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The characterization of particle and plankton populations, as well as microscale
biophysical interactions, is critical to several important research areas in oceanography
and limnology. A growing number of aquatic researchers are turning to holography
as a tool of choice to quantify particle fields in diverse environments, including but
not limited to, studies on particle orientation, thin layers, phytoplankton blooms, and
zooplankton distributions and behavior. Holography provides a non-intrusive, free-
stream approach to imaging and characterizing aquatic particles, organisms, and
behavior in situ at high resolution through a 3-D sampling volume. Compared to
other imaging techniques, e.g., flow cytometry, much larger volumes of water can
be processed over the same duration, resolving particle sizes ranging from a few
microns to a few centimeters. Modern holographic imaging systems are compact
enough to be deployed through various modes, including profiling/towed platforms,
buoys, gliders, long-term observatories, or benthic landers. Limitations of the technique
include the data-intensive hologram acquisition process, computationally expensive
image reconstruction, and coherent noise associated with the holograms that can
make post-processing challenging. However, continued processing refinements, rapid
advancements in computing power, and development of powerful machine learning
algorithms for particle/organism classification are paving the way for holography to be
used ubiquitously across different disciplines in the aquatic sciences. This review aims
to provide a comprehensive overview of holography in the context of aquatic studies,
including historical developments, prior research applications, as well as advantages
and limitations of the technique. Ongoing technological developments that can facilitate
larger employment of this technique toward in situ measurements in the future, as
well as potential applications in emerging research areas in the aquatic sciences are
also discussed.

Keywords: holography, underwater imaging, particle interactions, plankton distributions, plankton imaging,
biophysical interactions, particle patchiness
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INTRODUCTION

Since the introduction of holography to the scientific community
in a pair of seminal papers more than seven decades ago
(Gabor, 1948, 1949), it has become an indispensable technique
used across a range of disciplines, including but not limited
to, environmental and applied fluid mechanics, interferometric
studies, metrology, and medical imaging. While the utility of
holography in oceanographic and limnological field research has
been evident since the 1970s, the last decade and a half has
brought significant technological advances and an increase in off-
the-shelf availability of holographic imaging systems, leading to a
surge in its use by the aquatic sciences community.

This review endeavors to provide a brief background on the
history of in situ holographic instrumentation in the aquatic
sciences, predominantly focusing on the advances made since
the advent of digital holography at the turn of the millennium.
While a brief introduction to the technique and processing
methods is provided, an exhaustive discussion is beyond the
scope of this review and can be found elsewhere (Schnars and
Jüptner, 2002, 2005; Katz and Sheng, 2010). An overview of
the diverse applications of in situ holography that demonstrate
its versatility is provided. Finally, existing limitations, scope
for further development of the technique to enable widespread
utility in the aquatic sciences community, and future avenues
of applications in emerging research areas are discussed. For
additional information about the development of holography, the
readers are referred to other publications (Watson, 2005, 2011),
where an overview of the technique, with a focus on different
systems developed at the University of Aberdeen over the
decades is provided. While these reviews highlight developments
in holography for aquatic applications prior to 2011, their
main focus is on the system design and processing approaches.
Furthermore, marked improvements in the technology and the
development of several commercial holographic systems have led
to its increased use in the last decade for a variety of scientific
applications, which will be covered here. Lab-based studies (e.g.,
Sheng et al., 2007; Hong et al., 2012) as well as flow through based
approaches (e.g., Yourassowsky and Dubois, 2014; Zetsche et al.,
2014) characterizing aquatic particles/plankton find a fleeting
mention but are generally out of the purview of this article.
Hologrammetry used as a tool for underwater inspections of
offshore installations (e.g., Foster and Watson, 1997) is also not
covered here. Historically speaking, holography in the aquatic
sciences has been predominantly used for marine applications,
and this fact is reflected in the material covered in the review.
While all these applications are easily transferable to limnological
research, prior field studies in lake environments have been scarce
and are only touched upon briefly.

AQUATIC PARTICLES AND IN SITU
MEASUREMENT TECHNIQUES

A diverse range of planktonic species, marine snow, detrital
matter, sediments, microplastics, and fecal pellets constitute
the particle population in the world’s water bodies (Lal, 1977;

Turner, 2015). Together, these particles and their interactions
with the local environment, affect a range of processes across
vast spatial and temporal scales, with consequence to marine
ecology, human health, climate change, coastal engineering,
ocean optics, acoustics, and remote sensing. For example,
healthy phytoplankton and zooplankton populations are critical
to sustaining aquatic ecosystems (Tett et al., 2008); conversely,
abnormal and drastic increases in plankton abundance can
lead to massive harmful algal blooms (HABs), which can
severely impact aquatic ecosystems, human health and local
economies (Anderson et al., 2002; Carmichael and Boyer, 2016;
Glibert et al., 2018). Under favorable conditions, plankton can
accumulate in enhanced concentrations to form “thin layers,”
which can enhance foraging success rates for fish and other
species (Sullivan et al., 2010a). The presence (or absence) of
particles, and their composition, concentration and orientation,
can alter optical and acoustic propagation through the ocean
(Sullivan et al., 2005; Holliday et al., 2009; Basterretxea et al.,
2020). Sinking particles are major pathways of carbon transport
into the ocean’s interior and important to understanding the
ocean carbon budget, and consequently, climate change research
(Turner, 2015; Briggs et al., 2020). Sediment suspension and
transport influence key coastal processes (Conley et al., 2012).
Thus, developing and utilizing methods and instrumentation
to quantify particle composition, distribution and particle-flow
interactions have been an important focus of the aquatic sciences
community for decades.

Among these methods, in situ imaging provides a direct way
to record particle characteristics in their natural environment.
A more comprehensive review on the field of underwater optical
imaging can be found elsewhere (Dahms and Hwang, 2010;
Jaffe, 2014). To date, different imaging techniques used by
aquatic scientists include, but are not limited to, lidar imaging
(Churnside and Wilson, 2004; Busck, 2005; McKenzie et al.,
2020), bulk and planar laser-induced fluorescence (Prairie et al.,
2011; Jaffe et al., 2013), laser sheet reflective imaging, e.g.,
Laser Optical Plankton Recorder (Herman et al., 2004; Checkley
et al., 2008), underwater light microscopy (Mullen et al., 2016),
imaging-in-flow cytometry (Olson and Sosik, 2007), silhouette
photography (Milligan, 1996), and holography (Katz et al., 1999;
Watson, 2011). Among these, holography can provide 3-D spatial
distributions of particles in the micron to centimeter range,
within a freestream sample volume, thus enabling mapping of
particle characteristics at high resolution without fragmenting
them. Furthermore, as opposed to methods like flow cytometry,
much larger volumes can be sampled.

Broadly speaking, the applications of holography toward
particle characterization can provide the following information:
(a) Particle counts and size distributions; (b) Particle shape
metrics, including cross-sectional area, major and minor axis
lengths, and aspect ratio; (c) 3-D spatial structure of the
particle field, e.g., nearest neighbor distances (NNDs) and
particle orientation; (d) Particle identification and classification;
(e) Particle interactions, including aggregation, settling speed,
predator-prey behavior, and organism swimming trajectories;
and (f) 3-D velocity distributions by integrating particle image
velocimetry with holography (HPIV).
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HOLOGRAPHY

Briefly, holography involves the recording of an interference
pattern (hologram) of the diffracted light field from particles
in a given volume illuminated by a coherent light source (e.g.,
laser) and the reference beam (Schnars and Jüptner, 2002; Katz
and Sheng, 2010). The hologram encapsulates the information
about the phase and intensity of the diffracted light field. Direct
visual observations of a recorded hologram would typically not
produce any useful information, unless a particle is very close to
the hologram plane; rather, optical or numerical reconstruction
techniques are required to elicit information about in-focus
particles in different 2-D cross-sections within the 3-D sample
volume. Based on the geometric configuration of the object
and reference beams, holography can be further classified as
inline and off-axis holography. In the inline configuration, the
reference and object beams are parallel to each other. Here,
the sample volume is illuminated by a coherent beam of light,
and the interference pattern recorded is caused by the portion
of the beam scattered by the particles and the undisturbed
part of the same beam. In the off-axis configuration, the object
and reference beams are at an angle to each other. Inline
geometric configurations are relatively simple, especially in the
context of field instrumentation design; thus, most (but not
all) in situ holographic systems have opted to use the inline
setup. Readers are referred to other review articles or texts
on holography for a more detailed explanation on different
geometrical configurations (Vikram, 1992; Murata and Yasuda,
2000; Pan and Meng, 2003; Katz and Sheng, 2010; Picart and
Montresor, 2020).

History of Development of Holography
for in situ Aquatic Applications
The history of holographic development and in situ applications
for marine sciences can be broadly divided into the pre-digital
(e.g., recording on photographic plates) and the digital eras
(Figure 1). Two related technological developments (lasers and
digital cameras) have led to separate inflection points four
decades apart, each leading to a subsequent surge in diversifying
scientific applications of holography. While holography was
introduced in 1948, it was only in the 1960s, that the emergence
of lasers as a source of coherent light led to significant progress
and expansion of the scope of holography. To the best of our
knowledge, the potential of holography toward oceanographic
applications was first demonstrated by Knox (1966), wherein a
lab-based inline setup was used to image planktonic organisms
(also see Beers et al., 1970). This was later extended to recording
high-speed holographic movies of plankton (70 frames per
second), where all particles >10 µm were resolved (Knox and
Brooks, 1969). Stewart et al. (1973) developed and deployed
the first known submersible in situ holographic imaging system,
which weighed ∼1000 kg and could sample approximately
100 L of water per hologram. Further modifications to this
system followed, with an off-axis configuration developed by
Heflinger et al. (1978). Over the next decade and a half, several
groups led other early efforts toward developing holographic

imaging systems for diverse applications, including plankton
characterization, studying cavitation nuclei and particle size,
and settling rates in the ocean (Carder, 1979, Carder et al.,
1982; Katz et al., 1984; O’Hern et al., 1988; Costello et al.,
1989). A remotely operable inline submersible holocamera
with an adaptable optical configuration (i.e., capability to
switch between in-line and off-axis modes) was developed by
Katz et al. (1999), with multiple deployments of the same
instrument reported in other studies (Malkiel et al., 1999, 2006).
Submersible holocameras which recorded both inline and off-
axis holograms simultaneously were reported by Watson et al.
(2001) and Hobson and Watson (2002). The readers are also
referred to Watson (2005) and Hobson and Watson (2002)
for further details on historical film-based holographic imaging
systems. While film-based holographic systems used powerful,
pulsed lasers that could sample very large volumes of water at
high resolution, the systems themselves were bulky, physically
unwieldy and challenging to deploy (e.g., Katz et al., 1999). Also,
hologram processing was done manually, which is exceedingly
cumbersome; for reference, processing one hologram could
take several days, an unimaginable scenario in today’s big data
world. Malkiel et al. (2004) reported improvements in processing
methods with the development of an automated approach;
however, this still required 5 h to process a 500 mL sample
volume over one hologram. Furthermore, film-based approaches
severely constrained the number of holograms that could be
recorded, with these data limitations oftentimes leading to a
paucity of data to draw conclusions from. For example, Katz
et al. (1999) reported the recording of 300 holograms during each
deployment of the submersible system. To put this in context of
typical sampling rates of 15 Hz in digital holographic systems
today, 300 holograms correspond to data recorded across a
20 s time interval. An instrument can record 9,000 holograms
over a 10 min vertical profile, albeit with much smaller sample
volumes for each hologram as opposed to film-based systems
(between 1–10%).

Around the turn of the century, with the development of
digital cameras as well as increasing miniaturization of lasers, the
second burst in advancement in underwater holographic imaging
systems occurred. The first known digital in situ holographic
system was developed by Owen and Zozulya (2000), where
they employed a 10 mW diode laser to image over a ∼25 cm
deep depth of field, resolving particulate sizes down to 5 µm.
Jericho et al. (2006) developed a holographic microscope that
used point source illumination to record marine organisms
in situ. Bochdansky et al. (2013) developed the first deep-sea
holographic microscope rated to 6000 m water depth. Other
successfully deployed in situ holographic sensors with different
optical setups and varying sampling parameters include those
by Pfitsch et al. (2005, 2007), Sun et al. (2008), Graham et al.
(2012), Talapatra et al. (2012, 2013), Dyomin et al. (2019,
2020), and Nayak et al. (2020). Table 1 provides further details
on some selected systems. The last decade has also seen the
development of a handful of commercial holographic imaging
systems, including Sequoia Scientific’s LISST-HOLO (Davies and
Nepstad, 2017; Ouillon, 2018), 4Deep Imaging’s holographic
microscope (Rotermund et al., 2016) and the WET Labs
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FIGURE 1 | A timeline of the historical developments in holography in the context of in situ aquatic applications.

TABLE 1 | Sampling characteristics of selected free-stream, digital holographic imaging systems reported in literature since 2000.

Digital holographic
imaging systems

Wavelength
(nm)

Sampling
frequency (Hz)

Sample volume
(mL)

Resolution
(µm/pixel)

Min. resolved
particlea (µm)

Field of view
(mm)

Owen and Zozulya (2000) 680/780 30 Variable 5 8 ?

Pfitsch et al. (2007) 660 15 40.5 7.48 11.9 15.3 × 15.3

Jericho et al. (2006) 532/630 7 0.009 ? 1.5 ?

Sun et al. (2008) 532 25 36.5 3.5 5.6 10.5 × 7.7

Graham and Nimmo Smith (2010) 532 25 1.653b 7.4 11.8 7.4 × 7.4

Bochdansky et al. (2013) 640 7 1.8 Variable Variable N/Ad

Nayak et al. (2018a) 660 15 3.73 4.59 7.4 9.4 × 9.4

Dyomin et al. (2019) 660 ? 880b 5.5 8.8 11.3 × 11.3

Nayak et al. (2020) 532 3.2 72b 5.5 8.8 27 × 18

aTo standardize this value across different systems, any particle of at least two pixels in size is considered as the smallest resolvable value. Particle size is reported

in “Equivalent Spherical Diameter,” ESD =
√

4A
/
π, where A is the area of the particle. The “?” symbol refers to parameters of the instruments that are not directly or

indirectly interpretable from the relevant literature.
bThese systems have variable sampling volume, achieved by increasing or decreasing the spacing between the windows, i.e., increasing the depth of field. Only relevant
parameters for a single configuration are reported here.
cThese systems were of dual resolution, only the low-resolution parameters are shown here.
dBochdansky et al. (2013) used a cone-shaped sample volume, so the field of view does not apply.

HOLOCAM (Moore et al., 2017, 2019; Nayak et al., 2018a,b).
These developments leave the scientific community poised to take
further advantage of the holographic technique in the near future.

Holographic Data Processing
Digital holographic data processing can be a computationally
expensive process, which is a function of several parameters.

Briefly, the image processing steps for each hologram can be
sub-divided as follows: (a) Image pre-processing; (b) Hologram
reconstruction; (c) 3-D segmentation and/or image plane
consolidation; and (d) Particle feature extraction. Pre-processing
of raw holograms is required to eliminate any nonuniformities
associated with uneven laser beam illumination and dust or other
unwanted particles on the windows. Typically, this is achieved
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by computing the average background intensity calculated from
a sequence of holograms and subtracting this from each single
one (Talapatra et al., 2013; Nayak et al., 2018a). Alternately,
a reference background hologram can be recorded just prior
to data acquisition and then subtracted from each of the
holograms to generate a “contrast hologram” (Bochdansky
et al., 2013). A further pre-processing step could include
grayscale histogram equalization (Toloui and Hong, 2015). After
suitable pre-processing, the hologram reconstruction is carried
out using numerical techniques, usually the Kirchoff-Fresnel
transform, which is mathematically described elsewhere (Owen
and Zozulya, 2000; Katz and Sheng, 2010). Reconstruction at
different depths (or planes) brings all particles in each particular
plane in focus over the entire 3-D sample volume. Typically,
hologram reconstruction is the most memory intensive step
in the entire processing routine. After reconstruction, the task
is to isolate and label in-focus particles. 3-D segmentation
can be directly implemented on the reconstructed stack to
achieve this, providing in-focus locations of particles (Katz and
Sheng, 2010). In cases where the particle field is sparse and
the objects are compact, the stack can first be consolidated
into a single composite image, because the in-focus images do
not overlap one another, thus expediting processing. Further
operations could include median filtering, image thresholding
and segmentation and defining regions of interest (Jericho et al.,
2006; Graham and Nimmo Smith, 2010; Bochdansky et al.,
2013; Talapatra et al., 2013; Nayak et al., 2018a). All these
steps are then repeated for each hologram in the dataset to
generate a distribution of particles for further analysis. Figure 2
shows the steps involved in the holographic processing routine.
Figure 3 shows a collage of planktonic images from processed
holograms collected in diverse environments using the WET
Labs HOLOCAM.

SAMPLE APPLICATIONS OF
HOLOGRAPHY IN AQUATIC RESEARCH

Aquatic Particle Characterization
Particle Size Distributions
The characterization of spatial and temporal particle size
distributions (PSDs) is vital to many oceanographic research
topics. For example, PSDs are an important parameter in
sediment transport studies (Mikkelsen and Pejrup, 2001; Conley
et al., 2012). Physical processes such as molecular diffusion,
turbulence, and settling, lead to aggregation and fragmentation
of particles which are reflected in variations in the PSDs;
this is important in the quantification of particle fluxes in
the ocean (Jackson et al., 1997; Sullivan et al., 2005). PSDs
can also affect light absorption and scattering in the ocean
(Ulloa et al., 1994; Jonasz and Fournier, 2007). Phytoplankton
functional type variability, of relevance to global biogeochemical
models, are assessed using modeled PSDs (Kostadinov et al.,
2010; Stemmann and Boss, 2012). While some of the seminal
work on oceanic PSDs have employed an in situ imaging
system (Underwater Video Profiler), sometimes in conjunction

with a shipboard particle counter, to resolve a broad size
spectrum (Stemmann et al., 2000, 2002, 2008), PSDs are usually
estimated from direct samples collected and processed in the
laboratory using instruments such as Coulter counters and flow
cytometers (Jackson et al., 1997; Boss et al., 2001; McFarland
et al., 2015). Inherent biases exist in inferring PSDs from
discrete samples, primarily because particles get fragmented
during the collection, sampling, and analysis process, potentially
leading to an enhanced concentration of smaller particles.
Indirect methods focus on employing models to invert acoustic
or optical scattering to infer PSDs (e.g., Sequoia Scientific’s
LISST series of instruments), and may require some a priori
knowledge of particle shape and scattering properties. Thus,
validation by direct imaging is recommended to ensure fidelity
in measurements (Graham et al., 2012).

Aquatic PSDs are most commonly described using a simple
power law, also referred to as a “Junge type” distribution,
because such a relationship is generally representative in diverse
environments for smaller particles <100 µm that are important
for aquatic optical properties (Kitchen et al., 1982; Buonassissi
and Dierssen, 2010). Here, the PSD shape is embodied in a single
parameter, i.e., the exponent, which is convenient for modeling
and inversions (Fournier and Forand, 1994; Boss et al., 2001;
Twardowski et al., 2001). While particles <100 µm control
optical properties such as scattering and absorption, larger
particles can affect diffraction at very near-forward angles. More
complex models such as the two-component gamma (Risović,
1993) have also been developed to describe oceanic PSDs. The
wide particle size range that can be mapped by holography (few
microns to cm) makes it an attractive technique for direct in situ
PSD measurements.

A few studies have compared PSDs obtained from holographic
systems and other instruments. For example, O’Hern et al.
(1988) evaluated PSDs using holographic and Coulter counter
measurements. It was reported that the Coulter counter
consistently under-estimated the PSDs, with the authors
concluding that this most likely occurred due to assumptions
inherent in the Coulter counter calibration procedures. Kumar
et al. (2020) compared PSDs estimated using a laser diffraction
based approach and holography, with a lab-based setup to
characterize spray droplets. Here, it was found that the PSDs
were under-estimated in the laser diffraction based approach
for droplet sizes higher than 1 mm. Graham et al. (2012)
co-deployed a LISST-100X alongside a holographic system, where
they reported that in the overlapping size ranges, the LISST-
100X showed higher particle concentrations, especially in smaller
size bins. They suggest that in particle fields dominated by
non-spherical particles, the LISST-100X might report a single
large particle as several individual particles, thus skewing the
PSD. While the above studies use holography as a standard to
compare other instrumentation, a study by Walcutt et al. (2020)
is also pertinent to this discussion. Here, a 4Deep holographic
microscope was simultaneously used along with a FlowCam,
Imaging Flow Cytobot (IFCB), and standard microscope,
to compare PSDs. Ocean water samples, lab-grown cultures
and microspheres provided diverse datasets to characterize
PSDs across these methods. After appropriate post processing
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FIGURE 2 | An illustrative example showing the different steps in holographic data processing: (A) A sample raw unprocessed hologram; (B) The same image after
background subtraction, with regions of interest highlighted, and showing only interference patterns; (C) The in-focus diatom chains at different reconstruction
depths (z) within the sample volume in the highlighted region; and (D) The 2-D composite image, where all in-focus particles are collapsed onto the same plane for
further analysis.

FIGURE 3 | A collage of different plankton recorded from diverse environments on field cruises in the Atlantic Ocean (Delaware shelf), the Gulf of Mexico and East
Sound, Washington, a coastal fjord in the Pacific Northwest. (A) Ditylum brightwelli; (B) Thalassiosira sp.; (C)Thalassionema sp.; (D) Tripos cf. fusus; (E) Unidentified
colony; (F) Tripos cf. furca; (G) Tripos cf. furca, dividing cell; (H) Tripos muelleri; (I) Tripos sp. dividing; (J) Chaetoceros sp.; (K) Chaetoceros cf. debilis;
(L) Appendicularian; (M) Coscinodiscus sp.; (N) cf. Strombidium sp.; (O) Calanoid copepod with egg sac; (P) Calanoid copepod; (Q) Cyclopoid copepod with
paired egg sacs; and (R) Unidentified large copepod, potentially feeding on cf. Strombidium sp.

corrections, it was found that holographic measurements
under-estimated the PSD by about 3–10%. However, the slopes of
the distributions remained comparable. The authors list several
potential factors, e.g., nonuniform illumination of the sample
volume, which might possibly need to be accounted for to gain

higher statistical confidence in inferring particle concentrations
and distributions from holographic data.

Bochdansky et al. (2016) reported the particle distributions
in bathy- and abyssopelagic waters (up to 5,500 m depth) at
several stations in the North Atlantic Ocean, using a digital
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inline holographic microscope. A majority of the particles
seen in the holograms consisted of marine snow, fecal pellets,
phytoplankton, and other detrital matter. When all other particles
excluding marine snow were considered, they fit a typical oceanic
PSD, with a systematic decrease in particle counts in the larger
size bins. However, when only marine snow was considered, the
particle counts across the size bins did not exhibit any specific
trends, such as a skew toward the smaller sizes. For all particles,
including marine snow, the PSD slope deviated significantly from
an expected Junge distribution above a certain size threshold
(∼380 µm). The authors termed particles that were significantly
more frequent than expected from the frequency distribution of
smaller particles as “dragon kings.” Aggregation is an important
process that can skew PSDs and cause deviations from a simple
power law (Boss et al., 2009; Hill et al., 2011).

Similar trends in deviations of the PSDs from expected
profiles have been reported by other studies in diverse aquatic
environments. Nayak et al. (2018a) analyzed the small-scale PSD
variations with depth in a coastal fjord, where a holographic
system was slowly profiled through a ∼25 m deep water column.
Here, the particle field was dominated by diatoms, and size
was represented by considering the equivalent size diameter
(ESD =

√
4A/π, where A represents the measured area of the

particle). At shallow depths, a broad peak in the PSD was
observed, centered around 300 µm, which corresponded to
an enhanced abundance in diatom chains in that size range
(Figure 4A). Across stations and depths, PSD slopes presented
two linear ranges, with a shallower slope (−1.7 to −1.9) fitting
the 50–250 µm range. For particles above 250 µm, slopes were
much steeper (−5.7 to −6.1). Moore et al. (2017) reported the
deployment of a holographic system to characterize PSDs across
different stations in western Lake Erie during a cyanobacterial
bloom. In locations dominated by detrital particles, the mean
PSD slopes were ∼−3.45 across depths. At stations where the
particle field was dominated by the cyanobacteria Microcystis
aeruginosa which forms amorphous colonies, the PSDs show
a pronounced bump, broadly between 200 and 500 µm, with
overall mean slope ∼−2.3 (Figure 4B). Modeling studies
characterizing colony size and associated vertical migrations have
previously shown that a colony ∼250 µm in size corresponded
to the highest migration ranges (Visser et al., 1997). Finally,
at stations dominated by a second, morphologically distinct
(elongate) cyanobacteria, Planktothrix aghardii, similar PSD
slopes to the M. aeruginosa dominant waters were observed,
albeit with the absence of the bumps (Figure 4C). These different
studies in diverse conditions demonstrate the feasibility of using
holography to characterize fine-scale PSDs in the water column
and highlight trends which other methods might miss. It should
be noted that while oceanic bubbles do not fall under the general
ambit of particles being discussed in most of this paper, there
is a substantial community focusing research efforts in this
direction. Acoustics and optics remain the preferred method of
characterization for large and small bubbles, respectively (Czerski
et al., 2011; Twardowski et al., 2012). Holography has been
successfully demonstrated to be applicable to in situ bubble
research by at least two previous studies (O’Hern et al., 1988;
Talapatra et al., 2012).

Particle Settling Velocities
Particle size and density directly affects sinking rates and
transport in the water column (McDonnell and Buesseler, 2010;
Bach et al., 2012). In the open ocean, particle sinking is an
important pathway for carbon sequestration to the ocean’s
interior (Trull et al., 2008; Fischer and Karakas, 2009; Nayak
and Twardowski, 2020), while settling rates are critical to inform
coastal studies involving sediment suspension and transport
(Agrawal and Pottsmith, 2000). Carder et al. (1982) integrated a
holographic setup into a free-floating sediment trap to quantify
settling rates of individual particles in the water column, with
holograms recorded at discrete intervals. The processed data
provided size distributions of particles >15 µm. Some of the
faster sinking particles were segregated to compute attributes:
observed particle densities ranged from 1370–5100 kg/m3, with
associated settling velocities corresponding to daily excursions
of 16–199 m across the particle spectrum. This was the
first demonstration of holography for oceanic particle settling
analysis, with results corroborated from microscopic analysis of
the particles collected in the sediment trap. Graham and Nimmo
Smith (2010) demonstrated the applicability of holography
to study suspended sediment size distributions and settling
velocities in the coastal ocean. Automated tracking software,
incorporating parameters such as particle area and major and
minor axis lengths was used to identify a particle across
different frames, thus facilitating computation of trajectories
and consequently velocities. Cross et al. (2013) studied particle
resuspension in the context of the relation between turbulence
and particle size. Holographic data was used to identify
suspended particle matter and characterize variations in their size
distribution over different tidal cycles. These data were compared
to turbulence measurements obtained from a microstructure
profiler; based on their observations, the authors postulated that
the growth and size of flocs are dependent not only on turbulence,
but also biological controls.

Particle Orientation
In atmospheric studies, preferential (or non-random) orientation
of particles and ice crystals in clouds has been relatively
well-documented (Ono, 1969; Sassen and Takano, 2000; Noel
and Chepfer, 2004). Only fairly recently has this area of
research gained traction in oceanography. The consequences of
particle orientation are significant to optical oceanographers as
most models assume that particles are randomly oriented in
the ocean (Bohren and Huffman, 1983; Jonasz and Fournier,
2007). In aquatic ecology, preferential horizontal orientation of
phytoplankton chains could potentially increase light capture and
thus enhance primary productivity (Sun et al., 2016; McFarland
et al., 2020). Several laboratory and modeling studies have shown
that particle and plankton orientation is a function of the small-
scale flow physics (Karp-Boss and Jumars, 1998; Karp-Boss et al.,
2000; Marcos et al., 2011) and influences light propagation
(Marcos et al., 2011; McFarland et al., 2020). Basterretxea et al.
(2020) provide a useful overview of phytoplankton orientation in
the ocean, laying it in the context of microscale plankton-flow
interactions. While recent innovative approaches at inferring
in situ particle orientation from indirect scattering measurements
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FIGURE 4 | Depth-binned and depth-averaged particle size distributions (PSDs) obtained from vertical profiles of a holographic imaging system during two field
experiments at East Sound, Washington, in September 2015 and at Lake Erie in August 2014. Figure adapted from data presented in Moore et al. (2017) and Nayak
et al. (2018a; 2018b). (A) The East Sound profile was recorded during the presence of a “thin layer” of diatoms, dominated by Ditylum brightwelli; (B) Data recorded
during a Microcystis aeruginosa bloom in western Lake Erie; and (C) PSDs at Lake Erie in a water mass dominated by the cyanobacteria Planktothrix aghardii.

have been reported (Font-Muñoz et al., 2019, 2020), direct
imaging still provides the best means to do so.

Most reports to date on particle orientation in aquatic
environments have used holographic systems. To the best of
our knowledge, the first, albeit limited, direct observations on
non-random particle orientation in the ocean were reported by
Malkiel et al. (1999). From a sample of 300 holograms recorded
during a vertical scan of the water column, the majority of
diatom chains present (Chaetoceros spp. and Ditylum sp.) at a
certain depth (15.3 m) were found to be preferentially oriented
within±15◦ to the horizontal. Talapatra et al. (2013) documented
the occurrence of enhanced preferential horizontal orientation
of colonial diatom species (primarily Chaetoceros debilis and
Chaetoceros radicans) at several distinct depths in two vertical
profiles. A pulsed laser acting as the illumination source allowed
for particles to be tracked over successive frames, enabling
co-located small-scale flow and turbulence measurements,
which indicated that regions of enhanced preferential particle
concentrations coincided with regions of low turbulent kinetic
energy (TKE) dissipation. A comprehensive set of measurements
of oceanic particle orientation were later provided by Nayak
et al. (2018a). A bio-optical profiling package consisting of a
holographic system, an acoustic Doppler velocimeter, and a CTD,
among other instruments, was gently profiled through the water
column at several stations to simultaneously quantify particle
orientation, small-scale shear, and TKE dissipation rates with
depth. Across all stations, preferential horizontal orientation
was observed at several depths, each time corresponding to
regions of low shear and TKE dissipation rates. Further analysis
highlighted the relation between instantaneous orientation
of a particle and its aspect ratio (ratio of the major axis
length to the minor axis length of a particle). In simple 2-D
laminar shear flow, Jeffrey (1922) derived a set of relations for
spheroidal particles, showing that they exhibit periodic flipping
motions, where higher aspect ratio particles spend more time
oriented in the horizontal direction; in situ data presented

in Nayak et al. (2018a) were in reasonable agreement with
Jeffrey’s theory.

Plankton Distributions and Patchiness
In situ observations of plankton distributions, behavior and
interactions with the natural environment provide valuable
insights into the functioning of aquatic ecosystems. It has been
well-established that plankton distributions in aquatic systems
tend to be incredibly “patchy,” i.e., non-homogeneous (Durham
and Stocker, 2012; McManus and Woodson, 2012; Prairie et al.,
2012; Graff and Menden-Deuer, 2016). There exists a plethora of
possible mechanisms for the formation of these patches across
different spatial scales, including small-scale shear, horizontal and
vertical mixing, and enhanced nutrient availability (Powell and
Okubo, 1994; Abraham, 1998; Sullivan et al., 2010a; Breier et al.,
2018). Examples of plankton patchiness include algal blooms
(harmful or otherwise) and phytoplankton and zooplankton
“thin layers,” which are discussed further below.

Phytoplankton Blooms and Vertical Distributions
Large phytoplankton blooms covering several hundreds of
kilometers occur annually in different gyres, sometimes tied with
the formation and transport of mesoscale eddies (Guidi et al.,
2012). Anderson et al. (2018) deployed Sequoia Scientific’s LISST-
HOLO on a neutrally buoyant towed body from an autonomous
vehicle to characterize a summer phytoplankton bloom in
the North Pacific subtropical gyre, which was dominated by
several species of colonial diatoms. Holographic images were
processed to obtain cell and aggregate counts of Hemiaulus
and Rhizosolenia sp. over the course of the campaign. These
observations showed that the overall bloom was comprized of two
distinct phases, where either species dominated; simultaneous
large abundances of both taxa seldom occurred. Similarly,
Bochdansky et al. (2017) reported the particle composition in
the Ross Sea in Antarctica, where massive phytoplankton blooms
occur seasonally, connecting the distribution of important
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phytoplankton species to carbon export. In particular, large scale
sinking of Phaeocystis antarctica colonies from the surface to the
deep layer below the pycnocline was noted. These observations
were made during the weakening of the pycnocline, thus
establishing the significant contribution of Phaeocystis colonies
to total carbon export, even during the non-bloom season.

In a limnological study, Moore et al. (2017, 2019) used
holography to characterize phytoplankton community
composition during a HAB event in western Lake Erie, where
the particle field was dominated by two cyanobacterial species,
M. aeruginosa and P. aghardii. The profiling system enabled
characterization of vertical distributions of colony and cell
counts of either species. A majority of Microcystis colonies were
found to be located near the surface, while Planktothrix tended
to be located in larger numbers deeper in the water column, and
the vertical variability was correlated to the light availability and
tolerance of either species. All these studies further highlight
the ability of in situ holography (and direct imaging in general)
to tease out small-scale patterns and variations between distinct
particle and plankton populations which could help scientists to
better understand ecosystem dynamics as well as inform robust
modeling efforts.

Thin Layers and Phytoplankton in Turbulence
The term “thin layers” refers to vertically limited (few cm to
meters) dense aggregations of plankton which are temporally
coherent, i.e., last for several hours to days (Sullivan et al.,
2010a; Durham and Stocker, 2012). Manual sample collections
at discrete depths oftentimes miss these finescale structures in
the water column; high frequency in situ observations provide
the best means to characterize them (Donaghay et al., 1992;
Twardowski et al., 1999; Rines et al., 2002). Previous field studies
have shown that thin layers are frequently present in coastal
waters, with their vertical location controlled by the physical
structure and/or vertical migration of the organisms (Sullivan
et al., 2010a). For a comprehensive study of thin layers, the
readers are directed to Sullivan et al. (2010b) and articles within
that special issue.

In a constrained coastal fjord at East Sound, Washington,
where thin layers have been previously well-documented
(Dekshenieks et al., 2001; McManus et al., 2003), Talapatra
et al. (2013) deployed a holographic system to characterize the
small-scale biophysical interactions and particle populations.
A thin layer comprising of small, non-motile particles as well as
larger colonies of the diatom Chaetoceros socialis were observed.
Associated CTD profiles indicated that this layer was present
at the base of a strong pycnocline. Zooplankton distributions
showed that they seemed to avoid the thin layer. At the same
geographical location, other studies reported the presence of a
strong thin layer, predominantly containing the diatom Ditylum
brightwellii, again coincident with the location of a near-surface
pycnocline (Figure 5; Nayak et al., 2018a,b; McFarland et al.,
2020). In all these reports, the water column was stably stratified,
and the presence of the thin layer was associated with regions of
low shear and TKE dissipation.

Turbulence has long been known to play an important role
in predator-prey encounters, enhancing phytoplankton nutrient

uptake, as well as affecting growth rates (Karp-Boss et al., 1996;
Sullivan and Swift, 2003; Durham et al., 2013); thus, there is a lot
of interest in simultaneously quantifying plankton populations
and turbulence in situ. Cross et al. (2014) used integrated
holographic imaging and microstructure turbulence profiler
measurements to study the effect of episodic and enhanced
turbulent mixing on vertical distributions of colonial diatoms.
Although limited to a single set of observations over a tidal
cycle, enhanced mixing seemed to correlate with shorter chain
lengths, with diatoms being transported to lower depths, where
they were found to aggregate with other suspended matter. Nayak
et al. (2018a; 2018b), albeit qualitatively, also report similar
observations with chain lengths, demonstrating the importance
of slowly profiling the water column with large instrument
packages used in particle characterization studies. Vigorous
mixing during fast profiles can lead to bias in observations, with
enhanced concentrations of particles at lower sizes, possibly due
to breakage of chains due to enhanced turbulence.

Nearest Neighbor Distances
Yet another interesting application of holography is the ability to
characterize instantaneous 3-D spatial distributions across each
individual hologram in a time series, thus allowing computation
of vital statistics such as NNDs. These parameters allow for
quantification of predator-prey interactions and population
dynamics in the local community, which is of great interest to
biological oceanographers and ecological modelers.

Malkiel et al. (1999, 2006) computed NNDs between particles
detected in holograms by employing two-tailed hypothesis
testing (Freedman et al., 2007). Qualitatively, differences were
represented by looking at the histogram of NNDs of the
sample and a random distribution. Quantitatively, a “z-score”
was computed as z = x̄−x̄R

σR
/
N1/2 , where x̄ and N are the mean

NND and the size of the sample, respectively, while x̄R and
σR represent the mean and standard deviation of the NND
obtained by a random distribution. If |z| > 2, the sample data
are deemed different from a random distribution. Using this
method, statistics were computed to study NNDs between
individual particles (or plankton) within the same class, as well
as different classes, to come up with the following observations:
(a) Detrital particles exhibited clustering at certain depths below
the pycnocline, while appearing to be randomly distributed
elsewhere; (b) No significant clustering was found among
dinoflagellates; and (c) No significant correlation between the
location of copepods with respect to small particle clusters were
detected. To the best of our knowledge, these are the only
in situ holographic studies characterizing NNDs to date; further
observations in different environments to better understand
population dynamics are warranted.

Bacterial and Zooplankton Behavioral Studies
Holographic cinematography provides a way to visualize 3-D
trajectories of multiple motile organisms, including zooplankton,
simultaneously, as well as observe their natural behavior in situ.
While this ability has been leveraged by several laboratory studies,
far too many to list here in detail (e.g., Sheng et al., 2007; Hong
et al., 2012), very few studies report this in the field. During
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FIGURE 5 | Holographic data acquired on September 22, 2015 during a vertical profile through a diatom thin layer at East Sound, Washington. Background
subtracted holograms showing the representative particle fields (A) above the thin layer at 1.58 m depth; and (B) within the thin layer at 3.12 m depth; (C) Chl a and
density profiles acquired during the same profile, showing the thin layer occurred in a stably stratified region within the pycnocline; and (D) Particle distribution with
depth, where only particles >200 µm in length and aspect ratio >5 are considered, consisting of different elongate diatom species, and dominated primarily by
Ditylum brightwelli. Figure generated from a dataset presented in Nayak et al. (2018a; 2018b).

deployment in a Lagrangian, drifting mode, Pfitsch et al. (2005)
observed the behavior of swimming medusa jellyfish in situ,
in the Ria de Pontevedra in coastal Spain. The same authors
also recorded the swimming behavior of an appendicularian
(Pfitsch et al., 2007). Appendicularians (or larvaceans) are filter
feeders that generate a mucous “house” around them to trap
particles. The long tail, flapping at a particular frequency, helps
pump water through the house and facilitates their feeding
(Alldredge, 1981; Selander and Tiselius, 2003). In this instance,
the flapping frequency of the tail was found to be in the range of
those observed in controlled laboratory measurements (Pfitsch
et al., 2007). Other observations with the same instrument
included interactions between copepods and dinoflagellates,
which can provide pertinent data to modelers such as perception
distances by predator/prey species in the turbulent environment.
These observations include instances of copepods initiating
jumps and orienting their feeding currents after prey and
dinoflagellate behavioral changes (jumps and quick spiraling)
to avoid a cyclopoid copepod that was cruising through their
neighborhood (Malkiel et al., 2007). Jericho et al. (2006) also
reported observations of the trajectory of organisms during a field
deployment; however, the organisms were not clearly identifiable
as they were at the edge of the detection limit of the instrument.

While not a free stream approach, Lindensmith et al. (2016)
developed a flow-through based off-axis submersible holographic
microscope, geared toward studying microbial motility in
extreme, icy environments. During a deployment in Greenland
over winter, brine samples were collected and inserted into the
sampling chamber of the microscope, to characterize microbial
motility. Analyzed samples recorded both prokaryotes and
eukaryotes; motility was observed in only a few instances in

either case. Swimming trajectories clearly recorded the motion of
organisms, at swimming rates varying from 5–50 µm/s between
different individuals. This highlights the ability of holographic
microscopy for use in extreme environments, including in
potential future extraterrestrial missions (Bedrossian et al., 2017).

DISCUSSION

The previous sections have shown the applicability of holography
toward diverse research areas in the aquatic sciences.
Here, existing limitations, future potential applications and
advancements of holographic technology in emergent aquatic
research areas are outlined.

Limitations
The main limitation associated with holography is the depth-
of-focus (DOF) problem, which refers to the depth over which
a particle in the image tends to appear in focus in the axial
direction (Vikram, 1992; Katz et al., 1999; Katz and Sheng,
2010). The DOF can be approximated based on the smallest
particle diameter (d) resolvable and the wavelength of light
used (λ), being proportional to d2/λ (Yang et al., 2005; Katz and
Sheng, 2010). For example, an optical system capable of resolving
particles sized 10 and 50 µm and above, will have a depth of focus
of ∼0.16 and 4.17 mm, respectively, assuming the illumination
source is red light (660 nm). Thus, while the particle location in
the image plane can be detected fairly accurately, there is a certain
degree of uncertainty associated with detecting the axial location
(Gao et al., 2013).
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The quality of recorded holograms (as with other optical
methods) also depends, to a certain extent, on the turbidity
and particle size and abundance within the water column.
In-line systems in particular are susceptible to loss of image
quality for particle concentrations beyond certain thresholds
(Katz et al., 1999). Furthermore, the presence of a large
number of sub-micron particles below the resolution limit
of typical holographic systems can lead to loss of coherency
in the reference laser beam, thus leading to bad quality
recordings. A related and important problem in holography
is the inherent coherent noise, which includes (a) parasitic
interference fringes, caused by multiple reflections or scattering
(Pan et al., 2017); and (b) speckle noise, resulting from scattering
by particles larger than the wavelength of the laser in dense
particle fields (Meng et al., 1993; Garcia-Sucerquia, 2013).
This can lead to serious degradation in image quality and
holographic reconstructions. Typically, these noise reduction
techniques involve engineering the coherent source (Garcia-
Sucerquia, 2013; Pan et al., 2017), or optimizing numerical
reconstruction schemes (e.g., Kosmeier et al., 2012; Leo et al.,
2014). While a detailed discussion is beyond the scope, readers
are also referred to Bianco et al. (2018), where different
approaches to tackle the speckle noise problem in digital
holography are reviewed.

The data-intensive nature of hologram acquisition and the
extensive processing routines involved have so far limited the
use of in situ holographic systems in long-term and/or real-
time monitoring networks. For near real-time observations, data
transmission is one of the main bottlenecks due to the large
file sizes; rapid onboard processing to provide simplified data
(e.g., organism presence and counts) in a compressed format,
instead of transmitting entire images could help alleviate this
problem. For this to work, is it key to develop not only fast
and efficient automated classification algorithms, but also those
feasible to be developed in a light-weight architecture (Guo
et al., 2021). Previous and ongoing efforts toward automated
classification of detected particles using various machine learning
techniques, including convolutional neural networks, still need
holograms to be reconstructed and processed (Davies et al.,
2015; Bianco et al., 2020). Recent work has focused on the
application of deep learning techniques to extract features
from the interference patterns recorded on the raw holograms
(Shao et al., 2020; Guo et al., 2021). Successful translation
to in situ applications would help revolutionize the field, as
this would enable skipping the holographic reconstruction step,
greatly reducing processing times and facilitating near real-time
data dissemination. To continue improving these algorithms,
building enormous labeled datasets of hundreds of different
particle and plankton types and morphologies from in situ
deployments is critical.

Current Research and Future Frontiers
Holographic Particle Image Velocimetry (HPIV)
Different methods of particle tracking as well as 2-D and stereo
PIV have been used to characterize small-scale 2-D and 3-D
velocity distributions in aquatic environments (Nimmo Smith,

2008; Steinbuck et al., 2010; Nayak et al., 2015). Talapatra
et al. (2013) used holographic data from in-focus particles at a
particular plane to perform PIV and calculate the 2-D velocity
fields (not 3-D measurements). The ability to simultaneously
quantify particles and flow distributions within the same volume
holds enormous appeal and would greatly help elucidate particle-
flow interaction studies. In laboratory studies, HPIV has been
successfully established as a valuable tool to characterize three-
dimensional velocity measurements within a sample volume (e.g.,
Barnhart et al., 1994; Hinsch, 2002; Katz and Sheng, 2010).
Translating this to field applications, while challenging, would
be the next step.

Other potential directions include integrating holography
with other methodologies to develop new techniques that
could significantly enhance particle or plankton characterization
capabilities. For example, the ability to quantify the refractive
index (RI) of individual particles is valuable to optical
oceanographers. Typically, the particle of interest is immersed in
fluids of varying RIs and studied under a microscope (Hodgson
and Newkirk, 1975). When the RI of the particle is the same
as the fluid in which it is immersed, the particle becomes
nearly invisible (or least opaque). This is a highly tedious
process; thus, previous efforts have estimated the bulk RI of
a water sample from scattering measurements (Carder et al.,
1972; Twardowski et al., 2001). Holotomography has recently
emerged as a tool to map high-resolution 3-D refractive indices of
cells, including diatoms, in laboratory measurements (Charrière
et al., 2006; Merola et al., 2017; Umemura et al., 2020), and has
high potential to be transformed to in situ aquatic applications
(Poulin and Zhang, 2020).

Microplastics
Microplastics have emerged as a primary source of pollutants
in aquatic systems in recent times, leading to an increasing
number of studies focusing on their presence, fate and transport
in aquatic environments, and effects on aquatic ecosystems
(Cózar et al., 2014; Zhao et al., 2018; Granek et al., 2020).
Early estimates have shown that only a fraction of the known
anthropogenic microplastic inputs into the oceans have been
accounted for, leading to questions about the fate of the
remaining portion. Consequently, improvements in monitoring
and detection techniques of microplastics have become crucial
to understanding this issue (Garaba and Dierssen, 2018;
Mai et al., 2018). Recent laboratory studies have shown
that holography can be a valuable tool in the detection of
microplastics in the ocean (Merola et al., 2018; Bianco et al.,
2020). Future efforts geared toward testing these in field
environments are needed.

Long-Term and Real-Time Observation Networks
The democratization of oceanographic data access has received
significant attention in the past decade; consequently, data
collected from networks of floats, gliders, buoys, and other
observation and monitoring platforms are freely available to
scientists and the public. Examples include National Oceanic
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and Atmospheric Administration’s Integrated Ocean Observing
System (IOOS) and Marine Biodiversity Observation Networks
(MBONs), National Science Foundation’s Ocean Observatories
Initiative (OOI), the Argo global network of profiling floats, etc.
Other in situ imaging systems, such as the IFCB, are now being
routinely used for real-time monitoring of plankton community
composition as well as HAB events (Kudela et al., 2015). The
versatile nature of holography allows for enough flexibility to
be used in a variety of purposes, with appropriate modifications
or trade-offs in resolution and image quality. For example,
efforts to develop holographic imaging systems for long-term
aquatic deployments with a wide particle resolution range
(Nayak et al., 2020) can be complemented with low-cost robotic
holographic samplers for environmental monitoring (Mallery
et al., 2019). Future work should be geared toward integrating
holographic systems into aquatic monitoring networks, e.g.,
MBONs and/or Argo floats. Continuing improvements in
image processing methods, technological improvements in data
transmission and storage, and an increasing focus on machine
learning for automated particle and plankton classification are
promising indicators of the aquatic sciences community being
poised to embrace holographic systems on a large scale in
the near future.
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