to
wider spatial scale.
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