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Mesopelagic fish, being in the middle of the trophic web, are important key species
for the marine environment; yet limited knowledge exists about their biology and
abundance. This is particularly true in the Mediterranean Sea where no regional
assessment is currently undertaken regarding their biomass and/or distribution. This
study evaluates spatial and temporal patterns of mesopelagic fish biomass in the 1994–
2011 period. We do that for the whole Mediterranean Sea using two well-established
statistical models, the Generalized Additive Model (GAM) and Random Forest (RF).
Results indicate that the bathymetry played an important role in the estimation of
mesopelagic fish biomass and in its temporal and spatial distribution. The average
biomass over the whole time period reached 1.08 and 0.10 t/km2, depending on
the model considered. The Western Mediterranean and Ionian Seas were the sub-
regions with the highest biomass, while the Adriatic was the area with the lowest.
Temporal trends showed different trajectories with steep decrease and a fluctuation,
using respectively RF and GAM. This study constitutes the first attempt to estimate
the biomass and the spatial temporal patterns of mesopelagic fish using environmental
variables as predictors. Given the growing interest in mesopelagic fish, our study sets
a baseline to further develop mesopelagic fish biomass assessments in the region.
Our results stress the need to improve data collection and quality in the region while
identifying appropriate tools to better understand and assess the processes behind
mesopelagic fish dynamics in the basin.

Keywords: generalized additive model, Random Forest, spatial model, Mediterranean Sea, biomass distribution,
mesopelagic fish

INTRODUCTION

Mesopelagic fish species are considered the marine vertebrates with the highest biomass in the
world ocean (Mann, 1984). They live in the water column from 200 m to around 1000 m depth,
which are limits defined by the light intensity (Kaiser et al., 2011). A characteristic of most
mesopelagic fish is a diel vertical migration, which consists of moving toward the surface layers
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at night and back to the deeper layers during the day following
the diurnal movement of their preys (Olivar et al., 2012). Though
not commercially exploited (only a few species in few areas are
caught for commercial use, e.g., Benthosema glaciale in Oman
Sea; Valinassab et al., 2007), they are important key species in the
marine food web as they influence the dynamics of their prey,
notably zooplankton (Williams et al., 2001; Saunders et al., 2019),
and their predators, e.g., highly commercial pelagic fish (Würtz,
2010), marine mammals (Giménez et al., 2017), sea birds (Barrett
et al., 2002) and benthic species (Herring, 2002).

Research on mesopelagic fish ecology has intensified in
recent years and focused on life-history, morphology, behavior,
trophodynamics and biomass distribution (Salvanes and
Kristoffersen, 2001; Loots et al., 2007; Bernal et al., 2015;
Gorelli et al., 2016; Freer et al., 2019). However, gaps still
remain about their biological importance and their overall
abundance (Irigoien et al., 2014). The first preliminary global
assessment of mesopelagic fish biomass was conducted by
Gjøsaeter and Kawaguchi (1980), who estimated, using data
from acoustic and trawl surveys, that around one billion ton
of mesopelagic fish live in our oceans. Other studies assessing
global mesopelagic fish biomass showed that these estimates
might vary considerably between 1 and 14 billion tons depending
on the methods used (e.g., acoustic trawl surveys or modeling
tools; Wilson et al., 2009; Irigoien et al., 2014; Jennings and
Collingridge, 2015). Particularly in relation to acoustic and
net-sampling methods, both have been shown to provide
an approximate measure of the mesopelagic fish biomass.
The main issue of the use of acoustic methods is related to
the gas-filled swimbladder (important morphological organ
of the acoustic “backscatter” signal; Dornan et al., 2019) of
mesopelagic fish. Some species, in fact, do not have one or
some lose the gas component in the adulthood. In addition,
other organisms at midwater depths, e.g., siphonophores,
possess gas-filled organ, which might be subsumed to the
biomass from fish, leading to an overall overestimation of the
midwater fish biomass (Kaartvedt et al., 2012; Davison et al.,
2015; Dornan et al., 2019). Last, the relationship between target-
strength (an acoustic parameter) and biomass can introduce a
potential bias in the estimate of the biomass (Saunders et al.,
2013). The net-based method, on the other hand, is likely to
underestimate the mesopelagic biomass through escapement
(e.g., large trawls and large meshes) or avoidance (e.g., small
nets and fine meshes) phenomena (Davison et al., 2015;
Escobar-Flores et al., 2020). Yet, this method is still the most
used and informative (e.g., providing coordinates and exact
number of specimens) and provides a ground-truth of size
and species composition of the sampled fish (Cotter, 2009;
Davison et al., 2015).

In the Mediterranean Sea, our study area, no regional
estimates of mesopelagic fish biomass exist. The only preliminary
assessment was conducted by Gjøsaeter and Kawaguchi (1980)
for the Western and Eastern basins, excluding the Adriatic
and Ionian seas, revealing that approximately 2.5 million tons
of mesopelagic fish inhabit these sub-regions. The basin is
classified as a “data-poor region,” because data (e.g., biomass
and biological data of non-commercially important species

and deep-sea organisms), are still very fragmented, or even
lacking for certain areas (mainly for southern countries) and,
in some cases, difficult to access (Piroddi et al., 2015, 2017;
Demirel et al., 2020).

The Mediterranean Sea is also defined a sea “under siege”
because the basin accumulates the impact of multiple stressors,
such as fishing, climate change, invasive species, and pollution,
on its ecosystem (Coll et al., 2010; Katsanevakis et al., 2014).
Several regional studies, in fact, have reported severe declines
of predatory species in the region (Ferretti et al., 2008; Piroddi
et al., 2017, 2020) with important consequences to its biodiversity.
Thus, assessing how many mesopelagic fish inhabit the basin and
where they distribute is a step further in understanding the role
of mesopelagic fish in the functioning and structuring of this
fragile ecosystem.

As mentioned before, several approaches have been used to
estimate the biomass of mesopelagic fish. Here we utilized jointly
two statistical tools to evaluate the biomass of mesopelagic fish in
the Mediterranean Sea. Currently, the use of multiple models has
been recognized to be fundamental for increasing the reliability
of model predictions, decreasing their uncertainty and better
supporting policy decisions (Littell et al., 2011; IPBES, 2016;
Lotze et al., 2019). In this study, we used two species distribution
models to obtain a first preliminary estimate of mesopelagic
fish biomass for the whole Mediterranean Sea, and assess spatial
distributions and temporal changes over time. We did that using
two methods: (1) Generalized Additive Model (GAM), and (2)
Random Forest (RF), both of which utilize physical, chemical
and biological parameters to predict biomass/abundance of a
species and the likelihood of that species to inhabit a particular
environment (Knudby et al., 2010).

Our study sets a baseline to further develop mesopelagic
fish biomass assessments in the region and aims at identifying
appropriate approaches to better understand and assess the
processes behind mesopelagic fish dynamics in the basin.

MATERIALS AND METHODS

The Mediterranean Sea
With a total surface of 2.5 million km2, the Mediterranean Sea is
a semi-enclosed sea that only have limited water exchange with
adjacent seas (the Atlantic Ocean via Gibraltar’s strait, the Black
Sea via the Bosporus and the Dardanelles and the Red Sea with
the Suez Canal; see Figure 1).

The basin is heterogeneous with shallow sub-regions like the
Adriatic Sea (mean depth around 300 m, Figure 1) and deep
ones like the Ionian and Levantine seas (depths between 2500
and 4000 m; Zavatarelli and Melor, 1995; Durrieu de Madron
et al., 2011). Decreasing gradients of nutrient and productivity
are observed from north to south and west to east, making
the Mediterranean Sea one of the most oligotrophic areas of
the world ocean (Danovaro et al., 2010). Opposite trends are
observed for temperature and salinity with increasing values
eastward. In the twilight layer (i.e., mesopelagic and deeper
layers) of the basin, temperature and salinity values are higher
than in any other ocean (Gorlov, 2009). In the mesopelagic
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FIGURE 1 | (A) The Mediterranean Sea with the four main sub-regions (Western: West; Adriatic: Adri, Ionian: Ion and Eastern: East) and flow exchanges with the
Atlantic Ocean [Gibraltar Strait (G)]; the Red Sea [Suez Canal (S)], and the Black Sea [Bosporus Strait (B)]. Panels (B–E) represent sampling sites per sub-region.
Isobath of 200 m (dashed line) and 1000 m (continuous line) are also represented.

layer, there are longitudinal gradients of temperature and salinity,
which correspond to 13◦C and 38.4 PSU in the western basin
and 15.5◦C and 39.1 PSU in the eastern basin (Zavatarelli
and Melor, 1995). This enclosed sea, despite covering only
0.32% of the world ocean volume, is an area known for its
endemic biodiversity hotspot, hosting 7–10% of the world’s
marine biodiversity (Bianchi and Morri, 2000; Coll et al., 2010).

Data
Biomass of Mesopelagic Fish
We built a database of georeferenced mesopelagic fish biomass
(t/km2) using data from peer-reviewed articles and/or scientific
reports (Figure 1 and Supplementary Table 1). The database was

constructed following a framework to account for differences in
recorded data (e.g., abundance vs. biomass data); the details are
provided in the Supplementary Materials). We only considered
the biomass of adults or juveniles, excluding thus mesopelagic
fish larvae. Selected deep-sea species consisted of species defined
by FishBase (Froese and Pauly, 2015) either as mesopelagic
or in some cases, as bathypelagic fishes. Even if bathypelagic
fish usually live in waters deeper than the mesopelagic layer,
some species occur in both mesopelagic and bathypelagic layers
(e.g., Arctozenus risso: 0 to 2200 m depth) or are sometimes
described as meso- and bathypelagic species by FishBase. In
our study, we excluded bathypelagic species estimates if those
species were not described as migrators to the mesopelagic layer.
Overall, we extracted 11,430 mesopelagic fish biomass estimates
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for the period 1994–2011 that were collected either during day
or night or both (Supplementary Table 1). Thirteen mesopelagic
families were collected with Myctophidae and Sternoptychidae
representing 70% of the total biomass. We then tested the
diurnal and seasonal effect on the biomass data and excluded this
effect from model formulation because of their non-significance
in explaining data variability (F(1,402) = 0.1346; p > 0.05,
F(4,1952) = 2.16; p > 0.05, respectively).

Sampling stations were mainly distributed along the slope
of the Mediterranean Sea (Figure 1) and 49.7% of them
were in the Western sub-region. An overview description of
this database is presented in Supplementary Table 1 of the
Supplementary Information. To finally keep one biomass value
per station and year, mesopelagic fish biomass of the different
collected species was summed up, which reduced the database
to 2,694 records.

Environmental Predictors
Environmental data were used to predict the distribution
of mesopelagic fish biomass in space and time. We used
yearly gridded environmental data from a three-dimensional
hydrodynamic biogeochemical model (GETM-MedERGOM)
covering the whole Mediterranean Sea at a spatial resolution of
0.083◦ (Macias et al., 2013, 2014a, 2015). Detailed description
and validation of this model can be found in Macias et al. (2013).
Environmental predictors were selected based on their potential
to influence mesopelagic fish distribution: primary production
(PPR) (Olivar et al., 2012); dissolved oxygen (DO) (Kinzer et al.,
1993), seawater salinity (S), seawater temperature (T) (Themelis,
1997; Danovaro et al., 2004).

Environmental predictors were averaged for salinity,
temperature, and DO and integrated for the PPR over three
depth layers:

0–10 m depth layer (i.e., surface):
0–150 m depth layer (i.e., the euphotic zone also delimited by

the Mixed Layer Depth)
0–1000 m depth layer (i.e., the entire water column where

mesopelagic fish might occur).
This was done to understand the influence/importance of

selected depth related environmental data in the estimation of the
biomass and distribution of mesopelagic fish.

Also, to consider sub-regional differences in environmental
and biological characteristics of the region, georeferenced
biomasses were linked to the four main Mediterranean sub-
regions (i.e., Western, Adriatic, Ionian, and Eastern) following
the division as provided by the Marine Strategy Framework
Directive (MSFD; 2008/56/EC).

Statistical Methods and Set Up
Generalized Additive Model
Generalized additive model is a non-parametric regression
method that uses a link function to establish a relationship
between the response variable and a “smoothed” function of
the explanatory variable(s) (Hastie and Tibshirani, 1986). The
strength of GAM is its ability to deal with highly non-linear and
non-monotonic relationships between the response and the set
of explanatory variables. Here, we used GAM to estimate the

mesopelagic fish biomass in function of selected environmental
predictors following the equations:

log(biomass) ∼ s(log(Bathymetry))+ s(log(DOLayer))

+ s(log(TemperatureLayer))+ s(log(SalinityLayer)

+ poly(Year, 3)+ factor(Sub− region)+ ε, (1)

if Layer = 0–10 m:

log(biomass) ∼ s(log(Bathymetry))+ s(log(PPRLayer))

+ s(log(TemperatureLayer))+ s(log(SalinityLayer)

+ poly(Year, 3)+ factor(Sub-region)+ ε, (2)

where s and poly stand for smooth functions, Layer the depth-
layer considered and Sub-region, one of the four sub-regions
dividing the Mediterranean Sea and ε the residuals. The residuals
ε were assumed to follow a Gaussian distribution.

To deal with spatial autocorrelation, we assess the residuals
correlation structure using the exponential correlation structure
(ECS). In the ECS, the correlation σ between two observations is
given by:

σ = exp(−d/r), (3)

where d is the distance between the two observations and r is the
range (corresponding to the distance at which the residuals are no
longer correlate). Longitude and latitude are projected in ETRS-
LAEA (also called ETRS 89) for the calculation of the d and r
of the residuals’ correlation structure in metric units. The ECS
is chosen between the Gaussian, spherical and linear correlation,
based on the reduction of the Akaike’s information criterion
(AIC). The optimal combination of the predictor variables is
performed by comparing nested models using the likelihood ratio
test with maximum likelihood estimation (Zuur et al., 2007). To
validate the model, we randomly split the data into training (2/3)
and validation (1/3), we then compared the predictions of both
models (training/validation) and once considered suitable, we
used the entire data set to predict the biomass of mesopelagic fish.
The best model was chosen based on (1) the lowest AIC and (2)
significant covariates (Wood, 2001). Here, GAM was run using
the “mgcv” package (version 1.8-7) in R.

Random Forest
Random forest is an ensemble of decision trees based on a
bootstrap aggregation method (also called bagging method; see
Breiman, 1996), which partitions the variable of interest, here,
biomass, from decisions made on the predictor data. RF is a
statistical model, which has been increasingly used in ecological
modeling to predict fish biomass with the lowest errors (Knudby
et al., 2010). As for GAM, RF can deal effectively with non-
linearity between predictors and the response variable (Breiman,
2001). To tune the algorithm, the model requires two parameters:
the number of regression trees, ntree and the number of different
predictors tested at each split, mtry. Prior to the growth of each
tree, one-third of the dataset, called the Out-Of-Bag (OOB),
is excluded from the bootstrap and used for cross-validation.
Decision trees are built by splitting the other two-thirds of
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the dataset according to four randomly selected predictors. The
algorithm of RF looks for the optimal values (e.g., a value
that reduces the variance) of these predictors before the splits.
Once the decision trees are built, the accuracy of the tree
predictions is assessed by using the observed biomass from the
OOB dataset. In our study, we decided to set mtry to 2 and ntree
to 500 to optimize the time computation and avoid errors in
predictions (Breiman, 2001). We then estimated the mesopelagic
fish biomass by averaging the predictions obtained from the 500
decision trees. To be consistent with GAM, RF used the same
set of environmental predictors. RF was implemented using the
“randomForest” package (version 4.6-10) in R, which is based on
an algorithm described by Breiman (2001).

Models Performance
Generalized additive model and RF performances were compared
through data variability explained by the models (i.e., cross-
validated R2 in RF and deviance in GAM) and the importance of
environmental predictors (i.e., the reduction in deviance in GAM
and the increase rate of the mean square error in RF). In GAM,
the reduction in deviance is calculated as the difference between
residual deviance of the final model and the residual deviance of
a model where one or more predictors are dropped. In RF, the
increase rate of the mean square error is obtained excluding one
predictor from the model.

In addition to these methods, we decided to run (100 times)
both models with a 10-fold cross-validation technique. The root-
mean-square-error (RMSE) obtained through the 10-fold cross-
validation was used to summarize the errors and compare the
two statistical methods (the one yielding the lowest RMSE was
the model with a better fit). RMSE was estimated as follow:

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(4)

with n, the total number of data, yi the i-th prediction and yi the
i-th observation.

Density Estimates in Space and Time
Once calibrated and validated, the best RF and GAM models were
selected to predict the mesopelagic fish biomass (t/km2) in space
and time for the period 1994–2011 using the spatially explicit
and time-resolved environmental variables provided by the
hydrodynamic-biogeochemical model. Taking into consideration
that mesopelagic fish occur mainly in waters deeper than 200 m,
we discarded all the predictions estimated over a topography
shallower than 200 m. For both models and each depth
layer, we calculated the arithmetic average of the estimated
biomass for the entire Mediterranean Sea and for each sub-
region (Western, Adriatic, Ionian, and Eastern). Additionally,
we estimated biomass trends and spatial distributions using a
geometric average over the period 1994–2011.

Finally, we tested the sensitivities of the models to changes
in catchability, an input parameter that was used to estimate
the mesopelagic biomass in the dataset (see Supplementary
Materials for details). Both selected models were trained and
run with catchability values ranging between 0.05 and 0.35,

which were the values of catchabilities observed in the available
scientific literature.

RESULTS

Model Performances
The most statistically significant results were obtained with RF.
This model, in fact, explained between 27.0 and 28.4% the
variance of the data depending on the depth layer considered
(Table 1); hypotheses on the residuals were analyzed and verified
(Supplementary Figures 1–3 in Supplementary Information).
As for GAM, the deviances ranged between 14.9 and 15.4%
with smooth functions statistically significant (p-values < 0.05)
and analysis on residuals verified (Supplementary Figures 4–6
in Supplementary Information). Bathymetry was the most
important predictor for both models followed by salinity,
temperature, and PPR for RF and by DO, PPR, and salinity for
GAM (Table 1).

Based on the RMSE from the 10-fold cross-validation analysis,
the performances of RF were generally better than the ones from
GAM, with an average of 0.57 and 0.84, respectively (Table 1).

In both models, the first two layers (0–10 and 0–150 m)
contributed the most to the total explained variance. In GAM,
the environmental predictors from the depth layer 0–150 m
showed the highest improvement while in RF this was observed
for the depth layer 0–10 m. For these GAM and RF models, the
marginal effects of the environmental predictors in common (i.e.,
bathymetry, temperature, and salinity) on the biomass showed
similar patterns (Supplementary Figures 7, 8).

Model-Estimated Mesopelagic Fish
Biomass
The predicted mesopelagic fish biomass differed considerably
between models. The average estimate obtained for the whole
time period (1994–2011) and for the entire basin was 1.08 t/km2

with GAM and 0.10 t/km2 with RF. As for changes in catchability,
GAM and RF showed a variance in modeled average biomass
of around 220 and 280% when catchability decreased to 0.05
and −51% and −54% when it increased to 0.35 (Supplementary
Figure 9), respectively.

Sub-Regions
High differences were observed between the two methods even
at sub-regional scale (Figure 2). Overall, in RF there was a clear

TABLE 1 | Performances of the GAM and RF models by depth layer. Model
performance is measured by the R2 and RMSE.

Model Layer Deviance/R2 RMSE Significant predictors

GAM 0–10 15.3% 0.84 ± 0.40 Bathymetry, DO, Temperature

0–150 15.4% 0.84 ± 0.40 Bathymetry, PPR, Temperature

0–1000 14.9% 0.84 ± 0.40 Bathymetry, Salinity, Temperature

RF 0–10 28.4% 0.52 ± 0.48 Bathymetry, Salinity, Temperature

0–150 28.3% 0.61 ± 0.35 Bathymetry, PPR, Temperature

0–1000 27.0% 0.58 ± 0.43 Bathymetry, Temperature, Salinity
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FIGURE 2 | Statistics of biomass predicted using GAM (A) and RF (B) models by sub-regions of the Mediterranean Sea. The value ranges are from the 5th to the
95th quantiles.

decreasing gradient of mesopelagic biomass from West to East
while in GAM, such pattern was more homogenous. In GAM,
the Ionian Sea was the sub-region with the highest densities with
an average estimated at 1.77 t/km2 and estimates were contained
in the 95% confidence interval from 0.01 to 5.80 t/km2. In RF,
the highest values were found in the Western sub-region and
averaged at 0.22 t/km2. The 95% confidence interval for that sub-
region included values from 0.01 to 0.66 t/km2. For both GAM
and RF models, the Adriatic sub-regions had low estimates of
biomass (i.e., <0.06 t/km2). Then, the Ionian and Eastern sub-
regions had the highest discrepancy rates (i.e., biomasses from
GAM were∼130 times higher than those estimated by RF).

Spatial Distribution and Temporal Dynamics
Spatial differences between the two models were mainly detected
looking at the biomass distributions over the bathymetry
(Figure 3). In general, small biomass estimates (<0.03 t/km2)
were observed in all the sub-regions, particularly near the
continental shelves and had low value variations (Supplementary
Figure 10). On the contrary, the highest estimates (>3.5 t/km2,
Figure 3A) in GAM were encountered over the deep areas of the
Western Mediterranean Sea, the Ionian and Eastern sub-regions
(Figure 3). In those areas where the average estimates were
high and the data coverage was absent, we also observed high
standard deviation (i.e., from 0.4 to 3.5 t/km2) of the prediction
(Supplementary Figure 10A). Similarly, but with values 10
times smaller, biomass estimates in RF were high (>0.4 t/km2,
Figure 3B) in the deep areas of the Western Mediterranean Sea.
Nonetheless, the standard deviation was relatively the highest
(from 0.4 to 1.9 t/km2) near Spanish islands and the Sicilia Strait
in the Western Mediterranean Sea.

Temporal dynamics estimated by both models for the whole
Mediterranean Sea suggested an increase of total mesopelagic fish
biomass from 1995, which then decreased softly until 2007 before
to rose steeply again in GAM (Figure 4). Meanwhile, in RF, the

total mesopelagic biomass declined in 1998 and remained stable
throughout 2001 and 2011. Similar trends were observed at sub-
regional scale (Supplementary Figure 11), with the exception
of the Ionian sub-regions in RF where the decline was not
pronounced as in the other sub-regions. The temporal dynamic
pattern in GAM was mainly driven by the temporal variability
observed in the Ionian sub-region (Supplementary Figure 11C),
where the predicted biomass was the highest (see Figure 2) while
it was the Western sub-region influencing the most the modeled
values in RF (Supplementary Figures 10, 11A). Temporal trends
showed that RF was able to capture the decline of mesopelagic
fish as observed in the sampling data (Figure 4) for the end of
1990s while GAM showed only a fluctuation.

DISCUSSION

Data Quality and Model Performance
This study provides a first spatial and temporal estimate of
mesopelagic fish biomass in the Mediterranean Sea. It covers
the last two decades and is based on the best available data
and best available modeling tools. Yet, we acknowledge that
considerable gaps still exist, particularly with regards to data
quality. For instance, environmental data were extracted from a
hydrodynamic-biogeochemical model that, despite being tested
and validated, still show levels of uncertainties. This particular
model set-up has been shown to properly represent past (Macias
et al., 2014a), present (Macias et al., 2014b), and future (Macias
et al., 2015) conditions in this semi-enclosed basin, although
it is still far from a perfect description of environmental
characteristics. As a particle example of model limitations, it
could be mentioned the underestimation of primary production
values in certain particular areas such as along the Egyptian
Coast, on the Tunisian continental shelf and in the shallow
Adriatic waters, which are known to be highly productive
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FIGURE 3 | Spatial distribution of mesopelagic fish biomass averaged over the whole time period (1994–2012) using GAM (A) and RF (B). White areas correspond
to the topography shallower than 200 m which was discarded from the analysis.

(Bosc et al., 2004). Using time series from survey data (instead
of modeled climatological data) could possibly result in a
better model performance; however, data at regional scale with
appropriate spatial and temporal coverage are inexistent.

The extraction of mesopelagic fish biomass estimates from
scientific literature can itself be a considerable source of bias.
Indeed, in some cases, mesopelagic biomass was obtained from
studies where the scope was generally not aimed at targeting
mesopelagic fish. Lack of regional data impedes a proper analysis
of the dynamics of mesopelagic fish in the region. Besides, it
also hampers the development of a comprehensive ecosystem
analysis to evaluate the functional role of these fish in the
food web. More efforts should be dedicated to improve data
collection and quality in the region. Sampling data should be
more homogeneously distributed in space and should have a
better time coverage. Nonetheless, the biomass database that
was constructed for this study followed a rigorous approach
(Supplementary Materials) using, when missing, data (weights
from length-weight relationships) coming from FishBase (a
global biodiversity information system on finfishes)1. We use
this system to gather consistent information among the different
studies and species, and to reduce further noise coming
from information collected in localized/individual studies. Yet,
we acknowledge that FishBase has limitations, particularly
associated to uncertainties on the ecology of many mesopelagic
fish species; thus, further efforts should be made to reduce
this knowledge gap.

1www.fishbase.org

Probably the most uncertain parameter of our biomass
database is the catchability that was fixed at 0.16 (i.e., only
16% of mesopelagic fishes in the volume swept by the trawl
gear(s) were assumed to be caught by the gear), to estimate
the biomass present in the water column, across species and
surveys. This catchability was estimated by averaging published
catchabilities of different gears [i.e., 6 feet Isaac Kidd Midwater
Trawl (Barkley, 1964, 1972); Engel 152 (May and Blaber, 1989)],
which were also the main gears used to sample mesopelagic
fish biomass in the Mediterranean Sea. Such value might have
led to under- or overestimate of the mesopelagic fish biomass.
Catchability is a matter of fish size, fish species, fishing depth
and a lot of other parameters, which makes it difficult to
measure and estimate. Unfortunately, at the time this research
was undertaken, no more information was available to fill these
gaps. The results obtained from the sensitivity analysis, which
tested different catchabilities, showed that biomass values may
vary greatly depending on the catchability used. This result
reinforces the need to conduct further research on catchability
to reduce the uncertainties associated to the mesopelagic fish
biomass estimation.

Lastly, our sampling sites were located close to the coast or
the continental shelf and mainly in the northern part of the
Mediterranean Sea. Spatial autocorrelation was not detected in
the residuals of the two models. However, due to the scarcity
of biomass sampling data for open waters, the estimation of the
mesopelagic fish biomass distribution could be biased. In fact,
with a better distribution of the sampling, we could undoubtedly
improve the patterns of some relationship between biomass
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FIGURE 4 | Interannual variability of the predicted mesopelagic fish biomass in the Mediterranean Sea using GAM (continuous line), and RF (dashed line) compared
to the observed mesopelagic fish biomass as provided by our dataset (gray line). The biomass was scaled (subtraction of the average then division by the standard
deviation) to facilitate the comparison.

and predictors (e.g., Supplementary Figures 7, 8) and for the
spatial estimation of the biomass (e.g., Figure 3). Nevertheless,
the estimation of biomass on the continental slope of the
Mediterranean Sea is in line with existing knowledge. The
increase of biomass with bathymetry was previously observed
by Moranta et al. (2004) and Massutí and Reñones (2005), and
high estimation above the continental slope is expected since
those zones shelter a high biodiversity and food abundance
(Danovaro et al., 2010).

With the run of two models, we were able to assess
communalities and main differences in depicting the relationship
of mesopelagic fish with its environment. Our results highlight
a general different pattern among these tools, not only in
the absolute biomass estimates but also in the temporal and
spatial distribution. These two models are commonly used to
assess species distributions in both marine and terrestrial realms
(e.g., Moisen et al., 2006; Rooper et al., 2017; Kosicki, 2020),
however RF models have been seen to have substantially more
performance power and control over the model overfitting
compared to GAM approaches (Elith et al., 2006; Rooper et al.,
2017), as it is also shown in this study. This is likely because of the
RF algorithm, which is an ensemble of models (regression trees),
each built on a random selection of relatively few predictors
(Breiman, 2001). Besides, contrary to the GAM approaches, the

RF algorithm did not seem to overestimate the biomass at places
where we originally lacked data.

In addition, the statistically significant differences in
predictive performance between these two modeling tools,
suggest the need for further comparative studies, including
other techniques and model types, to get stronger and more
reliable conclusions (Martínez-Minaya et al., 2018). It has been
observed that these statistical tools, together with machine
learning methods, have great potential in reducing prediction
error while incorporating non-linear and interaction effects
(Knudby et al., 2010). As pointed out by several studies
(Fulton, 2010; Piroddi et al., 2017), there is “no one best
model” but rather a suite of tools should be examined given
the high uncertainty associated to the questions that such
approaches aim to address.

Estimates of Biomass
The distribution of biomass over the whole Mediterranean
Sea and the relationship with some environmental predictors
had comparable patterns with the available literature. First,
our predicted biomass with GAM for the whole region was
of the same order of magnitude as estimated by Gjøsaeter
and Kawaguchi (1980), which was ∼3 t/km2 for the entire
region. On the other hand, RF was more in agreement with
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Gjøsaeter and Kawaguchi (1980) in relation to the distribution
of mesopelagic biomass which was higher in the western
Mediterranean Sea compared to the eastern part. This is also
in line with other studies in the Mediterranean Sea that suggest
a decreasing gradient of species richness from west to east
(Danovaro et al., 2010; Piroddi et al., 2017) due to an increased
oligotrophy in the eastern regions. Since our study is the
first of its kind in producing spatiotemporal maps and trends
of mesopelagic fish biomass for the basin, unfortunately, at
this stage, no further and clear conclusions can be drawn.
A hypothesis could be associated to an increase in water
temperature in the basin that together with low levels of
primary production, typical of the oligotrophic nature of the
Mediterranean Sea might have created unfavorable conditions for
mesopelagic fish biomass to thrive in the eastern region.

In this study, bottom depth was the variable that explained
the greatest portion of the biomass and spatial distribution
of mesopelagic fish. Many studies have demonstrated the
importance of this parameter on the distribution of reef and
demersal fish (Knudby et al., 2010; Pham et al., 2015), and
it is not surprising that even deeper fish like mesopelagic
fish are as well highly influenced by this variable. Having
environmental data from a 3D hydrodynamic biogeochemical
model allowed us to explore the influence of different depth
related environmental data on the dynamics of mesopelagic fish.
Our results showed no significant variations among the three
assessed depth layers, suggesting an important contribution of
each of these compartments in the pattern of these fish. Yet,
our study indicated that the euphotic zone was the area with
the highest influence on the distribution and abundance of
mesopelagic fish. These results might be biased by the survey
data used in this assessment, which was mainly collected close
to coastal/shelf areas. Further studies should better evaluate this
aspect when/if more data (in open waters) become available.
The use of spatially explicit environmental variables from
hydrodynamic-biogeochemical models, extracted as in this case
at different depths, highlighted the importance of considering
such tools to better capture fish dynamics and their linkage with
the environment (Piroddi et al., 2017, 2020).

Biomass could also be linked to other parameters we did
not consider in this study, notably those of species-dependent
character. We think particularly of an increase in natural
mortality or a modification of certain biological features e.g.,
growth (smaller sizes) and reproduction (less survival of larvae;
Herring, 2002) with environmental changes. We did not consider
the rate of by-catch from the fishing activities, but it might
be important when looking at mesopelagic fish biomass trend.
Even if mesopelagic fish are not targeted by any commercial
fisheries, they are discarded at a considerable scale in such
fisheries (Gorelli et al., 2016).

CONCLUSION AND PERSPECTIVES

This study constitutes the first attempt to estimate the biomass
and the spatial temporal patterns of mesopelagic fish using

environmental variables as predictors. Compared to the work
of our predecessors, Gjøsaeter and Kawaguchi (1980), this work
provides a first preliminary estimate of the mesopelagic fish
biomass for the whole Mediterranean Sea (not only the Western
and Eastern sub-basins), and for more recent years (while the
previous estimates were for the 1980s). Most importantly, this
is the first study that assesses potential trends and spatial-
temporal maps of this group of fish in the region. We agree
that there is still considerable uncertainty associated to data
availability and quality and model results, but our study aims
to provide a baseline for assessing future mesopelagic fish
biomass and distribution in the Mediterranean Sea. The two
well-established statistical models used to estimate spatially
and temporally mesopelagic fish biomass distribution in the
Mediterranean Sea showed different results in relation to the
distribution and the variation of the mesopelagic fish biomass
in the region. Our analysis indicate that RF was the model
that gave best biological results and acceptable performance.
Finally, we believe that in order to improve our understanding
in the processes behind mesopelagic fish dynamics in the
Mediterranean Sea, more tools and analyses with integrated
regional data should be tested.
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