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Climate-driven trends in ocean temperature and primary productivity are projected
to differ greatly across the globe, triggering variable levels of concern for marine
biota and ecosystems. Quantifying these changes, and the complex ways in which
resource-dependent communities will need to respond, is inherently difficult. Existing
uncertainty about the structure, function and responses of marine ecosystems, means
that a multi-model or ensemble model approach is the most prudent means of
assessing the potential ecosystem responses to climate change. In this study, climate-
ecological projections of 13 marine ecosystem models for regions around Australia
were evaluated. Model types included dynamic food web, spatial whole of ecosystem,
intermediate complexity, species distribution, and size spectrum models and were
all forced by high-resolution ocean model data. Each Australian region and fishery
will face its own challenges in terms of ecosystem shifts and fisheries management
responses over the next 30 years. Across regions, demersal systems appear to be more
strongly affected by climate change than pelagic systems, with invertebrate species in
shallow waters likely to respond first and to a larger degree. With the assistance of
qualitative confidence evaluations, the multi-model approach was useful for identifying
the likely state of concern for each functional group and thus adaptive management
and research priorities. Largest model discrepancies were found between the regional
ecosystem models that represent trophic interactions and the species distribution
models, with implications for future assessments and adaption planning. Study results
highlight that fisheries and their management will need to foster pro-active and flexible
adaptation options to make the most of coming opportunities and to minimize risks or
negative outcomes.

Keywords: forecasting, climate change, model uncertainty, fisheries management, adaptive management,
ensemble modeling
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INTRODUCTION

Globally, marine ecosystems are in a period of rapid change
with predicted climate effects reducing our confidence in the
outcomes from continued existing management actions. There is
substantial evidence of climate change affecting the distribution,
abundance and size of both target and non-target species
around the globe in tropical, temperate and polar environments
(Hobday and Pecl, 2014) and at time scales relevant to current
management and strategic planning (Allison and Bassett, 2015;
Busch et al., 2016; Sheaves et al., 2016). While some species or
populations will be highly sensitive to ocean warming, others
will be much more tolerant and adaptive, meaning there will be
winners, losers, and potential surprises (Fulton, 2011; Dutkiewicz
et al., 2013). Changes at the sub-population level can modify
communities and ecosystems, which in turn feedback to affect
individuals of many species. Therefore, industries and managers
will need to be strategic and structured in their approach
to adaptive planning in ways that will minimize losses and
maximize opportunities that might arise from climate change
(Norman-López et al., 2011; Pecl et al., 2017). Ideally this
would involve taking a climate-informed, ecosystem approach to
fisheries management (EAFM), which encourages conservation
and sustainable use of the whole ecosystem (Heenan et al., 2015).

Marine ecosystem and multi-species models attempt to
represent links between species, either through feeding or
habitat use, as well as human activities and natural variability
influencing the system. These models are particularly useful tools
for synthesizing and extending scientific understanding of how
the ecosystems function. The models also offer a strategic tool
for managers of natural resources where they can explore the
potential consequences of human or environmental impacts and
test potential solutions. Increasingly, ecosystem models are used
to distinguish the effects of climate change and fishing on entire
ecosystems as well as on individual species or groups of species
(Plagányi et al., 2011). Global model simulations of direct and
indirect effects of climate change suggest that over a large spatial
scale, bulk fisheries yields will be reduced (Cheung et al., 2010;
Sumaila et al., 2011; Blanchard et al., 2012; Free et al., 2019).

Best practice for utilizing ecosystem models in support of
EAFM is suggested as a multi-model (or ensemble) approach
where at least two models, developed independently and that
use different frameworks, are compared to make sure underlying
process biases or structural assumptions are not skewing model
results (Spence et al., 2018). Direct comparisons across many
regional and global models are inherently difficult due to the
way that different models are structured and function (Payne
et al., 2016). However, the multi-model approach has proven
useful to demonstrate the potential range in outcomes and
the level of confidence that is associated with each of the
different model projections (Cheung et al., 2016a; Barange et al.,
2018; Hollowed et al., 2020). Close agreement between model
outputs offers enhanced confidence in model outcomes while
disagreement can be used to flag the need for more targeted
information. Within a climate context, most effort to date around
ensemble projections has been in terms of bulk (total system-
level) changes in biomasses, though more is being done through

the Fisheries Inter-Model Comparison Project (Fish-MIP) in
terms of functional group and species level effects at the global
(Tittensor et al., 2018; Lotze et al., 2019) and ocean basin
(Bryndum-Buchholz et al., 2019) scales. Within both Fish-MIP
and national agencies, there are also a growing number of studies,
particularly in the Northern hemisphere, being undertaken using
the multi-model approach to project local or regional-scale
climate driven changes at the species or functional level (e.g.
Pacific sardine in the California current; Kaplan et al., 2019).

Australia’s marine environment encompasses sub-polar to
tropical zones. Two of the world’s most rapidly warming
ocean areas are located in the south-east and south-west, and
even outside these regions, the tropical waters of Australia
are warming at almost twice the global average (Lough and
Hobday, 2011; Hobday and Pecl, 2014). Australia has a rich
history of ecosystem modeling and many ecosystem models,
using various modeling platforms, have been developed over
the last two decades such that they collectively cover most of
the Australian coastline (Figure 1). These models were built
for varying purposes but are being increasingly used to provide
information in support of EAFM (Brown et al., 2010; Fulton
et al., 2011a; Smith et al., 2017). Key examples include the use
of a spatial whole of ecosystem model (Atlantis) as a tool for
evaluating alternative management strategies for the Southern
and Eastern Scalefish and Shark Fishery (SESSF), where model
projections were used to restructure the fisheries (Fulton et al.,
2014). Dynamic food web models (using the Ecopath with Ecosim
(EwE) framework) of the Northern Prawn Fishery have been
used to evaluate spatial management options for the Marine
Stewardship Certified high value fishery (Dichmont et al., 2013).
Lastly, statistical fit bespoke Models of Intermediate Complexity
of Ecosystems (MICE) are being used to inform strategic thinking
about management of tropical beche-de-mer, prawn and lobster
fisheries (Plagányi et al., 2014, 2019).

The aim of this study was to use 13 different ecosystem
models to assess the likely state of concern for Australia’s fisheries
stocks under projected climate change and to report the level
of confidence in our ecosystem projections. To achieve this, we
run ecosystem projections to 2050 using ocean model projections
for the Australian region and the Commonwealth fisheries and
explored the single and combined effects of climate change and
fisheries. Commonwealth fisheries are those managed at a federal
Australia wide level, (typically) from three nautical miles offshore
to the boundary of the Australian Fishing Zone (200 nautical
miles offshore), as well as Australian boats fishing on the high
seas. A novel framework was developed to assess confidence
in the robustness of climate-mediated biomass projections by
accounting for uncertainty from multiple sources (the ocean
model, ecosystem model, and data). We focus on ecological
projections over the short to medium term (between 2020 and
2050) as this is the scale most relevant to industry and climate-
risk management and adaptation planning. It is also a period for
which a high degree of overlap occurs in the various greenhouse
gas emissions scenarios used in future climate projection such
as the Coupled Model Intercomparison Project (CMIP5 IPCC;
Van Vuuren et al., 2011). The information generated from this
study is of relevance to Australian and international fishers

Frontiers in Marine Science | www.frontiersin.org 2 October 2020 | Volume 7 | Article 577964

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-577964 October 30, 2020 Time: 12:43 # 3

Pethybridge et al. Australian Fisheries Under Climate Change

FIGURE 1 | Map showing the regional ecosystem model domains and the 5 assessment regions. The two global modeling platforms are not shown on the map
though extracted outputs for each assessment region within the Australian Economic Exclusion Zone (EEZ).

and fisheries managers looking to incorporate climate change
adaptation measures and strategies into existing plans.

MATERIALS AND METHODS

Ecosystem Modeling Platforms
We used thirteen extant ecosystem models across five published
and validated modeling platforms to provide a wide coverage of
the Australian Exclusive Economic Zone (EEZ) (Table 1). This
set included five different modeling platforms and approaches: a
dynamic and spatially explicit whole of ecosystem model, Atlantis
(Fulton et al., 2011b; Audzijonyte et al., 2019), a dynamic mass-
balanced EwE model (Christensen and Walters, 2004; Colléter
et al., 2015), a statistically data-fitted MICE (Plagányi et al.,
2014), a community size spectrum model (Blanchard et al.,
2012), and an ensemble of species-based distribution models
called dynamic bioclimate envelope models (DBEM, Cheung
et al., 2009). Greater details of these modeling approaches
are provided in Supplementary Material 1. These modeling
platforms vary greatly in their assumptions, structure (number
of functional groups, size or age classes represented) and the level
of spatio-temporal and ecological complexity (Table 2). Each of

these models was originally designed for a specific question or
purpose and as such often focuses on particular components
of the ecosystem.

Regional models, using the Atlantis, EwE or MICE platforms,
have been implemented for specific Australian marine
ecosystems (Figure 1 and Table 2), with the combined set
covering much of Australia’s coastline: Great Barrier Reef,
Coral Sea, Gulf of Carpentaria, Northwest Shelf, Ningaloo Reef
(Gascoyne coast), southwest Australia (Jurien Bay), North east
Australia (Torres Strait), Great Australian Bight, and the entire
southeast Australia. This geographic extent also spans all of
Australia’s major marine continental ecosystem types from
sub-polar to tropical.

Outputs from two global models, which contributed
global-scale climate simulations to the Fisheries Inter-Model
Comparison Project (Fish-MIP; Tittensor et al., 2018), were
obtained for the Australian EEZ. Mean outputs from the global
models were extracted for each of the 5 assessment regions:
(1) South East Australia, (2) Western Australia; (3) North
West Australia, (4) Gulf of Carpentaria; and (5) North East
Australia (Figure 1).

Four hundred and sixty five species or functional groups
were assessed from the 11 regional ecosystem models around
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TABLE 1 | Summary of the main differences between the five model frameworks used to examine ecosystem responses to climate and fishing management drivers.

Model
framework

Main
assumption

Key processes
considered

Climate
drivers

Level of complexity Attributes
tracked

Calibration
method

Scale suitability

Spatial Temporal Taxa

Atlantis Deterministic,
species-based
and size/age
structured,
whole system
model

Biogeochemical cycles,
animal movements
(including migrations),
life-history, habitat
dependency,
environmental tolerance
and physiologically
mediated responses,
trophic interactions

Temp,
Salinity

High (3D, multiple
spatial boxes -
vertical layers)

High (12 h) Moderate (groups) Biomass, body
size, condition,
distribution,
phenology, fisheries
yields

Pattern-oriented
simultaneous but
heuristic calibration
to produce
plausible
spatiotemporal
dynamics or fit to
observations; uses
a data pedigree
approach to tune
most uncertain
parameters

Ecosystem-level,
regional-level,
fisheries species
(ideally for data-rich
species, but can be
extended to data
poor using general
ecological
principles)

Ecopath with
Ecosim (EwE)

Mass-
balanced,
species-based
food web
model

Trophic interactions,
energy flow

PP Low (whole
domain)

Moderate
(seasonal)

Moderate (groups) Biomass, fisheries
yields

Fitting to biomass,
catches by tuning
predator
vulnerabilities
based on data
pedigree

Ecosystem-level,
regional-level,
fisheries (data-rich
species)

Models of
Intermediate
Complexity of
Ecosystems
(MICE)

Statistically
fitted
species-based
model

Population dynamics,
focus on key
species-specific
processes such as
trophic interactions and
environmental drivers

Temp Low (whole
domain)

Low (annual) High (species) Biomass,
numbers-at-age,
fisheries yields

Statistically fitted to
data

Regional-level,
fisheries (data poor
and preferably rich
species)

Size spectrum
model (dynamic
benthic-
pelagic)

Mechanistic,
coupled
benthic-pelagic
community size
spectrum

Body size scaling,
coupled trophic
interactions between
pelagic and benthic
pathways

Temp, PP High (10◦grid- no
vertical)

Low (annual) Low (3 groups, 1
biomass pool)

Biomass density Based on
empirical-ecological
relationships and
parameters.
Previously verified
against ecological
theory and global
fisheries catches at
country scale.

System-level

Species
distribution or
dynamic
bioclimate
envelope

Mechanistic,
statistical fitted,
species-based
model

Spatial ranges, habitat
dependency,
environmental tolerance
and physiology
mediated responses

Temp High (10◦grid- no
vertical)

Low (annual) High (species) Relative
abundance,
distribution, body
size

Statistical
correlative
relationships

Global-level,
fisheries (data-rich
species)

Temp, temperature; PP, primary productivity.
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TABLE 2 | Summary of the regional and global ecosystem models used in this project to examine ecosystem responses to climate change and fisheries. NA indicates
that fishing was not directly included.

Model
framework

Model name Model domain Region Main
purpose

Fishing
effort

Functional
groups

Fished
groups

Key references

Atlantis SEAust South East
Australia

1 F, E Constant,
Dynamic

64 36 Fulton et al., 2011a; Fulton
and Gorton, 2014; Fulton
et al., 2016

NEMO Great Barrier Reef 5 E Constant 62 29 Hutton et al., 2017

EwE EBS Eastern Bass Strait 1 E, F Constant 59 46 Bulman et al., 2002

GAB Great Australian
Bight

2 R, E Constant 75 44 Fulton et al., 2018b

Ningaloo Ningaloo 2 R Constant 53 40 Fulton et al., 2011b

NWS North West Shelf 3 E Constant 36 26 Bulman, 2006, 2008

JB Jurien Bay Marine
Park

2 E Constant 82 33 Lozano-Montes et al.,
2011, 2013

NPF Gulf of Carpentaria 4 F Constant 53 42 Bustamante et al., 2011

ETBF Eastern Tuna &
Billfish Fishery

5 F Constant 41 30 Griffiths et al., 2010

Size spectrum DBPM Global; Australian
EEZ box

1−5 E, F Constant 6 NA Blanchard et al., 2012

Species
distribution

DBEM-(IPSL,
MPIMR, GFDL)

Global; Australian
EEZ

1−5 E Constant 138 NA Cheung et al., 2009

MICE Lobster
subcomponent

Torres Strait 4 F Constant,
Dynamic

1 1 Plagányi et al., 2014, 2019

E, Ecological understanding; F, fisheries management scenarios; R, Other resource management (including industry).

Australia. This equates to representing in total 294 harvested
groups and 52 threatened, endangered and protected species
(TEPs), and a significant proportion of non-target bycatch
species. A further 6 trophic size-based and system level groups
were assessed using the output from the global benthic-pelagic
size spectrum model and 138 species were assessed by the
ensemble of dynamic bioclimate envelope models. While the
complete set of species represented (either individually or within
functional groups) is well short of the more than 600 species that
interact with Australian fisheries, it incorporates the major target
species and the interactions between them either individually or
within ecological functional groups.

Fisheries Data and Forcing
The regional ecosystem models were updated and re-calibrated
with fisheries data on catches, discards and effort obtained from
both State and Commonwealth fisheries for the 2006 to 2016
period. In all regional models, fishing fleets were distinguished
by gear-type and target species and projections were made
using constant fishing mortality or effort of 2016. All harvested
groups or species were assigned according to nine Australian
Commonwealth fisheries including the SESSF, Small Pelagic
Fishery (SPF), Northern Prawn Fishery (NPF), Eastern and
Western Tuna and Billfish Fishery (ETBF and WTBF), Southern
Bluefin Tuna Fishery (SBTF), Torres Strait Rock Lobster Fisheries
(TSRLF), and Bass Strait Central Zone Scallop Fishery (BSCZSF).

For the global benthic-pelagic size spectrum model (DBPM)
fishing was not included and therefore the model outputs
reported here represent relative changes in the unexploited
biomass of pelagic and benthic consumers under climate
forcing only. Previously, DBPM was calibrated for the North
Sea (Blanchard et al., 2009) and globally using regional

shelf sea models with fishing mortality rates of 0.2 year−1

producing catches in broad agreement with empirical time-
averaged country-level EEZ estimates from the Sea Around Us
Project (Blanchard et al., 2012). Size-dependent growth rates
were consistent with the empirical estimates by Pauly (1980)
(Blanchard et al., 2012). DBPM produced relative biomass change
close to the multi-model mean of (Lotze et al., 2019) which
were shown to be consistent with the temperature-dependent
hindcasts of Maximum Sustainable Yield for 235 assessed fish
stocks after controlling for fishing effects (Free et al., 2019; Lotze
et al., 2019).

For the dynamic bioclimate envelope model, global fisheries
catch data from the Sea Around Us project (Pauly et al., 2020)
contributed to the determination of the baseline biogeography
of the exploited marine species. Moreover, simulated maximum
catch potential for historical time period from the model was
shown to be significantly correlated with the reported fisheries
catch data, providing additional confidence on the model outputs
(Cheung et al., 2009, 2016c).

Climate Model Projections
The climate projection used to force the environmental
conditions for each regional model was derived from the Ocean
Forecasting Australia Model version 3 (OFAM-v3) downscaling
simulations which used the IPCC RCP8.5 high emissions or “no
mitigation” greenhouse gas emission scenarios. The atmospheric
forcing of the ocean model comes from the multi-model mean
of the CMIP5 climate projections under the RCP8.5 scenario
(Feng et al., 2017; Zhang et al., 2017). The OFAM-v3 model
was coupled to a biogeochemical model representing nutrient
flows and plankton components of the ocean food web to
produce patterns of primary productivity, nutrient cycling and
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carbon fluxes that are consistent with observations. The OFAM-
v3 simulations provided high-resolution (10 km, 0.1◦) projection
of the future ocean state with outputs that resolved important
oceanographic features (e.g. eddies) and ocean state variables
including sea surface temperature (◦C), sea surface salinity
(PSU), phytoplankton (mmol N m−3), primary productivity
(mmol C m−2), phosphate (nmol m−3), base oxygen levels,
aragonite saturation, and current flows. For this study, we used
two different atmospheric forcings of OFAM-v3 over the 2006
to 2101 period: (1) a high “no mitigation” emission scenario
(RCP8.5) where the atmospheric forcings are derived from the
CMIP5 multi-model mean, and (2) a control scenario where
the atmospheric forcings are based on present-day conditions
(Zhang et al., 2017). We used the difference between the RCP8.5
and control scenarios to determine the future climate change.
Monthly climate data with spatial resolution of 0.1◦ (∼10 km)
was stored for use in forcing the ecosystem models.

The two global ecosystem models were not forced by
the OFAM-v3 model, instead they were forced by climate
simulations generated from the ensemble of global Earth system
models used within the CMIP5 (Taylor et al., 2012) under
the framework of the Fisheries and Marine Ecosystems Impact
Models Intercomparison Project (FishMIP) (Tittensor et al.,
2018). More specifically FishMIP used the Geophysical Fluid
Dynamics Laboratory Climate Model (GFDL-ESM2M, 60), the
Institute Pierre Simon Laplace Climate Model (IPSL-CM5A-
LR, 61) and the Max Planck Institute Mixed Resolution model
(MPIMR). For the benthic-pelagic size-spectrum model, climate
change projections were run by linking the lower end of the
pelagic consumer size spectrum to small and large phytoplankton
biomass time-series from the IPSL-CM5A-LR model only. The
benthic consumer size spectrum was linked to time series
estimates of near seafloor detritus obtained through sinking rates
of primary producers and depth in each grid cell of the ocean.
The size-dependent feeding rates in the pelagic and benthic
size spectra were forced by average water column and near
seafloor temperature, respectively. For the dynamic bioclimate
envelope model, growth, body size, mortality, larval dispersal,
adult movement and carrying capacity of the habitat of each
studied species are functions of annual average ocean conditions
including temperature, oxygen level, salinity, ocean advection
and net primary production over the simulation timeframe
(Cheung et al., 2016a).

Regional Forcing Files
Depending on the type of ecosystem model, daily to monthly
climate forcing files were created by extracting and interpolating
the climate variables (described above) to the geometry of
the ecosystem model. Atlantis models were forced with an
interpolated times series of forcing data of daily temperature,
salinity and currents (oceanographic exchanges). To do this, the
original monthly climate data was overlaid onto the geometry of
the Atlantis models to extract mean monthly climate values for
each spatial box and horizontal layer in the model domain. Where
there were no climate data, the average of the adjacent box values
in the appropriate layer was used. The monthly value per box
and layer was then interpolated to create daily forcing data. The

species and functional groups within Atlantis respond to these
conditions – both through physiological rates (e.g. growth) that
are conditioned on ambient temperatures, salinity, oxygen and
pH levels and via modifying spatial distributions if conditions
were beyond their tolerance.

The other regional ecosystem models (EwE and MICE) had
coarser temporal and (vertical and horizontal) spatial resolution.
For these models, mean monthly surface (0−5 m) values of
climate data were extracted from the gridded data for the specific
area of the regional model. Forcing time series were calculated
as appropriate for the specific model. In EwE models, primary
producers were forced using the time series of OFAM primary
productivity anomalies, which then fed up through the food web.
MICE models can be forced with a range of physical drivers (e.g.
Tulloch et al., 2019), but the MICE subcomponent used here was
forced with monthly temperature only because it was considered
the key driver of growth and mortality for lobsters in the relatively
shallow well-mixed Torres Strait region.

Projecting Biomass Changes to Climate
Change and Fishing
Control and climate forcing files were applied for a projection
period of 40 years, from 2010 to 2050. The two Atlantis models
were run for at least 10−20 years prior to the projection period
of each simulation which is standard protocol for Atlantis as
it allows for consistent model ‘burn-in’ so that transient effects
of the initial conditions in the system do not unduly influence
the projections (Pethybridge et al., 2019) and so that historically
realistic biomasses are present at the start of the projection
period. For the MICE and EwE models, observation data was
used for at least 10 years before the projection period so that the
short-term historical trajectories were reproduced ensuring the
ecosystems were conditioned to the correct biomasses rather than
assuming an equilibrium state.

To evaluate the short and medium-term impacts of climate
change, the series of 5-year averages of model-derived biomass
and fisheries catches were calculated and normalized relative to
the values in 2010. These averages were used rather than snapshot
values so that there was not undue influence of inter-annual
variation (i.e., the results were not skewed by the coincidence of a
“poor” year within a reporting window).

To look at the impact of climate change alone (and not
the combined effects of fishing and climate), the output for
the RCP8.5 emission scenario was calculated relative to the
values from the control scenario (present-day fishing and climate
state). For the global benthic-pelagic size spectrum and dynamic
bioclimate envelope models, biomass changes under RCP8.5
were analyzed relative to historical average biomass across 1990–
1999 (reference period) without the requirement of a control
run simulation. Both global models were initialized until the
simulation outputs stabilized before making forward projections.

Three different anomalies were calculated to examine relative
changes in biomass at a given time period (Xt):

(i) Combined impacts of climate change and fisheries
projection = RCP8.5 scenario =

(
(Xt,r−X2010)

X2010

)
· 100
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where Xt,r is the value for that group at time t in the RCP8.5
scenario:

(ii) Fisheries impacts only projection (for regional ecosystem
models only) = Control scenario =

(
(Xt,c−X2010)

X2010

)
· 100

where Xt,c is the value for that group at time t in the control
scenario:

(iii) Climate change impacts only projection =(
RCP8.5− Control

Control · 100
)

t
−

(
RCP8.5− Control

Control · 100
)

2010
For each regional model, we assessed the likely state of concern

of all functional groups and species (negligible – low – moderate –
high) based on: (1) sensitivity – the magnitude and direction of
their projected rates of biomass change to the climate change
impacts only scenario, and (2) response type – differences in
the direction and sensitivity between projections of the RCP8.5
and control scenarios (Figure 2). For the sensitivity assessment
of climate impacts only, we used 7 incremental changes of
10% as smaller changes may constitute normal inter-annual or
regional variation. For the response type, functional groups were
assigned to one of 7 groups based on the magnitude and direction
of biomass trends (using incremental changes of 20%) for the
combined impacts of climate change and fisheries projection
relative to the fisheries impact only projection (Figure 2).
This included divergent responses in which climate change and
fisheries projections are in an opposite direction to that of
fisheries impacts only; stable projections where biomass trends of
both the combined impacts and fisheries impacts only projections
are similar (with differences <20%); enhanced response in which
biomass changes are in the same direction but are heightened
in magnitude under climate change; and dampened responses
where biomass changes are in the same direction but where the
magnitude is lower under climate change. For the global benthic-
pelagic size spectrum and dynamic bioclimate envelope models,
a stable response type was assumed.

Ecosystem Model Comparisons and
Uncertainty
Inter-regional and global model projections of relative biomass
trajectories were compared where there were taxonomic
agreement and fisheries or spatial overlap. Such comparisons
were relatively simple between the regional models but more
challenging between the regional and global models due
to differing taxonomic resolutions. Outputs of the dynamic
bioclimate envelope model were compared where species could
be matched specifically or to the group level (where the species
was the strongest representative of the regional model group).
Outputs from the global benthic-pelagic size spectrum model
were compared with relative trends of aggregated biomass of
different species and functional groups in regional models,
to determine whether the regional directions of change were
consistent with larger-scale relative changes in unexploited
biomass under climate forcing alone.

Uncertainty was quantified in three ecosystem models –
the two regional Atlantis SEAust models and the ensemble of
dynamic bioclimate envelope models (DBEM). For the DBEM,
the uncertainty was reduced by using the mean outputs driven

by three Earth system models (Cheung et al., 2016b). The results
per species were averaged across the three models to give the
final ensemble estimate of the impacts of climate change in
terms of shifts in abundance. For the regional Atlantis model,
uncertainty within model projections was explicitly accounted
for by making subtle changes to multiple productivity and
food web parameterizations. The parameter sets used were
bounded so that they were constrained only to sets that produced
plausible modeled systems given the available data and alternative
possible system structures (based on a pattern-oriented modeling
approach given in Kramer-Schadt et al., 2007). As outlined in
Fulton and Gorton (2014), the alternative diet structure was
expanded to allow for diets with the potential for the level of
variability observed in the North Sea and on Georges Bank over
the last century. All alternative parameterizations were then all
carried forward in the simulations for both the dynamic and fixed
(constant) fishing versions of Atlantis-SEAust. The differences in
the results between the model variants were used to examine the
robustness of model results.

Uncertainty within and among the ecosystem models was
translated into a qualitative evaluation of model confidence (low –
medium – high; Figure 3). This confidence had two components –
uncertainty due to the data amount and quality used in creating
the model and uncertainty around model structure. For data
uncertainty, where possible this was judged based on how well
the “now” state (abundance and distributions) or historical
trajectories matched available data. If this was not possible then
model developers used expert judgment to rank the level of
confidence in the projected species responses. In doing this
the modelers considered the amount and quality of data used
for model parameterization and calibration of each functional
group or species. This included data directly relevant to the
species (such as biological rates, diets and mortality levels), but
in some models also included processes (such as environmental
or habitat-mediated response functions) that influence species
abundance or distribution. Process uncertainty was also assessed
based on the fit to data and was treated as distinct from model
structural uncertainty (explained below).

For the regional ecosystem models, the data uncertainty
comparisons were primarily based on how well modeled biomass
and catch trajectories matched the available data. Where there
were no or limited data, and particularly where there were
insufficient time-series of biomass or catch data with which to
constrain the model and improve its performance, functional
group responses were classified as having high data uncertainty.
Species for which modelers used a large amount of relevant
data, including fitting outputs to historical time-series data,
were judged as having low data uncertainty. For the dynamic
bioclimate envelope model, simulated distribution maps for
a particular species were visually assessed by comparing the
“now state” of their distributions with distributional maps
from the Codes for Australian Aquatic Biota1. Modeled species
maps that corresponded well with the known distribution were
ranked low to low-medium data uncertainty (this was roughly
half of the modeled species). A medium rank was assigned

1https://www.cmar.csiro.au/caab/
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FIGURE 2 | (A) Definitions of different responses types based on differences between biomass trends under the fisheries impacts only (control scenario) and the
combined impacts of climate change and fisheries (RCP8.5 scenario) between 2045 and 2050. Response types in gray were classified as stable responses as they
too represent a <20% difference in biomass. (B) Assessment of the level and type of likely state of concern for functional groups were based on classification of (1)
sensitivity or scale and direction of relative biomass changes to the climate change only scenario, and (2) the response type. Dampened response may appear to sit
out of order, but this is because of their response to climate alone is in the opposite direction to their combined response.

where some part of the observed geographic distribution was
missing or incorrect (this was the case for 40% of the modeled
species). Species where there was significant disagreement

FIGURE 3 | Evaluation of confidence in ecosystem model climate projections
based on expert judgment of (1) data uncertainty considering data availability,
quality and fitting, and (2) model structural uncertainty reflecting the climate
drivers and spatial and processes resolution of different model frameworks.

with observed distributions were initially ranked as high data
uncertainty, but ultimately these nine species were removed
from further analysis as they had grossly incorrect spatial
distributions or because the species did not actually occur
in Australia.

Model structural uncertainty of the different modeling
frameworks used was also ranked (low – medium – high)
according to the degree of taxonomic and spatial-temporal
resolution and representation of ecological processes (trophic
interactions, dispersal, phenology, habitat associations and
socioeconomics) considered most important to inferring climate-
mediated changes in productivity. Higher model uncertainty
rankings were given to Ecosim model implementations that
have low spatial and temporal resolution and are largely
determined by trophic interactions. Medium ranking was
given to the dynamic bioclimate envelope models that have
high spatial and temporal resolution and are driven by
temperature, but lack the inclusion of trophic mechanisms.
Finally, lower rankings were given to the MICE model
application focused on key drivers of the population dynamics
and environmental tolerances of a targeted species of interest
and to Atlantis model applications that represent a greater
number of ecological processes and have high spatial and
temporal resolution.
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Our model comparisons approach, along with a qualitative
assessment of model confidence, provides a more informative
reflection on the associated uncertainty around potential
outcomes, cognizant of underlying model assumptions that may
influence the results and conclusions.

RESULTS

Temperature and Productivity
Projections in Different Regional Model
Domains
There was a high degree of temporal variability in sea surface
temperatures (SST) and primary production projections of the
Australian OFAM-v3 model for both the control and RCP8.5
scenarios. Under the RCP8.5 scenario, the mean change across
all the model domains between 2010−2015 and 2045−2050 was
+0.8◦C for SST, while integrated primary productivity declined
by 5.8%. However, there were notable regional patterns for both
variables and high interannual variability for primary production
projections for most regions (Table 3). Slightly larger increases
in SST by 2050 were observed in the South East Australia region
(+1.0◦C) than in the Western Australia region (+0.8◦C). Mean
differences in primary productivity between the control and
RCP8.5 scenarios were projected to be largest for the Great
Australian Bight (GAB) EwE model domain and the smallest for
the Eastern Bass Strait (EBS) EwE model domain, with an average
decline of 34% and 2% respectively (Table 3). Inter-annual
variability was also largest for the EwE-GAB model domain and
was lowest for the North West Shelf (NWS) EwE model domain.

Regional Model Outputs
The climate change impacts scenario resulted in a range of
responses for total consumer biomass, and biomass of ecological
groups in the different modeled regions and fisheries (Table 3).
By 2050, climate change was predicted to negatively impact, to
varying degrees, all functional groups in the EwE-ETBF model
(NE Australia region). In contrast, most groups in the EwE-
Ningaloo (Western Australia) models responded positively. The
least sensitive model (i.e., with the smallest deviation from zero
change in average biomass) was the EwE-EBS model while the
most sensitive model was the EwE-NPF model. The threatened,
endangered or protected (TEP) species, including mostly marine
mammals and seabirds but also turtles, were projected to be the
most impacted ecological group from climate change in most
regions. Pooled invertebrate and demersal fish and shark groups
typically saw greater declines than pooled pelagic fish and shark
groups, particularly in Western Australia.

Across all the regional models, more than half the examined
functional groups (328 of the total 678) were predicted to be
relatively stable and unaffected by the RCP8.5 (combined climate
change and fisheries impacts) scenario, with changes between
−20 and 20% from initial biomasses (Figure 4). There were
186 groups that showed biomass increases, and 51 groups that
showed biomass declines, of between 20 and 40%. A further
15 and 46 groups showed positive and negative changes of

between 40 and 60%. The groups projected to decline in
biomass >60% in response to both climate change and fishing
in 2045−2050 included demersal fish, dogfish sharks, rock
lobster (SE Australia), reef-associated zoobenthic fish, corals
and sponges, seagrass associated carnivores, and squid (W
Australia), prawns, crabs, and small sharks (GoC) and turtles,
seabirds, swordfish and tuna (NE Australia) (Supplementary
Table 1). Under the climate change impacts scenario, only 3
groups declined > 60% including turtles and shelf Lutjanids
and 13 groups decline between 40 and 60% including seabirds,
whales, dugongs, small pelagic and shelf fish, and Carangids
(Supplementary Table 1). Groups projected to show the
largest increases in relative biomass under the climate impact
scenario included jack mackerel, anchovy and demersal shelf
fish (SE Australia), crabs and bugs, squid, and spantangoids
(W Australia), small tunas and shelf Serranids (NW Australia),
prawns and crabs (GoC) and lobsters and squid (NE Australia)
(Supplementary Table 2).

There were 55 and 20 groups that showed enhanced negative
and enhanced positive responses respectively (same direction but
larger rates of change under climate change than fisheries) while a
further 28 and 88 groups showed negative and positive divergent
response patterns (Figure 4A). The assessment of the likely state
of concern indicated that there were 13 groups of high negative
concern (with > 40% sensitivity and divergent or enhanced
negative responses) and 3 groups of high positive concern
(Supplementary Table 3). Listed among the groups of most
likely concern with respects to negative climate change impacts
included small pelagic fish (medium confidence), pelagic and deep
demersal sharks (medium confidence), piscivorous fish (medium
confidence), and bight redfish (low to medium confidence) in SE
Australia; dhufish and pink snapper (medium to high confidence)
in SW-W Australia; and large sharks and marlin (medium
confidence) in NE Australia. TEP species of highest negative
concern (with medium to high confidence) included albatrosses,
bottlenose dolphins, and penguins (SE Australia), dolphins and
dugongs (W Australia), dugongs (N Australia), and seabirds,
leatherback and green turtles (NE Australia). In the medium
term (2030−2035), groups of higher negative concern included
lobster (high confidence), morwong and gummy shark (medium
to high confidence) (SE Australia), reef associated zooplankton
feeders (low confidence) and lutjanids (medium confidence) (W
Australia), all the prawn species (medium confidence) (GoC), and
swordfish and sailfish (low to medium confidence) (NE Australia).
Groups or species of highest positive concern from climate
change impacts (with positive enhanced or divergent responses
and large increases in relative biomass) included small and large
pelagic fishes (anchovy, sardine and tuna) in the SE Australia
(medium to high confidence), shallow demersal fish and trevallies
in Western Australia (medium confidence), tunas, rays, sweetlip
and red emperors in NW Australia (low to medium confidence),
and bigeye tuna and squid in NE Australia (medium confidence).
Time-series plots for each functional group are provided for each
model in a technical report (Fulton et al., 2018a2).

2http://www.frdc.com.au/Archived-Reports/FRDC%20Projects/2016-139-DLD.
pdf

Frontiers in Marine Science | www.frontiersin.org 9 October 2020 | Volume 7 | Article 577964

http://www.frdc.com.au/Archived-Reports/FRDC%20Projects/2016-139-DLD.pdf
http://www.frdc.com.au/Archived-Reports/FRDC%20Projects/2016-139-DLD.pdf
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-577964 October 30, 2020 Time: 12:43 # 10

Pethybridge et al. Australian Fisheries Under Climate Change

TABLE 3 | Relative percentage changes (mean standard deviation with minimum and maximum values provided in parentheses) in regional climate and ecosystem
model projections averaged over model domains between 2010 and 2050. Climate model projections of temperature or primary productivity (highlighted in gray)
represent mean differences between control and RPC8.5 scenarios. Biomass changes of ecological groups represent anomalies for the climate change impact only
scenario. Colored values match the color used to represent different ecosystem models in the same column.

Regions South East Australia Western Australia Noth West Australia Gulf of Carpentaria North East Australia

Ecosystem models Atlantis-SEAust,
EwE-EBS

EwE-GAB,
EwE-Ningaloo,

EwE-JB

EwE-NWS EwE-NPF
MICE-Lobster

Atlantis-NEMO
EwE-ETBF

Temperature 2.3 ± 1.8 (−0.6 to 5.9) 3.5 ± 1.4 (0.4 to 56) 3.1 ± 1.3 (0.7 to 5.4)

Primary productivity −1.7 ± 6 (−15 to 10) −34 ± 17 (−84 to−12)
26 ± 6 (13 to 38)

7 ± 11 (−20 to 27)

18.9 ± 4.3 (10 to 27) 27.6 ± 2.4 (22 to 33) −22.7 ± 11 (−49 to −0.8)

Total consumers −2 ± 12 (−45 to 32)
2 ± 2 (−1 to 8)

−8 ± 31 (−41 to 135)
39 ± 17 (−2 to 67)
−2 ± 2 (−34 to 184)

152 ± 245 (−61 to 918) 92 ± 187 (−53 to > 500) 8 ± 42 (−6 to 268)
−33 ± 15 (−80 to −2)

Pelagic fish/sharks 1 ± 11 (−23 to 32)
3 ± 2 (0.8 to 8)

15 ± 35 (−12 to 135)
50 ± 17 (−2 to 67)
−5 ± 24 (−23 to 93)

238 ± 346 (9 to 918) 62 ± 72 (−0.5 to 198) 0.6 ± 2 (−4 to 4)
−31 ± 14 (−54 to −2)

Demersal fish/sharks 1 ± 11 (−23 to 15)
2 ± 2 (−1 to 7)

10 ± 13 (−33 to 10)
44 ± 6 (38 to 50)
−4 ± 20 (−26 to 9)

88 ± 177 (61 to 509) 94 ± 74 (−34 to 198) 1 ± 2 (−2 to 4)
Not assessed

Invertebrates −3 ± 4 (−9 to 2)
2 ± 2 (−1 to 3)

10 ± 40 (−39 to 100)
39 ± 13 (8 to 56)

−15 ± 53 (−23 to 184)

14 ± 7 (5 to 20) 184 ± 356 (7 to > 500)
−37 (lobster)

10 ± 85 (−6 to 269)

TEP species −10 ± 18 (−45 to 10)
3 ± 2 (0.5 to 5)

−3 ± 25 (−41 to 57)
21 ± 20 (−2 to 48)
−3 ± 12(−23 to 5)

Not assessed 39 ± 94(−53 to 170) −0.4 ± 1 (−2 to 2)
−50 ± 26 (−80 to −17)

Global Model Outputs
The benthic-pelagic size spectrum model projected temporal
(5-year) changes in the relative biomass of 6 size-based
ecological groups to the RCP8.5 scenario for each of the
assessment regions (Figure 5). The ecological group with the
most consistent decrease, typically <10%, across all regions
was pelagic predators >10 cm (all age groups combined)
with biomass declining in all regions except the Gulf of
Carpentaria. In contrast, benthic detritivores >30 cm were
projected to increase in all regions, though again only by
modest amounts (typically < 10%). Total system biomass
was projected to decrease in all regions, although there was
variability in this general trend across spatial regions (e.g.
the Torres Strait and oceanic areas across much of southern
Australia increased).

Across all regions, the ensemble of dynamic bioclimate
envelope model simulations projected declines in relative
abundance for most species, with only 31 species projected to
increase (Figure 4C). The species with high model confidence,
that were projected to be among the most negatively impacted
from climate change included: blue endeavor prawn (regions 1,
3, and 4), bartail flathead (regions 1, 2, 3, and 5), big eye tuna
(region 3 and 5), dusty whaler (regions 3 and 4), golden snapper
(region 2), giant trevally (region 4), and queenfish (region
5). Key Commonwealth fishery species that were predicted
to see large positive increases in relative abundance due to
climate change only, with moderate to high model confidence,
included Australian sardine (regions 1 and 5), gemfish (region
1), and blue mackerel (region 5). Relative changes in abundance
for Commercial species are provided in Table 4 while model

projections and maps for all species are included in a technical
report (Fulton et al., 2018a).

Inter-Model Comparisons and
Confidence
Amongst the species that are the focus of Commonwealth
fisheries there was moderate to strong agreement between
models with geographic overlap (Table 4). There was particularly
high model-model agreement for species or functional groups
that scored high in the confidence assessment (had low data
uncertainty) and where the models contained both trophic, life-
history and distribution mechanisms. In South East Australia,
all 3 ecosystem models suggested that piscivorous shelf fishes
(including flathead, gemfish, and demersal sharks) were among
the most negatively impacted by climate change. There was
also model agreement that small pelagic fishes such as jack
mackerel, blue mackerel, anchovy, and sardine were among
those projected to increase in biomass under climate change.
In Western Australia, the EwE models projected that pink
snapper, rays and dhufish would be negatively impacted, while
reef associated zoobenthos, breaksea cod, tuna and billfish, as well
as mackerels would likely increase in biomass. In North West
Australia, the EwE-NWS projected negative impacts of climate
on bream, snappers (Lutjanids), carangids and lizard fish, and
positive relative biomass shifts on tunas, seabass and groupers
(Serranids), as well as red emperor. In the Gulf of Carpentaria, the
EwE-NPF model indicated the relative biomass of most groups,
including prawns and crabs, would likely increase with negative
impacts only projected for reef-associated carnivorous fish. For
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FIGURE 4 | Projected response types or abundance changes (sensitivities) to RCP8.5 greenhouse gas emission scenario (combined response to fisheries and
climate change) for different assessment regions around Australia based on (A,B) regional ecosystem models with trophic linkages (on functional groups), and (C)
species distribution models without trophic linkages (on individual species).

the North East Australia, the Atlantis-NEMO model projected
negative impacts on large pelagic sharks, and small planktivorous
fishes and positive impacts on macrobenthos and squid. The
EwE-EBTF projected enhanced negative responses from large

pelagic fishes including spearfish and swordfish. For yellowfin
and bigeye tuna they predicted opposite trends, most probably
due to assumptions with regard to diet switching. Very different
biomass trends of tropical rock lobster were projected between
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FIGURE 5 | Global benthic-pelagic size spectrum model projections of relative changes in biomass density of different model groups at 5-year intervals for each
Australian region under the RCP8.5 scenario without fishing. These model outputs therefore represent relative changes in the unexploited baseline of biomass due to
climate forcing alone.

the Atlantis-NEMO model (large increase) and the more targeted
lobster MICE (large decline).

There was often a divergence between model projections of the
regional models and the ensemble of global dynamic bioclimate
envelope models (DBEM) (which do not include any trophic
interactions), even where there was a high confidence and good
match to current observations. This was particularly true for
several small pelagic and demersal fish species, such as Australian
sardine and Eastern redfish. Moreover, the DBEM generally
tended to suggest higher sensitivity and more negative responses
than the regional models (Figure 4B). Poor or mixed agreement
between the model outputs were typically seen for shallow shelf
demersal stocks and many of the invertebrates, which are often
poorly constrained and only generally parameterized in the
trophic models (i.e., have low confidence scores). Projections of
habitat-dependent species (such as emperors and snappers) also
varied between models that did and didn’t explicitly represent
habitat connections.

Outputs from the global benthic-pelagic size spectrum model
(DBPM) can only be compared with other model outputs in
terms of relative trends of aggregated biomass of different species.
Whilst there was a large range of responses observed spatially
and across species and functional groups for each of the regional
models, there was agreement of the direction in total system
biomass with the DBPM regional outputs (Figure 5 and Table 3).
An opposite general trend seems evident for predictions of
benthic detritivores where regional ecosystem models projected
some declines in group biomasses.

Atlantis SE Australian simulations under dynamic fishing
management saw fewer harvested species negatively impacted by
climate change over both the short and long terms compared
to constant fishing effort that was applied to all other regional
models (Supplementary Table 1). For example, grenadier,
warehou, jack mackerel and school shark fared better in the
Atlantis SEAust dynamic fisheries and management model
(Table 4). In contrast, the results for invertebrates and TEP
species were more variable and uncertain. This reflects the
capacity of the simulated fishers and management bodies within
the model to adapt to the changing conditions and mitigate
negative outcomes.

DISCUSSION

Over the next century, the marine ecosystems of Australia are
expected to exhibit some of the largest climate-driven changes in
the Southern Hemisphere (Creighton et al., 2016; Hobday et al.,
2018; Fordyce et al., 2019). Our multi-model projections provide
the most comprehensive outlook on potential climate-driven
ecological changes on Australia’s large-scale Commonwealth
fisheries stocks to date. Using multiple ecosystem models, that
encompassed different assumptions and covered the entire
Australian coastline, allowed for a broader view of the potential
futures for Australia’s fisheries – identifying the level and type
of concern for commercial stocks to climate change with an
accompanying measure of confidence. This information helps
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TABLE 4 | Inter-model comparisons of the projected likely states of concern to climate change in key commercial species at the end of 2050 and the associated level of confidence.

Fisheryˆ Region* Species Atlantis_F Atlantis_D EwE EwE MICE Global DBEM
(SEAust, NEMO) (SEAust) (GAB, NPF, ETBF) (JB, Ningaloo, EBS)

BSCZSF 1 Commercial Scallop NA NA NA NA NA NA

SPF 1, 2 Redbait NA NA

Blue Mackerel NA NA NA NA NA NA

Jack Mackerel NA NA

Australian Sardine NA NA NA NA NA NA NA NA

SESSF 1, 2 Blue Grenadier NA NA NA NA

Tiger Flathead NA NA NA NA

Pink Ling NA NA NA NA

Silver/blue Warehou NA NA NA NA NA NA

Eastern Redfish NA NA

Eastern Gemfish NA NA NA NA

School Shark NA NA NA NA

Gulper Shark NA NA NA NA

Jackass Morwong NA NA NA NA

Orange Roughy NA NA NA NA

SBTF 2 Southern Bluefin Tuna NA NA NA NA NA NA

WTBF 3 Tuna (all species) NA NA NA NA

NPF 4 Banana Prawn NA NA NA NA NA NA NA NA

Brown Tiger Prawn NA NA NA NA NA NA

TSRLF 4, 5 Lobster NA NA NA NA NA NA NA NA

ETBF 1, 5 Yellowfin Tuna NA NA NA NA NA NA

Bigeye Tuna NA NA NA NA NA NA

Atlantis_F, models run under constant fisheries; Atlantis_D, SEAust model run under dynamic representation of fisheries. NA indicates that the species in that operating fisheries and region was not considered in
that model or assessment. For the DBEM model outputs, a stable response type was assumed in the assessment of likely state of concern. ˆCommonwealth fisheries include: Small Pelagic Fishery (SPF), Northern
Prawn Fishery (NPF), Eastern and Western Tuna and Billfish Fishery (ETBF and WTBF), Southern Bluefin Tuna Fishery (SBTF), Torres Strait Rock Lobster Fisheries (TSRLF), and Bass Strait Central Zone Scallop Fishery
(BSCZSF). ∗Assessment regions: 1, South East Australia, 2, Western Australia, 3, North West Australia, 4, Gulf of Carpentaria, 5, North East Australia.
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managers and the fishing industry to be better prepared over the
next 30 years by highlighting those species that may be at risk and
those that might benefit from climate change. Results presented
here also provide recommendations that can help shape future
management and prioritize research directions – both to guide
alterations in management to allow for greater adaptation to
changes in the fisheries and to identify actions that can help
clarify what is occurring and reduce uncertainty.

Consistent with previous ecosystem modeling work, the
direction of response to climate drivers seems to be species- and
system-dependent. We found that both temperate and demersal
systems are likely to be more strongly affected by climate
change than tropical and pelagic systems which is in line with
previous vulnerability analyses (Pecl et al., 2014, and updated in
Fulton et al. (2018a)) and climate-ecosystem model assessments
(Brown et al., 2010; Fulton, 2011) of Australian ecosystems. In
addition, nearly all models in our study predicted that coastal
or shallow water species, and particularly benthic invertebrate
species, such as lobster, were among the first to respond and
to the largest extent. This probably reflects the more responsive
life-history traits of invertebrates, compared to sharks and most
fish, which make them more sensitive to sequences of stochastic
events such as marine heatwaves (Hobday et al., 2018) projected
in the immediate and near future. Some of the models were also
able to reflect that many benthic invertebrates live in shallower
waters, which may provide less buffering from temperature-
driven changes and/or are dependent on particularly vulnerable
habitats (such as reef structures or seagrass), which are more
sensitive to changes in temperature (Babcock et al., 2019),
whereas many large pelagic species are cosmopolitan and roam
over ocean basins.

Some of our single and multiple model results suggest that
the coming decades may prove to be challenging for Australian
fisheries operators and managers, particularly as there is a strong
reliance on seafood sourced from demersal food webs. All
regional models in this study showed that the combined effects
of fishing and climate change are often non-additive (synergistic
or antagonistic), as has been shown previously for south eastern
Australia (Griffith et al., 2012; Fulton and Gorton, 2014) and in
other areas of the world (Mackinson et al., 2009; Travers-Trolet
et al., 2014; Fu et al., 2018). Our categorization of the responses of
species groups to climate drivers, and the interplay with fisheries
on the ecosystem, can be used to prioritize management decisions
at a species and regional level. For fishing stocks ranked as high
negative concern, the utilization of combined ecosystem-based,
adaptive and co-management approaches are likely to be the best
ways of enabling climate change adaption, as they have already
been shown to be particularly promising in Australian fisheries
(Ogier et al., 2016).

From our study, biomass changes most likely to worry
management and fishing industry are those to do with climate
mediated declines where a species decline only occurs, or is
greater, under scenarios of climate change rather than just
fisheries alone (response types ND and NE). While including
recognition of climate effects in assessments (e.g. Wayte, 2013;
Ianelli et al., 2016) and on reference points (Holsman et al.,
2016) is a direct means of folding in climate considerations,

responses may need to go further. Moreover, it is recognized
that it is challenging to explicitly incorporate climate drivers
in stock assessment models that can reliably be used in
forward projections. A preferred approach is to use Management
Strategy Evaluation (MSE) to test the robustness of Harvest
Control Rules (HCRs) to climate variability (Plagányi et al.,
2019), as applied using MICE in the Northern Prawn Fishery
(Plagányi et al., 2013).

Across our models, nine species were categorized as being of
high negative concern due to climate change, including mostly
demersal fish species and sharks. Future management plans for
stocks affected to this degree will likely need to incorporate
climate adaptation approaches that rapidly increase their
adaptive or absorptive capacity. While adaptive management
approaches used for these species are likely to facilitate some
adaptation (Melnychuk et al., 2014), further action may be
needed to provide the species greater capacity to cope with
the combined pressure of climate and other anthropogenic
pressures, such as reducing what is considered acceptable levels of
fishing pressure and/or increasing protection measures to ensure
future sustainability.

Different management approaches are recommended for
stocks that are likely to benefit from climate change and
to have highly positive responses under combined impacts
of fishing and climate change (response types PD and PE).
In our study, this categorization was given to three pelagic
fish groups (anchovy, sardine, and tuna) in the SE Australia
region which managers could seek to increase fishing effort or
promote new commercial opportunities in the future. However,
before implementing any changes to existing management, more
targeted consideration of species responses is needed, including
scrutiny of spatial variability, which although represented by
some ecosystem models (Atlantis and DBEM) are likely to need
further refinement given the level of data available to condition
these models. Our results also noted that many fishing stocks
transition through different likely states of concern over time
and are currently observed to have only undergone negligible
or low to moderate levels of change, which demonstrates the
need for fisheries management to be as flexible as possible.
The complexity of possible stock responses shown among the
ecosystem models also highlights the strong need to incorporate
uncertainty information.

Identifying, quantifying, and reporting multiple sources of
uncertainty is a key step for multiple and ensemble ecosystem
model predictions to be taken up and used effectively by
fisheries managers and policy makers (Payne et al., 2016). This
includes the inclusion of regional and global ecosystem model
results in future IPCC assessments that currently only report
results from the global ensemble of dynamic bioclimate envelope
models (DBEM) (IPCC, 2018). While such species distribution
models have been shown to provide reliable predictions of both
abundance and distribution for targeted and data-rich species
(Cheung et al., 2011), our study demonstrated large discrepancies
between these model results and those that incorporate trophic
interactions for Australia. For example, jack mackerel increases
in Atlantis-SEAust but decreases in the DBEM. Both are spatial
models, allowing for range shifts, but trophic interactions
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(starting from interannually variable seasonal plankton blooms
in Atlantis) enable the pelagic food web, including jack mackerel,
to be supported and this compensates for any loss in individual
response rates due to thermal conditions moving into sub-
optimal conditions. In contrast, the DBEM is heavily influenced
by the environmental conditions alone. Only by stepping through
and acknowledging the various major sources of uncertainty,
such as the structural uncertainty introduced by the processes
that are or are not represented, will we be able to obtain more
robust and meaningful ecosystem and species projections.

The first source of uncertainty to consider is that related to
climate projections of the ocean forecasting or global climate
model(s). All climate models typically predict temperature with
much more confidence than primary production (Laufkötter
et al., 2015) which has notable flow-on effects to the different
ecosystem models. For example, drops in production were
projected by the coupled OFAM-production model for many
of the EwE model domains. However, while Atlantis did see
declines and changes in plankton composition, that were in
rough alignment with what was seen in the OFAM-production
model it was not an exact match – partly due to a different
spatial resolution, but also due to additional variability induced
by top-down, predator mediated processes not represented in
the OFAM-production model. This is not to say Atlantis is
more accurate than the OFAM-production model, just that it
highlighted another potential source of uncertainty. In addition,
the spatio-temporal scale at which climate projections are
provided have flow-on implications with higher confidence likely
provided for downscaled regional than global climate models and
for those ecosystem models that reflect finer (daily to weekly
rather than monthly or seasonal) temporal dynamics. In this
study, the degree of change in the climate forcing variable
largely determined the direction and magnitude of broad system
outputs of the regional ecosystem models which has been noted
in other ensemble ecosystem modeling studies (Thuiller et al.,
2019). In some regions, such as the Great Australian Bight,
larger variability in annual mean primary productivity anomalies
meant that predicted responses of fishing stocks and other
ecosystem components were also highly variable. In contrast
there were only small changes in primary productivity and
thus biomass projected in eastern Bass Strait, Torres Strait,
and Ningaloo Reef EwE model domains. In regions where
primary production is predicted to increase, typically we saw
an increase in commercially harvested and TEP species under
the climate change scenario, as observed by Brown et al. (2010).
In the future, uncertainty of climate model projections should
be incorporated by undertaking multiple ecosystem modeling
runs that span upper and lower confidence intervals of the
climate model outputs.

Uncertainty related to the availability and quality of data or
knowledge used to parameterize ecosystem models needs to be
carefully considered, even where there is good model-model
agreement. Acknowledgment of such uncertainty is important
because previous work has shown that ecosystem models can
be quite skillful, but in the absence of data for a specific group
they may only be producing a plausible system not one reflective
of reality (Olsen et al., 2016). In this study, higher incidences

of model-model discrepancy were noted for data-poor lower-
trophic and invertebrate functional groups with less taxonomic
resolution. For such data-poor species assessment tools such as
qualitative models (e.g. Dambacher et al., 2009) or trait-based
sensitivity or vulnerability assessments (e.g. Sunday et al., 2015)
are likely to provide additional or higher levels of confidence
than more complicated ecosystem model outputs alone. Another
important factor to consider is that biological data (e.g. size
at maturity, growth rates, diets) used in the ecosystem models
typically come from disparate data sources and may be out-of-
date in fast-changing areas. This also highlights the need for
all ecosystem models to be periodically updated, assessed and
refined (every 5–10 years) if they are to continue being effective
strategic tools for management and policy decision making.
Whilst not every component of the ecosystem can be studied,
rankings of data uncertainty and model confidence should be
used to determine which species or functional groups to prioritize
monitoring or data collection programs, particularly if it is
deemed to be of high level of concern. Whereas the qualitative
confidence assessments used here provided a reasonable and
rapid check when comparing model-model outputs, in the
future more rigorous pedigree routines undertaken during model
development could be used such as those presented for EwE
(Christensen et al., 2005) and Atlantis (Pethybridge et al., 2019),
in addition to the reporting of model skills statistics (e.g. Olsen
et al., 2016).

A particularly challenging source of uncertainty to account for
when comparing model outputs is related to the core assumptions
and structure of the modeling framework which includes
differences in model processes considered and taxonomic,
temporal and spatial resolution (Table 1). In this study, the
greatest model discrepancies were found between the regional
ecosystem models that represent trophic interactions and the
ensemble of dynamic bioclimate envelope models (DBEM).
Around a third of the species represented by the DBEM simulated
negative responses to climate change, while regional ecosystem
models predicted a broader range of both potential winners
and losers (Figure 4). These results suggest that indirect climate
effects through changing trophic interactions, such as changing
predation pressures, play an important role in mediating the
sensitivity and impacts on many marine species and thus are
crucial to consider in future climate projections. This has broader
management implications because of the complex interactions
between species and highlights the importance of using multiple
modeling approaches to explore ecosystem responses to future
climate and fisheries scenarios.

Another source of model-model discrepancy was between
some of the EwE and Atlantis regional models, particularly
for the NE Australia region. While both models were set up
with the primary purpose to assess tuna population dynamics,
the Atlantis-NEMO model domain is larger covering more
oceanic habitats. NEMO projected an increase in many of
the tunas, as they shift with the conditions and congregate
on prey fields along oceanic fronts, whereas the EwE-EBTF
model (which was forced by a primary production anomaly
estimated for a static geographic location) saw the same
tuna species decline. Such a result demonstrates the value in
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acknowledging that inconsistency in the degree of spatial overlap
and resolution, or vastly different representation pf physical
forcing and ecological processes (trophic interactions, dispersal,
phenology, habitat associations and socioeconomics), will create
very different responses for particular species for which these
processes are important and should be reflected in confidence
ratings provided alongside projected outcomes. Extending the
EwE models by implementing their spatial modules (Ecospace)
may address the spatially mediated results where prey availability
influences abundance and lead to less divergence in outcomes
(Steenbeek et al., 2013; Christensen et al., 2014). However, that
is not guaranteed for species such as squids and mesopelagics,
where depth mediated processes are involved (which Ecospace
does not resolve) or if the responses are due to bottom-up
primary production processes. Another discrepancy was the
opposing direction of change in the biomass of tropical rock
lobster projected by the MICE (decline) and the Atlantis-
NEMO (increase) model, demonstrating that managers should
acknowledge model confidence rankings. High rankings were
given to projections of the MICE as it is focused on representing
the main species relevant processes and environmental drivers
and is closely fit to data, whereas very limited empirical data was
used to represent lobster (as 1 of 58 groups) in the NEMO model,
with mortality due to heat stress also not modeled.

A final source of uncertainty stems from being able to reflect
in ecosystem models the adaptive capacity of human users and
the role of management in mitigation or even interventionist
actions. Representing adaptive HCRs is a useful elaboration many
models could include, even if the HCRs are applied using simple
measures of fishing mortality F such as dynamic location choice
method (Plagányi et al., 2013), rather than explicitly modeling
the full fishing effort dynamics which can include different fleets
and gear types (as can occur in Atlantis, Fulton et al., 2014).
A lot of attention in fisheries science and ecosystem modeling
has gone into capturing dynamic ecological responses, less so
into human dynamic responses. Over the past couple of decades
the number of bioeconomic and effort dynamics models have
grown considerably (e.g. Nielsen et al., 2018), but currently few
ecosystem models are capable of representing socio-economics
and human behavior, with the Atlantis-SEAust model being
one of the first. This is a rapidly advancing space, with many
more models likely to have some capacity in this area in the
near future, benefiting from increased attention being placed on
understanding fisher behavior and the feedback between human
users and ecosystem dynamics (e.g. Van Putten et al., 2018;
Bourdaud et al., 2019).

The move to more consideration of human components is
important as comparison between the Atlantis-SEAust model
run with a fixed fishing mortality and with dynamically
responding fisheries illustrated that there is the capacity to
avoid fisheries activities amplifying climate effects through
adaptive management and autonomous fisher responses. Some
of the model responses included shifting fishing patterns
(spatially or in terms of species fished) and management
restructuring to support ongoing recovery from past overfishing
and relieving pressure on species declining due to climate
change. The Atlantis-SEAust model also illustrated that with

human adaptation, and sustainable, economically viable fisheries
can be maintained over the next few decades with little
radical change for many species. However, to have “ensemble
level” confidence in these results more models will need to
include dynamic representations of fishing and management
activities.

While we recognize that greater uncertainty quantification
is needed, our model projections and assessments of the likely
state of concern and model confidence do provide new insight
into how Australia’s fishing stocks may respond to projected
climate change in the future. These findings are much more
relevant to regional fisheries management around Australia than
those previously provided by the FISH-MIP global studies. The
high occurrences of low confidence projections in this study,
typically associated with data-poor species, clearly point to the
need for greater data collection and research on lower trophic and
invertebrate species around much of Australia. Low confidence
rankings for species or groups classified to be of high concern,
such as commercial scallops, should be prioritized by managers
for monitoring and data collection programs. For data-rich
and often more taxonomically resolved species, we recommend
using a similar assessment framework to that developed here.
This includes classifying the species state of concern based on
both changes in sensitivity but also the type of response of
the climate impacts compared to combined effects of climate
and fisheries. Rankings of high concern can be used to directly
prioritize which stocks to apply climate adaptation measures
to potentially review levels of fishing pressure. This study has
highlighted the importance of representing key trophic and
human interactions in addition to physiological processes (such
as species tolerance limits) and responses to environmental
variability in models used to project species biomass changes
under climate change. Certainly, the complexity of possible
species responses shown among our different models and the
increasing importance of environmental drivers means that
current approaches for advising on acceptable catch levels
may be insufficient for understanding stock patterns under
climate change and would benefit from strategic consideration
of projections from ecosystem models. Considering outputs
from a multiple or ensemble ecosystem modeling approaches
should assist managers in understanding the most important
climate feedbacks and the range of model sensitivity estimates.
In future studies, we suggest greater effort should be put into
obtaining quantified estimates of uncertainty by running all
models under a range of plausible parametrizations for key
ecological processes (e.g. different diet compositions) and various
scenarios (including a greater suite of climate drivers, potential
human impact effects, and socioeconomic characteristics). For
example, development of multispecies and trait-based size
spectrum models for use in climate projections (Woodworth-
Jefcoats et al., 2019) has focused on testing the effects of
alternative climate processes and mechanisms as well as the
use of statistical models to quantify their contribution toward
uncertainty (Reum et al., 2020). Such advances, in addition
to those discussed above, will provide more confidence in the
robustness of individual, multiple and ensemble ecosystem model
projections of the future.

Frontiers in Marine Science | www.frontiersin.org 16 October 2020 | Volume 7 | Article 577964

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-577964 October 30, 2020 Time: 12:43 # 17

Pethybridge et al. Australian Fisheries Under Climate Change

DATA AVAILABILITY STATEMENT

Modelled biomass and catch time series used in this article is
available from the authors on request.

AUTHOR CONTRIBUTIONS

HRP carried out the resources, data curation, and formal analysis,
investigated and visualized the data, performed the methodology,
wrote the original draft of the manuscript, and reviewed and
edited the manuscript. EAF did the conceptualization, carried out
the funding acquisition, resources, and project administration,
performed the methodology, wrote the original draft of the
manuscript, and reviewed and edited the manuscript. AJH did the
conceptualization, carried out the funding acquisition, resources,
and project administration, performed the methodology, and
wrote, reviewed, and edited the manuscript. IRB directed and
supervised the project, did the conceptualization and wrote,
reviewed, and edited the manuscript.

JB, CMB, WWLC, LXCD, RG, TH, RM, HL-M, EEP, CV,
and XZ carried out the resources, performed the methodology

of the model development, and wrote, reviewed, and edited the
manuscript.

FUNDING

This is a synthesis of work undertaken for the Australian Fisheries
Research and Development Corporation project 2016-2018/138.

ACKNOWLEDGMENTS

We thank Prof. Greta Pecl for providing input into earlier
versions of this manuscript and for constructive suggestions
from our reviewers.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2020.577964/full#supplementary-material

REFERENCES
Allison, E. H., and Bassett, H. R. (2015). Climate change in the oceans: human

impacts and responses. Science 350, 778–782. doi: 10.1126/science.aac8721
Audzijonyte, A., Pethybridge, H., Porobic, J., Gorton, R., Kaplan, I., and Fulton,

E. A. (2019). Atlantis: a spatially explicit end-to-end marine ecosystem model
with dynamically integrated physics, ecology and socio-economic modules.
Methods Ecol. Evol. 10, 1814–1819. doi: 10.1111/2041-210x.13272

Babcock, R. C., Bustamante, R. H., Fulton, E. A., Fulton, D. J., Haywood, M. D. E.,
Hobday, A. J., et al. (2019). Severe and extensive climate change impacts are
happening now: recent dieback of marine habitat forming communities along
40% of the Australian coast. Front. Mar. Sci. 6:411. doi: 10.3389/fmars.2019.
00411

Barange, M., Bahri, T., Beveridge, M. C. M., Cochrane, K. L., Funge-Smith,
S., and Poulain, F. (eds). (2018). Impacts of Climate Change on Fisheries
and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation
Options. FAO Fisheries and Aquaculture Technical Paper No. 627. Rome: FAO,
628.

Blanchard, J. L., Jennings, S., Law, R., Castle, M. D., McCloghrie, P., Rochet,
M. J., et al. (2009). How does abundance scale with body size in coupled size-
structured food webs? J. Anim. Ecol. 78, 270–280. doi: 10.1111/j.1365-2656.
2008.01466.x

Blanchard, J. L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J. I., et al.
(2012). Potential consequences of climate change for primary production and
fish production in large marine ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 367,
2979–2989. doi: 10.1098/rstb.2012.0231

Bourdaud, P., Travers-Trolet, M., Vermard, Y., and Marchal, P. (2019). Improving
the interpretation of fishing effort and pressures in mixed fisheries using spatial
overlap metrics. Can. J. Fisher. Aquat. Sci. 76, 586–596. doi: 10.1139/cjfas-2017-
0529

Brown, C. J., Fulton, E. A., Hobday, A. J., Matear, R. J., Possingham, H. P., Bulman,
C., et al. (2010). Effects of climate-driven primary production change on marine
food webs: implications for fisheries and conservation. Glob. Change Biol. 16,
1194–1212. doi: 10.1111/j.1365-2486.2009.02046.x

Bryndum-Buchholz, A., Tittensor, D. P., Blanchard, J. L., Cheung, W. W., Coll,
M., Galbraith, E. D., et al. (2019). Twenty-first-century climate change impacts
on marine animal biomass and ecosystem structure across ocean basins. Glob.
Change Biol. 25, 459–472. doi: 10.1111/gcb.14512

Bulman, C., Condie, S., Furlani, D., Cahill, M., Klaer, N., Goldsworthy, S., et al.
(2002). Trophic Dynamics of the Eastern Shelf and Slope of the South East Fishery:

Impacts of and on the Fishery. Final Report for the Fisheries Research and
Development Corporation, Project, 2002/028. Canberra: Fisheries Research and
Development Corporation.

Bulman, C. M. (2006). Trophic Webs and Modelling of Australia’s North West Shelf.
Northwest Shelf Joint Environmental Management Study Technical Report
CSIRO Report No. 9. Canberra: CSIRO.

Bulman, C. M. (2008). Preliminary trophic models of the South east fishery and
North West shelf. Fish. Centre Res. Rep. 14:32.

Busch, D. S., Griffis, R., Link, J., Abrams, K., Baker, J., Brainard, R. E., et al. (2016).
Climate science strategy of the US national marine fisheries service. Mar. Policy
74, 58–67. doi: 10.1016/j.marpol.2016.09.001

Bustamante, R. H., Dichmont, C. M., Ellis, N., Griffiths, S., Rochester, W. A.,
Burford, M. A., et al. (2011). Morello Effects of Trawling on the Benthos and
Biodiversity: Development and Delivery of a Spatially-Explicit Management
Framework for the Northern Prawn Fishery. Final Report, FRDC No. 2005/050.
Hobart: CSIRO Marine and Atmospheric Research.

Cheung, W. W., Dunne, J., Sarmiento, J. L., and Pauly, D. (2011). Integrating
ecophysiology and plankton dynamics into projected maximum fisheries catch
potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68,
1008–1018. doi: 10.1093/icesjms/fsr012

Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R., and Pauly,
D. (2009). Projecting global marine biodiversity impacts under climate change
scenarios. Fish Fish. 10, 235–251. doi: 10.1111/j.1467-2979.2008.00315.x

Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R. E. G.,
Zeller, D., et al. (2010). Large-scale redistribution of maximum fisheries catch
potential in the global ocean under climate change. Glob. Change Biol. 16,
24–35. doi: 10.1111/j.1365-2486.2009.01995.x

Cheung, W. W. L., Frölicher, T. L., Asch, R. G., Jones, M. C., Pinsky, M. L.,
Reygondeau, G., et al. (2016a). Building confidence in projections of the
responses of living marine resources to climate change. ICES J. Mar. Sci. 73,
1283–1296. doi: 10.1093/icesjms/fsv250

Cheung, W. W. L., Jones, M. C., Reygondeau, G., Stock, C. A., Lam, V. W. Y.,
and Frölicher, T. L. (2016b). Structural uncertainty in projecting global fisheries
catches under climate change. Ecol. Modell. 325, 57–66. doi: 10.1016/j.
ecolmodel.2015.12.018

Cheung, W. W. L., Reygondeau, G., and Frölicher, T. L. (2016c). Large benefits
to marine fisheries of meeting the 1.5C global warming target. Science 354,
1591–1594. doi: 10.1126/science.aag2331

Christensen, V., Coll, M., Steenbeek, J., Buszowski, J., Chagaris, D., and
Walters, C. J. (2014). Representing variable habitat quality in a spatial

Frontiers in Marine Science | www.frontiersin.org 17 October 2020 | Volume 7 | Article 577964

https://www.frontiersin.org/articles/10.3389/fmars.2020.577964/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2020.577964/full#supplementary-material
https://doi.org/10.1126/science.aac8721
https://doi.org/10.1111/2041-210x.13272
https://doi.org/10.3389/fmars.2019.00411
https://doi.org/10.3389/fmars.2019.00411
https://doi.org/10.1111/j.1365-2656.2008.01466.x
https://doi.org/10.1111/j.1365-2656.2008.01466.x
https://doi.org/10.1098/rstb.2012.0231
https://doi.org/10.1139/cjfas-2017-0529
https://doi.org/10.1139/cjfas-2017-0529
https://doi.org/10.1111/j.1365-2486.2009.02046.x
https://doi.org/10.1111/gcb.14512
https://doi.org/10.1016/j.marpol.2016.09.001
https://doi.org/10.1093/icesjms/fsr012
https://doi.org/10.1111/j.1467-2979.2008.00315.x
https://doi.org/10.1111/j.1365-2486.2009.01995.x
https://doi.org/10.1093/icesjms/fsv250
https://doi.org/10.1016/j.ecolmodel.2015.12.018
https://doi.org/10.1016/j.ecolmodel.2015.12.018
https://doi.org/10.1126/science.aag2331
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-577964 October 30, 2020 Time: 12:43 # 18

Pethybridge et al. Australian Fisheries Under Climate Change

food web model. Ecosystems 17, 1397–1412. doi: 10.1007/s10021-014-
9803-3

Christensen, V., and Walters, C. J. (2004). Ecopath with Ecosim: methods,
capabilities and limitations. Ecol. Modell. 172, 109–139. doi: 10.1016/j.
ecolmodel.2003.09.003

Christensen, V., Walters, C. J., and Pauly, D. (2005). Ecopath with Ecosim: a User’s
Guide. Vancouver: University of British Columbia, 154.

Colléter, M., Valls, A., Guitton, J., Gascuel, D., Pauly, D., and Christensen, V.
(2015). Global overview of the applications of the Ecopath with Ecosim
modeling approach using the EcoBase models repository. Ecol. Modell. 302,
42–53. doi: 10.1016/j.ecolmodel.2015.01.025

Creighton, C., Hobday, A. J., Lockwood, M., and Pecl, G. T. (2016). Adapting
management of marine environments to a changing climate: a checklist to guide
reform and assess progress. Ecosystems 19, 187–219. doi: 10.1007/s10021-015-
9925-2

Dambacher, J. M., Gaughan, D. J., Rochet, M. J., Rossignol, P. A., and Trenkel,
V. M. (2009). Qualitative modelling and indicators of exploited ecosystems. Fish
Fish. 10, 305–322. doi: 10.1111/j.1467-2979.2008.00323.x

Dichmont, C. M., Ellis, N., Bustamante, R. H., Deng, R., Tickell, S., Pascual, R.,
et al. (2013). Evaluating marine spatial closures with conflicting fisheries and
conservation objectives. J. Appl. Ecol. 50, 1060–1070. doi: 10.1111/1365-2664.
12110

Dutkiewicz, S., Scott, J. R., and Follows, M. J. (2013). Winners and losers: ecological
and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27,
463–477. doi: 10.1002/gbc.20042

Feng, M., Zhang, X., Sloyan, B., and Chamberlain, M. (2017). Contribution of the
deep ocean to the future changes of the Indonesian Throughflow. Geophys. Res.
Lett. 44, 2859–2867. doi: 10.1002/2017gl072577

Fordyce, A. J., Ainsworth, T. D., Heron, S. F., and Leggat, W. (2019). Marine
heatwave hotspots in coral reef environments: physical drivers, ecophysiological
outcomes, and impact upon structural complexity. Front. Mar. Sci. 6:498. doi:
10.3389/fmars.2019.00498

Free, C. M., Thorson, J. T., Pinsky, M. L., Oken, K. L., Wiedenmann, J., and Jensen,
O. P. (2019). Impacts of historical warming on marine fisheries production.
Science 363, 979–983. doi: 10.1126/science.aau1758

Fu, C., Travers-Trolet, M., Velez, L., Grüss, A., Bundy, A., Shannon, L. J., et al.
(2018). Risky business: the combined effects of fishing and changes in primary
productivity on fish communities. Ecol. Modell. 368, 265–276. doi: 10.1016/j.
ecolmodel.2017.12.003

Fulton, E. A. (2011). Interesting times: winners, losers, and system shifts under
climate change around Australia. ICES J. Mar. Sci. 68, 1329–1342. doi: 10.1093/
icesjms/fsr032

Fulton, E. A., Bulman, C. M., Pethybridge, H., and Goldsworthy, S. D. (2018a).
Modelling the great Australian bight ecosystem. Deep Sea Res. II Top. Stud.
Oceanogr. 157, 211–235. doi: 10.1016/j.dsr2.2018.11.002

Fulton, E. A., Hobday, A. J., Pethybridge, H., Blanchard, J., Bulman, C., Butler, I.,
et al. (2018b). Decadal Scale Projection of Changes in Australian Fisheries Stocks
under Climate Change. FRDC Final Report No. 2016/139. Canberra: CSIRO.

Fulton, E. A., and Gorton, R. (2014). Adaptive Futures for SE Australian
Fisheries & Aquaculture: Climate Adaptation Simulations. Canberra: CSIRO,
309.

Fulton, E. A., Gray, R., Sporcic, M., Scott, R., Little, R., Hepburn, M., et al. (2011a).
Ningaloo Collaboration Cluster: Adaptive Futures for Ningaloo. Ningaloo
Collaboration Cluster Final Report No. 5.3. Canberra: CSIRO.

Fulton, E. A., Link, J. S., Kaplan, I. C., Savina-Rolland, M., Johnson, P., Ainsworth,
C., et al. (2011b). Lessons in modelling and management of marine ecosystems:
the Atlantis experience. Fish Fish. 12, 171–188. doi: 10.1111/j.1467-2979.2011.
00412.x

Fulton, E. A., Punt, A. E., Dichmont, C. M., Gorton, R., Sporcic, M., Dowling,
N., et al. (2016). Developing risk equivalent data-rich and data-limited harvest
strategies. Fish. Res. 183, 574–587. doi: 10.1016/j.fishres.2016.07.004

Fulton, E. A., Smith, A. D. M., Smith, D. C., and Johnson, P. (2014). An integrated
approach is needed for ecosystem based fisheries management: insights from
ecosystem-level management strategy evaluation. PLoS One 9:e84242. doi: 10.
1371/journal.pone.0084242

Griffith, G. P., Richardson, A. J., Fulton, E. A., and Gorton, R. (2012). Evaluating the
interaction effects of ocean warming, ocean acidification and fisheries. Conserv.
Biol. 26, 1145–1152. doi: 10.1111/j.1523-1739.2012.01937.x

Griffiths, S. P., Young, J. W., Lansdell, M. J., Campbell, R. A., Hampton, J., Hoyle,
S. D., et al. (2010). Ecological effects of the longline fishery and climate change
on the pelagic ecosystem off eastern Australia. Rev. Fish Biol. Fish. 20, 239–272.
doi: 10.1007/s11160-009-9157-7

Heenan, A., Pomeroy, R., Bell, J., Munday, P. L., Cheung, W., Logan, C., et al.
(2015). A climate-informed, ecosystem approach to fisheries management. Mar.
Policy 57, 182–192.

Hobday, A. J., and Pecl, G. T. (2014). Identification of global marine hotspots:
sentinels for change and vanguards for adaptation action. Rev. Fish Biol. Fish.
24, 415–425. doi: 10.1007/s11160-013-9326-6

Hobday, A. J., Oliver, E. C., Gupta, A. S., Benthuysen, J. A., Burrows, M. T., Donat,
M. G., et al. (2018). Categorizing and naming marine heatwaves. Oceanography
31, 162–173. doi: 10.5670/oceanog.2018.205

Hollowed, A. B., Holsman, K. K., Haynie, A. C., Hermann, A. J., Punt, A. E.,
Aydin, K., et al. (2020). Integrated modeling to evaluate climate change impacts
on coupled social-ecological systems in Alaska. Front. Mar. Sci. 6:775. doi:
10.3389/fmars.2019.00775

Holsman, K. K., Ianelli, J., Aydin, K., Punt, A. E., and Moffitt, E. A. (2016). A
comparison of fisheries biological reference points estimated from temperature-
specific multi-species and single-species climate-enhanced stock assessment
models. Deep Sea Res. II Top. Stud. Oceanogr. 134, 360–378. doi: 10.1016/j.
dsr2.2015.08.001

Hutton, T., Rochester, W., Fulton, E. A., Gorton, B., Campbell, R., and Smith,
D. C. (2017). A Coral Sea and Temperate East Marine Region Spatially Explicit
Ecosystem Model: an Application of Atlantis. Canberra: CSIRO.

Ianelli, J., Holsman, K. K., Punt, A. E., and Aydin, K. (2016). Multi-model inference
for incorporating trophic and climate uncertainty into stock assessments. Deep
Sea Res. II Top. Stud. Oceanogr. 134, 379–389. doi: 10.1016/j.dsr2.2015.04.002

IPCC, (2018). Global Warming of 1.5◦C. An IPCC Special Report on the Impacts
of Global Warming of 1.5◦C Above Pre-Industrial Levels and Related Global
Greenhouse gas Emission Pathways, in the Context of Strengthening the Global
Response to the Threat of Climate Change, Sustainable Development, and Efforts
to Eradicate Poverty, eds V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D.
Roberts, J. Skea, P. R. Shukla, et al. (Geneva: IPCC).

Kaplan, I. C., Francis, T. B., Punt, A. E., Koehn, L. E., Curchitser, E., Hurtado-Ferro,
F., et al. (2019). A multi-model approach to understanding the role of Pacific
sardine in the California Current food web. Mar. Ecol. Prog. Ser. 617, 307–321.

Kramer-Schadt, S., Revilla, E., Wiegand, T., and Grimm, V. (2007). Patterns for
parameters in simulation models. Ecol. Modell. 204, 553–556. doi: 10.1016/j.
ecolmodel.2007.01.018

Laufkötter, C., Vogt, M., Gruber, N., Aita-Noguchi, M., Aumont, O., Bopp, L., et al.
(2015). Drivers and uncertainties of future global marine primary production in
marine ecosystem models. Biogeosciences 12, 6955–6984. doi: 10.5194/bg-12-
6955-2015

Lotze, H. K., Tittensor, D. P., Bryndum-Buchholz, A., Eddy, T. D., Cheung, W. W.,
Galbraith, E. D., et al. (2019). Global ensemble projections reveal trophic
amplification of ocean biomass declines with climate change. Proc. Nat. Acad.
Sci. U.S.A. 116, 12907–12912.

Lough, J. M., and Hobday, A. J. (2011). Observed climate change in Australian
marine and freshwater environments. Mar. Freshw. Res. 62, 984–999. doi:
10.1071/mf10272

Lozano-Montes, H., Loneragan, N., Babcock, R., and Caputi, N. (2013). Evaluating
the ecosystem effects of variation in recruitment and fishing effort in the western
rock lobster fishery. Fish. Res. 145, 128–135. doi: 10.1016/j.fishres.2013.01.009

Lozano-Montes, H., Loneragan, N. R., Babcock, R., and Jackson, K. (2011). Using
trophic flows and ecosystem structure to model the effects of fishing in the
Jurien Bay Marine Park, temperate Western Australia. Mar. Freshw. Res. 62,
421–431. doi: 10.1071/mf09154

Mackinson, S., Daskalov, G., Heymans, J. J., Neira, S., Arancibia, H., Zetina-
Rejón, M., et al. (2009). Which forcing factors fit? Using ecosystem models to
investigate the relative influence of fishing and changes in primary productivity
on the dynamics of marine ecosystems. Ecol. Modell. 220, 2972–2987. doi:
10.1016/j.ecolmodel.2008.10.021

Melnychuk, M. C., Banobi, J. A., and Hilborn, R. (2014). The adaptive capacity of
fishery management systems for confronting climate change impacts on marine
populations. Rev. Fish Biol. Fish. 24, 561–575. doi: 10.1007/s11160-013-9307-9

Nielsen, J. R., Thunberg, E., Holland, D. S., Schmidt, J. O., Fulton, E. A., Bastardie,
F., et al. (2018). Integrated ecological–economic fisheries models: evaluation,

Frontiers in Marine Science | www.frontiersin.org 18 October 2020 | Volume 7 | Article 577964

https://doi.org/10.1007/s10021-014-9803-3
https://doi.org/10.1007/s10021-014-9803-3
https://doi.org/10.1016/j.ecolmodel.2003.09.003
https://doi.org/10.1016/j.ecolmodel.2003.09.003
https://doi.org/10.1016/j.ecolmodel.2015.01.025
https://doi.org/10.1007/s10021-015-9925-2
https://doi.org/10.1007/s10021-015-9925-2
https://doi.org/10.1111/j.1467-2979.2008.00323.x
https://doi.org/10.1111/1365-2664.12110
https://doi.org/10.1111/1365-2664.12110
https://doi.org/10.1002/gbc.20042
https://doi.org/10.1002/2017gl072577
https://doi.org/10.3389/fmars.2019.00498
https://doi.org/10.3389/fmars.2019.00498
https://doi.org/10.1126/science.aau1758
https://doi.org/10.1016/j.ecolmodel.2017.12.003
https://doi.org/10.1016/j.ecolmodel.2017.12.003
https://doi.org/10.1093/icesjms/fsr032
https://doi.org/10.1093/icesjms/fsr032
https://doi.org/10.1016/j.dsr2.2018.11.002
https://doi.org/10.1111/j.1467-2979.2011.00412.x
https://doi.org/10.1111/j.1467-2979.2011.00412.x
https://doi.org/10.1016/j.fishres.2016.07.004
https://doi.org/10.1371/journal.pone.0084242
https://doi.org/10.1371/journal.pone.0084242
https://doi.org/10.1111/j.1523-1739.2012.01937.x
https://doi.org/10.1007/s11160-009-9157-7
https://doi.org/10.1007/s11160-013-9326-6
https://doi.org/10.5670/oceanog.2018.205
https://doi.org/10.3389/fmars.2019.00775
https://doi.org/10.3389/fmars.2019.00775
https://doi.org/10.1016/j.dsr2.2015.08.001
https://doi.org/10.1016/j.dsr2.2015.08.001
https://doi.org/10.1016/j.dsr2.2015.04.002
https://doi.org/10.1016/j.ecolmodel.2007.01.018
https://doi.org/10.1016/j.ecolmodel.2007.01.018
https://doi.org/10.5194/bg-12-6955-2015
https://doi.org/10.5194/bg-12-6955-2015
https://doi.org/10.1071/mf10272
https://doi.org/10.1071/mf10272
https://doi.org/10.1016/j.fishres.2013.01.009
https://doi.org/10.1071/mf09154
https://doi.org/10.1016/j.ecolmodel.2008.10.021
https://doi.org/10.1016/j.ecolmodel.2008.10.021
https://doi.org/10.1007/s11160-013-9307-9
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-577964 October 30, 2020 Time: 12:43 # 19

Pethybridge et al. Australian Fisheries Under Climate Change

review and challenges for implementation. Fish Fish. 19, 1–29. doi: 10.1007/
978-90-481-2655-2_1

Norman-López, A., Pascoe, S., and Hobday, A. J. (2011). Potential economic
impacts of climate change on Australian fisheries and the need for adaptive
management. Clim. Change Econ. 2, 209–235. doi: 10.1142/s201000781100
0279

Ogier, E. M., Davidson, J., Fidelman, P., Haward, M., Hobday, A. J., Holbrook, N. J.,
et al. (2016). Fisheries management approaches as platforms for climate change
adaptation: comparing theory and practice in Australian fisheries. Mar. Policy
71, 82–93. doi: 10.1016/j.marpol.2016.05.014

Olsen, E., Fay, G., Gaichas, S., Gamble, R., Lucey, S., and Link, J. S. (2016).
Ecosystem model skill assessment. Yes we can! PLoS One 11:e0146467. doi:
10.1371/journal.pone.0146467

Pauly, D. (1980). On the interrelationships between natural mortality, growth
parameters, and mean environmental temperature in 175 fish stocks. ICES
J. Mar. Sci. 39, 175–192. doi: 10.1093/icesjms/39.2.175

Pauly, D., Zeller, D., and Palomares, M. L. D. (eds). (2020). Sea Around Us Concepts,
Design and Data. Vancouver: University of British Columbia.

Payne, M. R., Barange, M., Cheung, W. W., MacKenzie, B. R., Batchelder, H. P.,
Cormon, X., et al. (2016). Uncertainties in projecting climate-change impacts
in marine ecosystems. ICES J. Mar. Sci. 73, 1272–1282.

Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen,
I. C., et al. (2017). Biodiversity redistribution under climate change: impacts
on ecosystems and human well-being. Science 355:eaai9214.

Pecl, G. T., Ward, T., Doubleday, Z. A., Clarke, S., Day, J., Dixon, C., et al. (2014).
Rapid assessment of fisheries species sensitivity to climate change. Clim. Change
127, 505–520. doi: 10.1007/s10584-014-1284-z

Pethybridge, H. R., Weijerman, M., Perrymann, H., Audzijonyte, A., Porobic,
J., McGregor, V., et al. (2019). Calibrating process-based marine ecosystem
models: an example case using Atlantis. Ecol. Modell. 412:108822. doi: 10.1016/
j.ecolmodel.2019.108822

Plagányi, E. E., Bell, J. D., Bustamante, R. H., Dambacher, J. M., Dennis, D.,
Dichmont, C. M., et al. (2011). Modelling climate change effects on Australian
and Pacific aquatic ecosystems: a review of analytical tools and management
implications. Mar. Freshw. Res. 62, 1132–1147. doi: 10.1071/mf10279

Plagányi, É. E., Haywood, M. D., Gorton, R. J., Siple, M. C., and Deng, R. A. (2019).
Management implications of modelling fisheries recruitment. Fish. Res. 217,
169–184. doi: 10.1016/j.fishres.2019.03.007

Plagányi, É. E., Punt, A. E., Hillary, R., Morello, E. B., Thébaud, O., Hutton,
T., et al. (2014). Multispecies fisheries management and conservation: tactical
applications using models of intermediate complexity. Fish Fish. 15, 1–22. doi:
10.1111/j.1467-2979.2012.00488.x

Plagányi, É. E., Skewes, T., Haddon, M., and Dowling, N. (2013). Risk management
tools for sustainable fisheries management under changing climate: a sea
cucumber example. Clim. Change 119, 181–197. doi: 10.1007/s10584-012-
0596-0

Reum, J. C., Blanchard, J. L., Holsman, K. K., Aydin, K., Hollowed, A. B., Hermann,
A. J., et al. (2020). Ensemble projections of future climate change impacts on the
Eastern Bering Sea food web using a multispecies size spectrum model. Front.
Mar. Sci. 7:124. doi: 10.3389/fmars.2020.00124

Sheaves, M., Sporne, I., Dichmont, C. M., Bustamante, R., Dale, P., Deng, R.,
et al. (2016). Principles for operationalizing climate change adaptation strategies
to support the resilience of estuarine and coastal ecosystems: an Australian
perspective. Mar. Policy 68, 229–240. doi: 10.1016/j.marpol.2016.03.014

Smith, D. C., Fulton, E. A., Apfel, P., Cresswell, I. D., Gillanders, B. M.,
Haward, M., et al. (2017). Implementing marine ecosystem-based management:
lessons from Australia. ICES J. Mar. Sci. 74, 1990–2003. doi: 10.1093/icesjms/
fsx113

Spence, M. A., Blanchard, J. L., Rossberg, A. G., Heath, M. R., Heymans, J. J.,
Mackinson, S., et al. (2018). A general framework for combining ecosystem
models. Fish Fish. 19, 1031–1042. doi: 10.1111/faf.12310

Steenbeek, J., Coll, M., Gurney, L., Mélin, F., Hoepffner, N., Buszowski, J., et al.
(2013). Bridging the gap between ecosystem modeling tools and geographic
information systems: driving a food web model with external spatial-temporal
data. Ecol. Modell. 263, 139–151. doi: 10.1016/j.ecolmodel.2013.04.027

Sumaila, U. R., Cheung, W. W., Lam, V. W., Pauly, D., and Herrick, S. (2011).
Climate change impacts on the biophysics and economics of world fisheries.
Nat. Clim. Change 1, 449–456. doi: 10.1038/nclimate1301

Sunday, J. M., Pecl, G. T., Frusher, S., Hobday, A. J., Hill, N., Holbrook, N. J., et al.
(2015). Species traits and climate velocity explain geographic range shifts in an
ocean-warming hotspot. Ecol. Lett. 18, 944–953. doi: 10.1111/ele.12474

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the
experiment design. Bull. Am. Meteorol. Soc. 93, 485–498. doi: 10.1175/bams-d-
11-00094.1

Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., and Zimmermann,
N. E. (2019). Uncertainty in ensembles of global biodiversity scenarios. Nat.
Commun. 10:1446.

Tittensor, D. P., Eddy, T. D., Lotze, H. K., Galbraith, E. D., Cheung, W., and
Barange, M. (2018). A protocol for the intercomparison of marine fishery and
ecosystem models: FISH-MIP v1.0. Geosci. Model Dev. 11, 1421–1442.

Travers-Trolet, M., Shin, Y. J., Shannon, L. J., Moloney, C. L., and Field, J. G. (2014).
Combined fishing and climate forcing in the southern Benguela upwelling
ecosystem: an end-to-end modelling approach reveals dampened effects. PLoS
One 9:e94286. doi: 10.1371/journal.pone.0094286

Tulloch, V. J. D., Plagányi, E., Brown, C., Matear, R., and Richardson, A. J. (2019).
Future recovery of baleen whales is imperiled by climate change. Glob. Change
Biol. 25, 1263–1281. doi: 10.1111/gcb.14573

Van Putten, E. I., Plagányi, E., Booth, K., Ctivanovic, C., Kelly, R., Punt, A., et al.
(2018). A framework for incorporating Sense of Place into the management of
marine systems. Ecol. Soc. 23, 1–24.

Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., et al. (2011). The representative concentration pathways: an overview. Clim.
Change 109:5. doi: 10.1007/s10584-011-0148-z

Wayte, S. E. (2013). Management implications of including a climate-induced
recruitment shift in the stock assessment for jackass morwong (Nemadactylus
macropterus) in south-eastern Australia. Fish. Res. 142, 47–55. doi: 10.1016/j.
fishres.2012.07.009

Woodworth-Jefcoats, P. A., Blanchard, J. L., and Drazen, J. C. (2019). Relative
impacts of simultaneous stressors on a pelagic marine ecosystem. Front. Mar.
Sci. 6:383. doi: 10.3389/fmars.2019.00383

Zhang, X., Church, J. A., Monselesan, D., and McInnes, K. (2017). sea level
projections for the Australian Region in the 21st Century. Geophys. Res. Lett.
44, 8481–8491. doi: 10.1002/2017gl074176

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Pethybridge, Fulton, Hobday, Blanchard, Bulman, Cheung, Dutra,
Gorton, Hutton, Matear, Lozano-Montes, Plagányi, Villanueva, Zhang and Butler.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 19 October 2020 | Volume 7 | Article 577964

https://doi.org/10.1007/978-90-481-2655-2_1
https://doi.org/10.1007/978-90-481-2655-2_1
https://doi.org/10.1142/s2010007811000279
https://doi.org/10.1142/s2010007811000279
https://doi.org/10.1016/j.marpol.2016.05.014
https://doi.org/10.1371/journal.pone.0146467
https://doi.org/10.1371/journal.pone.0146467
https://doi.org/10.1093/icesjms/39.2.175
https://doi.org/10.1007/s10584-014-1284-z
https://doi.org/10.1016/j.ecolmodel.2019.108822
https://doi.org/10.1016/j.ecolmodel.2019.108822
https://doi.org/10.1071/mf10279
https://doi.org/10.1016/j.fishres.2019.03.007
https://doi.org/10.1111/j.1467-2979.2012.00488.x
https://doi.org/10.1111/j.1467-2979.2012.00488.x
https://doi.org/10.1007/s10584-012-0596-0
https://doi.org/10.1007/s10584-012-0596-0
https://doi.org/10.3389/fmars.2020.00124
https://doi.org/10.1016/j.marpol.2016.03.014
https://doi.org/10.1093/icesjms/fsx113
https://doi.org/10.1093/icesjms/fsx113
https://doi.org/10.1111/faf.12310
https://doi.org/10.1016/j.ecolmodel.2013.04.027
https://doi.org/10.1038/nclimate1301
https://doi.org/10.1111/ele.12474
https://doi.org/10.1175/bams-d-11-00094.1
https://doi.org/10.1175/bams-d-11-00094.1
https://doi.org/10.1371/journal.pone.0094286
https://doi.org/10.1111/gcb.14573
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1016/j.fishres.2012.07.009
https://doi.org/10.1016/j.fishres.2012.07.009
https://doi.org/10.3389/fmars.2019.00383
https://doi.org/10.1002/2017gl074176
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

	Contrasting Futures for Australia's Fisheries Stocks Under IPCC RCP8.5 Emissions – A Multi-Ecosystem Model Approach
	Introduction
	Materials and Methods
	Ecosystem Modeling Platforms
	Fisheries Data and Forcing
	Climate Model Projections
	Regional Forcing Files
	Projecting Biomass Changes to Climate Change and Fishing
	Ecosystem Model Comparisons and Uncertainty

	Results
	Temperature and Productivity Projections in Different Regional Model Domains
	Regional Model Outputs
	Global Model Outputs
	Inter-Model Comparisons and Confidence

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


