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Submarine canyons support high biomass communities as they act as conduits
where sediments, nutrients, and organic matter from continental shelves, or those
that are carried along by slope currents, are transported into the abyssal zone. The
Porcupine Bank Canyon (PBC), located on the Irish continental margin and isolated
from terrigenous inputs, reveals a complex terrain and substrate variation that affect the
distribution of benthic fauna. Here, ROV-based benthic video, conductivity-temperature-
depth (CTD), current velocity profiles, suspended particulate organic matter (POM) and
bathymetric data were assessed to determine the controls on the distribution of benthic
megafauna throughout the canyon. Multivariate analysis of the benthic community
reveals significant differences in community structure among habitats and site locations
throughout the canyon. Furthermore, these results show that non-reef habitats exhibit
more variation in the composition of benthic taxa than coral reef and rubble habitats,
with the following species contributing most to the structural differentiation between
habitats: Leiopathes glaberrima (12.46%), Hexadella dedritifera (10.37%), Cidaris cidaris
(9.31%), Aphrocallistes beatrix (9.33%), Araeosoma fenestratum (9.11%), Stichopathes
cf. abyssicola (7.39%), Anthomastus grandiflorus (4.66%), and Benthogone rosea
(3.84%). In addition, greater diversity, taxa evenness and high abundance of motile fauna
were observed in non-reef habitat and the canyon flank. Seabed terrain features (depth,
slope) are the most important environmental drivers that affect benthic taxa distribution
while site locations and habitat type are the categorical variables that influence taxa
distribution in the PBC. The highest mean current speed was observed on the canyon
flank where the highest Shannon’s diversity was recorded while mean current speed
ranged from 18.2–31.3 cm s−1. As the PBC is cut off from direct terrigenous input,
this research contributes to understanding cold-water coral habitat responses to natural
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Northeast Atlantic environmental conditions. The findings of the current study will inform
key stakeholders on how to responsibly interact with the canyon benthic habitats and
can help inform policy makers on the effective conservation and management of the
cold-water coral habitat in the PBC and other canyons.

Keywords: biodiversity, Porcupine Bank Canyon, POM, cold-water coral, non-reef habitat, species distribution,
habitat variability

INTRODUCTION

Submarine canyons are geomorphic features incised into
continental margins and shelves (Shepard, 1972; Harris and
Whiteway, 2011; Harris et al., 2013; Puig et al., 2014), including
slopes of oceanic Islands (Vetter et al., 2010). They can be
connected to landward river systems (Huang et al., 2014),
terrestrially disconnected or tectonically controlled (Greene
et al., 1991; Liu et al., 1993; Lo Iacono et al., 2014).
Canyons have complex topographies and morphologies that
affect hydrographic, oceanographic and biological processes
(Allen et al., 2001; Bosley et al., 2004; Trotter et al.,
2019). They are conduits for organic matter, nutrients and
sediment transport to the abyssal zone (de Stigter et al., 2007;
Kiriakoulakis et al., 2011; Mazzini et al., 2012; Puig et al.,
2013) as well as litter and organic pollutants (de Jesus Mendes
et al., 2011; Mordecai et al., 2011; Schlining et al., 2013;
Tubau et al., 2015). Storm events may also affect circulation
and current regimes along the rims of submarine canyons
(Shan et al., 2014).

Sedimentation processes in submarine canyons can
affect the distribution of the benthic community through
increased disturbance and modified turbidity (Martín et al.,
2014; Huvenne and Davies, 2014) with hydrographic and
oceanographic processes affecting food supply (Canals et al.,
2006; Kenchington et al., 2014) which in turn affects benthic
community structure (Kiriakoulakis et al., 2007; De Leo et al.,
2010).

Seabed terrain and substrate variation provide a variety of
suitable habitats for benthic communities in submarine canyons
(Schlacher et al., 2007; McClain and Barry, 2010; De Mol et al.,
2011; Cunha et al., 2011; Paterson et al., 2011; Vetter et al.,
2010; Davies et al., 2014; Fanelli et al., 2018) with submarine
canyons recognized as areas of significant ecological importance.
They are considered ‘hotspots’ for biodiversity (De Leo et al.,
2010; Vetter et al., 2010; Cunha et al., 2011; Martín et al.,
2011; Puig et al., 2013, 2014) and are able to support cold-
water coral ecosystems (Orejas et al., 2009; Huvenne et al.,
2011; Morris et al., 2013; Khripounoff et al., 2014; van den
Beld et al., 2017; Aymà et al., 2019; Puig and Gili, 2019), with
which can be associated more than 1,300 species (Roberts et al.,
2006; Henry and Roberts, 2015). In particular, Lophelia pertusa
(syn. Desmophllum pertusum: Addamo et al., 2016; taxonomic
status pending scientific community consensus) reefs are able to
form geologic features called coral mounds on the interfluves of
submarine canyons (De Mol et al., 2011; Stewart et al., 2014).
Coral mounds can be tens of meters tall and several kilometers
wide (Wheeler et al., 2007) and are capable of affecting local

hydrographic processes (Mienis et al., 2007). It has also been
noted that cold-water corals show slow growth and recovery after
anthropogenic disturbance (Fabri et al., 2014; Huvenne et al.,
2016).

The Porcupine Bank Canyon (PBC) is incised into the western
margin of the Porcupine Bank, 300 km west of Ireland (Figure 1;
Dorschel et al., 2010) and is cut off from direct terrestrial
inputs, making it an ideal model to investigate oceanographic
influences on coral habitats in the Northeast Atlantic. It is
situated between the Porcupine Seabight to the southeast and
the Rockall Trough to the west into which the canyon drains.
The PBC is tectonically controlled (Shannon, 1991, Shannon
et al., 2007) and is the largest submarine canyon on Ireland’s
western margin (63 km in length) and incises higher up into
the Porcupine Bank than neighboring canyons, to 420 m water
depth crossing the cold-water coral habitable zone (Davies
et al., 2008). Elsewhere on the Porcupine Bank, cold-water
coral reefs are located upslope of canyon heads on the open
margin (Akhmetzanov et al., 2003; van Weering et al., 2003;
Wheeler et al., 2005; Dorschel et al., 2009). The PBC is a
geological feature that can be described as an area of high
habitat heterogeneity that supports a high biomass (Wheeler
and Shipboard Party, 2017; Lim and Shipboard Party, 2018). It
has been designated as a Special Area of Conservation (SAC;
Supplementary Figure S1) under the EU Habitat Directive
(92/43/EEC) as a submarine canyon with cold-water corals and
closed to fishing. L. pertusa is the main framework-forming
cold-water coral in the canyon. The slow growth rate of this
sclerectinian coral (Orejas et al., 2008; Gass and Roberts, 2006)
demands that the ecosystems in canyons be managed and
protected in the face of continued anthropogenic activities such
as trawl fishing. To this effect, the present study investigated:
(a) the benthic megafauna distribution and variability within
site locations and habitats, and (b) the environmental drivers
of the benthic faunal distribution and variability in the PBC.
These questions are addressed using a rich dataset (including
46.81 km of HD ROV video data), characterizing megafauna
distribution in the PBC for the first time. Due to the isolation of
this major submarine canyon on the European Atlantic margin,
the relationships discovered here act as a “natural barometer”
for oceanic controls of benthic diversity in submarine canyons
including for cold-water corals.

MATERIALS AND METHODS

Survey, oceanographic and sample data from the PBC
(Supplementary Table S1 and Figure 1) were collected on
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FIGURE 1 | Map showing the location of (A) the Porcupine Bank Canyon (PBC; red ellipse) on the Irish-Atlantic margin, (B) acoustic doppler current profiler (ADCP)
stations, conductivity-temperature-depth (CTD)/particulate organic matter (POM) stations, benthic video lines and ship-based MBES bathymetry. Different site
locations of the canyon are separated by red broken lines.

board the RV Celtic Explorer with the Holland I ROV1 in
2017 (CoCoHaCa I: Wheeler and Shipboard Party, 2017) 2018
(CoCoHaCa II: Lim and Shipboard Party, 2018), and 2019
(MoCha_Scan I: Lim and Shipboard Party, 2019). The ROV
(made by Soil Machine Dynamics Limited) was equipped with
two 400 Watt Deep-sea Power and Light SeaArc2 Hydrargyrum
Medium-Arc Iodide (HMI) lights, two 25,000 lumen Cathx
Ocean APHOS LED lights, a pair of Deep-sea Power and Light
lasers 10 cm apart, an Insite Mini Zeus forward-facing high
definition (HD; 1080p) video camera and a Kongsberg 14–208
digital stills tilt camera systems to collect benthic video data at a
speed of 0.2 knots. Remotely operated vehicle (ROV) navigation
was recorded with a coupled Sonardyne Ranger 2 USBL
(ultra-short baseline positioning system) and RD Instruments
workhouse doppler velocity logger.

Seabed Terrain and Substrata
Characterization
Ship-based 30 kHz multibeam echosounder (EM302) data
were acquired using parallel sets of lines following depth

1www.marine.ie

contours over the canyon, and gridded at 25 m resolution.
The minimum swath overlap was 25% at c. 8 knot and
swath width was 2,000 m. The acquired data were managed
and processed with Seafloor Information System, cleaned with
Fledermaus Qimera and tidal corrections were applied. A sound
velocity probe was applied to the data to correct it for
water sound velocity variations. The data were imported into
ArcMap v10.4 and projected in UTM zone 28N. A total
area of 1,800 km2 of seabed was surveyed. Terrain variables
(slope, aspect, and rugosity) were obtained using ESRI’s
Spatial Analyst Extension Tool in ArcMap, and values were
extracted using the extract values to points tool incorporated
in ArcMap. According to Guinan et al. (2009), slope is
“a plane tangent to a digital terrain model surface at the
center of an analysis window” while aspect is “the azimuthal
direction of the steepest slope at the center of the analysis
window.” Rugosity is defined as “the ratio of surface area
to planar area” (Jenness, 2002). Aspect was transformed into
two variables namely northness and eastness in MS Excel.
First, aspect was converted into radians

(
π∗aspect(◦)/180

)
and

then converted into northness (cosine of aspect in rad) and
eastness (sine of aspect in rad) to provide a continuous
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measure from negative one to positive one. Vertical and oblique
imagery were used to characterize the seabed as adopted in
Mortensen and Buhl-Mortensen (2004); Vertino et al. (2010), and
Lim et al. (2017, 2018). In total 1,823 images were used to
characterize the different seabed types in the PBC. A gridded
quadrat of 0.25 m2 (with 25 individual squares) created based
on the 10 cm laser scale was overlaid on each image, and the
percentage cover was estimated as the ratio of grids overlying
a seabed type to the total number of grids in the grid quadrat.
The point count method (applied in the present study) for
estimating the percentage cover of a seabed type yields accurate
results (Mortensen and Buhl-Mortensen, 2004). Five substrata
were identified (Supplementary Tables S2,S3), and resolved into
coral reef and rubble (dead/live corals and coral rubble) and
non-reef habitats (sediment dominated, sediment, and dropstone
and bedrock; Supplementary Table S3) at each of the three
site locations in the canyon (Figure 1). Live/dead coral is
characterized by a cell coverage of > 50% observable living and
dead parts while coral rubble is dominated by a cell coverage
of > 60% observable biogenic materials. Hermatypic corals and
ahermatypic coral polyps are biological organisms which are able
to build coral reefs (physical features or habitats made from
secretions of calcium carbonate and other associated biological
and non-biological materials). Therefore coral presence was
determined when the coral polyp’s corallite skeletal casing
(usually bright, white or orange in color in the NE Atlantic)
was easily noticeable while dead coral was identified as darker,
gray or brown skeleton. Smaller fragments of dead skeleton were
identified as coral rubble.

Megafaunal Analysis
A series of regularly spaced, but randomly located, ROV-video
transects from the deep-waters to the shallow-waters in the PBC
were run to cover the different substrata and habitats throughout
the canyon. ROV-based video frames were extracted at 60 s
intervals using the online software Free Video to JPG converter
available from DVDVideoSoft. Poor quality images and those
captured at sub-optimal angles were removed. The survey depth
ranged between 582–2,126 m from the canyon head to the south
of the canyon traversing the canyon slope. As described for the
seabed terrain and substrata characterization, a gridded quadrat
of 0.25 m2 was created based on a 10 cm laser scale and overlaid
on each image. The abundance of benthic taxa was estimated
following Doyle et al. (2005) and Boolukos et al. (2019). Colonial
taxa (e.g., Hexadella dedritifera, Parantipathes sp. and Leiopathes
glaberrima) were estimated as percentage cover while discrete
organisms (e.g., Asteroidea species, squat crab and Chaecon
affinis) were counted. The percentage cover was estimated as the
ratio of grids overlying a taxon to the total number of grids in
the grid quadrat. However, the hit point method (Doyle et al.,
2005) was used to estimate the percentage cover of colonial
taxa in the present study. With the hit point method, a point
of intersection is made in each of the 25 grids by joining the
four vertices in each grid with two straight diagonal lines. An
organism is counted if the point of intersection touches it, and the
process is repeated for each of the quadrats in particular habitat
(coral reef and rubble – non-reef) or location (flank – head –

south). The percentage cover then is the ratio of the number of
hits of a taxon to the total number of possible hits multiplied
by 100. All the images used to characterize the seabed types
were used to characterize the benthic fauna. The density (i.e.,
individuals m−2) of discrete taxa was determined by multiplying
the mean number of each taxon (within N number of 0.25 m2

grid quadrat) by four. Individual organisms were taxonomically
resolved to species level where possible although this was not
achievable for most taxa, given the limitations associated with
identifying benthic organisms from ROV-images. As such, many
organisms were identified as morphotypes or species, using
best practice for habitat analysis (Henry and Roberts, 2013;
Henry et al., 2014).

Statistics
Most of the survey data were analyzed with R (R
Core Development Team, 2014). Shannon’s diversity
(H′;H′ = −

∑S
i=1 Pi ln Pi; Shannon, 1948) and Pielou’s evenness(

J′ = H′/ln S
)

(Pielou, 1966) were estimated for the studied
habitats (coral – non-reef) and locations in the canyon (flank –
head – south). Pi is the proportion of the ith taxa while S is the
total number of taxa within each community. Pielou’s index
evaluates the relative abundance of the benthic taxa (species
evenness) while Shannon’s index calculates the diversity of the
community, considering the relative abundance of each taxon.
Significant differences between taxa evenness and Shannon’s
diversity index for the variable habitats and site locations were
evaluated using z-test. Z-test is less conservative than Student’s
t test and can be used when the population variance is known
or unknown, but the sample size is large (Derrick et al., 2015).
The z-test could also be used when the population is normally
distributed. It is worthy to note that Geary’s C test (for spatial
autocorrelation; Bivand et al., 2008; Dubé and Legros, 2014)
estimates a z-value (by randomization or normalization). Also,
a Bonferroni correction was applied to assess significance of
the taxa evenness and Shannon’s diversity among site locations
throughout the PBC. L. pertusa data were excluded from the
diversity indices since it is the main framework-forming coral
and occurs everywhere in the canyon. L. pertusa percentage
cover was, however, estimated for the three site locations existing
within the canyon. Significant differences between L. pertusa
percentage cover in each of the three site locations within the
PBC were determined by performing a pairwise z-test as there
were only three levels for site locations. A z-test is suitable for
testing proportional data and data from a large sample size
(Krishnamoorthy and Thomson, 2002). Preliminary test of
spatial autocorrelation of sample points among habitats and site
locations by randomized Geary’s C test was made in ROOKCASE
(Sawada, 1999). Rarefaction curves were made to standardize the
sample size (on each substrate, habitat, and site location; Fussey,
1995; Belgrano and Reiss, 2011). Rarefaction curves were made
in PAST ver 2.17c (Hammer et al., 2001).

Presence/absence data of the benthic taxa were used for
multivariate analyses and again L. pertusa data were excluded in
the analyses since, as previously mentioned, this species occurs
everywhere in the canyon and is the main framework-forming
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coral. All sample points without data were removed, leaving 799
sample points for the multivariate analyses. Multivariate analyses
were performed using the vegan package incorporated in R. Bray-
Curtis dissimilarity distance was estimated and used to perform
analysis of similarity (ANOSIM), similarity of percentages
(SIMPER) and non-metric multidimensional scaling (nMDS)
ordination (Oksanen, 2011). The nMDS plot was made using
the metaMDS function and the stress (measure of goodness-
of-fit) calculated. Significant differences in the dissimilarities
between the benthic taxa grouped into habitats and site locations
were evaluated using the function adonis. nMDS scores (x, y
coordinates) were extracted and put into a new data frame.
Lastly, employing the ggplot2 package, an aesthetic nMDS plot
was made from the extracted nMDS scores. ANOSIM estimates
significant differences in community structure. Also, ANOSIM is
a method in vegan which can handle only class predictors and
is less robust than adonis while adonis on the other hand is a
function that partitions dissimilarities for the sources of variation,
and uses permutation tests to examine the significances of those
partitions (Oksanen et al., 2014). SIMPER analysis computes the
taxa that most contribute to the observed differences in taxa
composition. nMDS ordination is a rank-based approach which
allows dissimilarities between objects to be viewed in reduced
dimensional space. The stress value (< 0.2 indicates a good
representation) indicates a measure for the goodness-of-fit of the
ordination (Clarke and Gorley, 2001; Clarke and Warwick, 2001).

Furthermore, canonical correspondence analysis (CCA) was
used to determine the relationship between seabed terrain
features (depth, slope, rugosity, and aspect), habitats, site
locations and the distribution of the benthic taxa. CCA accounts
for the patterns of taxa distribution by estimating taxa centroids
(Ter Braak, 1986; Quattrini et al., 2012). The analyses were made
employing the cca function of the vegan package incorporated
in R (Oksanen et al., 2014). In order to perform CCA,
sample points with no taxa were excluded from the analysis.
Model choice was made by calculating the Akaike’s information
criterion (AIC; which is based on the measure of goodness-of-
fit) using the step function. Also, the ordistep function which
incorporates a random component in the model choice was
run. In addition, the variance inflation factor (VIF) which
determines multicollinearity amongst variables was estimated.
A VIF of 1 indicates complete independence of variables while
a VIF > 10 indicates high multicollinearity. A permutation test
was performed to determine the significance of the overall CCA
model. Similar permutation tests were run to determine the
significance of the environmental variables and the axes that
explain the variability in the species distribution.

Ecological Composition
The benthic fauna were classified into functional groups, motility
and mode of feeding. The benthic fauna were classified into
functional groups based on their biological and life strategies
(Jonsson et al., 2004; Henry and Roberts, 2007; Macdonald
et al., 2010). Presence/absence data were used to estimate the
percentage composition of functional groups within the variable
habitats and site locations in the PBC. Motility comprised of
motile and sessile taxa while mode of feeding consisted of
suspension/filter feeder and detritivores (Macdonald et al., 2010;

Massironi, 2016). Also, the percentage composition of predators
and non-predators were determined for the different habitats and
site locations (Scharf et al., 2006; Bell, 2012; Thiel and Watling,
2015). Some of the benthic fauna identified exhibit more than
one mode of feeding. As such, the present study focused mainly
on predators, suspension/filter feeders and detritivores to observe
possible trends of distribution.

Environmental Context
During summer months of 2018 and 2019, a conductivity-
temperature-depth system (CTD; Sea-Bird 911 plus) was used
to characterize the watermasses around the benthic habitats
throughout the canyon (Supplementary Table S4 and Figure 1).
Seawater samples were collected at different depths from 20–
500 m above the seabed within the benthic boundary layer
(McCave et al., 2001; Lueck et al., 2009) reflecting the dynamic
sedimentary (organic and inorganic) processes that occur in the
bottom and intermediate seawaters. A 10 l Niskin bottle rosette
unit on the CTD system was used to collect water samples
at different depths at different stations and particulate organic
matter (POM) data were determined via an ashing method,
outlined in Strickland and Parsons (1972) and Lysiak-Pastuszak
and Krysell (2004). In addition, eight 1Hz Nortek Aquadopp
acoustic doppler current profilers (ADCPs), were deployed in
different macrohabitat types throughout the canyon (Figure 1).
Each ADCP was vertically mounted (upward-facing) onto metal
frames (‘landers’) to ensure they did not move. The AD once
deployed (15–19/05/2019), continuously collected data (25 m
above the transducer for a period of 1 min every 10 min) for a
period of approx. 2.5 months (retrieved on 27–28/07/2020).

RESULTS

Seabed Terrain and Substrata
Forty-eight percent of the observed seabed was classified as
sediment dominated, 37% was coral rubble and the rest of the
classifications were less than 10% (Table 1). Coral reef and rubble
habitat comprised 91% coral rubble and 9% live/dead coral while
non-reef habitat comprised 79% sediment, 13% bedrock, and
8% sediment and dropstone (Table 1). Percent composition of
sediment was highest on the canyon head while coral rubble was
highest on the flank (Table 1). Twenty-five percent of bedrock
was exposed in the flank but there was no exposed bedrock in the
south (Table 1). Seabed terrain variables (depth, slope, rugosity,
and aspect), the different habitats and site locations are presented
in Supplementary Table S3.

Benthic Taxa Composition
A total of 60 benthic taxa from four different phyla were
observed in the total survey area in the PBC. Examples
of benthic fauna identified in the PBC are shown in
Supplementary Figures S2, S3, S4. The four phyla occurred in
the order: Cnidaria (50.8%)> Echinodermata (23.7%)> Porifera
(15.3%) > Mollusca (10.2%), of the 0.25 m2 gridded quadrats.
In addition, the percentage composition of the different phyla
distributed in the different habitats and site locations within the
canyon were estimated (Table 2).
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TABLE 1 | Percentage composition of the five substrata in the different habitats and site locations in the Porcupine Bank Canyon (PBC).

Substrata Percentage (%) composition

PBC Coral reef and rubble habitat Non-reef habitat Flank Head South

Bedrock (B) 7.70 0.00 12.90 24.70 0.70 0.00

Dead/Live coral (DL) 3.60 8.90 0.00 2.30 1.60 6.40

Coral rubble (R) 36.50 91.10 0.00 42.00 26.60 41.20

Sediment (S) 47.60 0.00 79.40 28.60 64.50 47.70

Sediment and dropstone (SD) 4.60 0.00 7.70 2.30 6.50 4.70

TABLE 2 | Percent composition of each of four phyla on the different habitats and site locations in the Porcupine Bank Canyon (PBC).

Habitat and site locations Percentage (%) composition

Cnidaria Echinodermata Mollusca Porifera

Coral reef and rubble habitat 53.659 17.073 9.756 19.512

Non-reef habitat 56.863 25.490 7.843 9.804

Flank 52.273 25.000 13.636 9.091

Head 51.282 25.641 5.128 17.949

South 55.172 17.241 6.897 20.690

Mean percentage cover of benthic colonial taxa on coral
reef and rubble habitat was four times greater than the
mean percentage cover on non-reef habitat (Table 3). The
glass sponges H. dedritifera (26%) and Aphrocallistes beatrix
(27%) and the black coral L. glaberrima (17%) were the
most common and dominant colonial species in the coral
reef and rubble habitat while the echinoderm Cidaris cidaris
(73%) was the most common discrete species in the coral
reef and rubble habitat. However, taxa distribution in non-
reef habitat exhibited low dominance as the most common
discrete taxa abundances were the echinoderms Araeosoma
fenestratum (27%), C. cidaris (26%), Psolus squamatus (16%)
including the holothurian Benthogone rosea (21%) while highest
abundances of common colonial taxa were L. glaberrima
(19%) and Stichopathes cf. abyssicola (16%). The percentages
of the species listed are proportions of quadrats (0.25 m2) in
which the species were seen. Meanwhile, benthic taxa mean
percentage cover in the flank was twice as much as taxa mean
percentage cover in the canyon head and south (Table 3). The
rarefaction curve shows higher number of species on non-reef
habitat (Figure 2B).

TABLE 3 | Number of taxa, mean percentage cover of colonial taxa, and mean
density of discrete taxa.

Habitat and site locations Benthic taxa abundance

Number of
taxa

Mean % cover Mean density
(m−2)

Coral reef and rubble habitat 41 0.30 ± 0.25 2.53 ± 0.22

Non-reef habitat 51 0.07 ± 0.11 3.58 ± 0.25

Flank 44 0.25 ± 0.28 2.18 ± 0.28

Head 39 0.10 ± 0.16 5.11 ± 0.36

South 29 0.14 ± 0.15 2.16 ± 0.16

Benthic Taxa and Biodiversity
Diversity was highest on the canyon flank and in non-reef
habitats, although no significant (P > 0.05) differences were
observed in benthic taxa diversity within the different habitats
and site locations (Table 4). In relation to canyon site locations,
taxa dominance (uneven distribution of species in a community)
was highest in the flank and lowest in the canyon south while
non-reef habitat exhibited high evenness (the relative abundance
of species) and low dominance (Table 4). There was no significant
(P > 0.05) difference observed in taxa evenness within the
different habitats and site locations. Calculated P-values after
applying Bonferroni correction among site locations and after
performing a pairwise z-test among site locations for Shannon’s
diversity and taxa evenness were compared (and found not to
be significant in both cases). Also sample points in the different
site locations did not show spatial autocorrelation (Geary’s
Cflank = 1.1992, z =−10.510; Geary’s Chead = 1.1993, z =−11.039;
Geary’s Csouth = 1.1993, z = −11.431) as well as in the different
habitats (Geary’s Ccoral reefandrubble = 1.1994, z = −12.068; Geary’s
Cnon−reef = 1.1996, z =−14.759).

Benthic Faunal Composition
Analysis of similarity estimate (0.091 < R < 0.166; P < 0.05)
revealed that there were significant differences in the benthic
taxa composition in the different habitats and site locations in
the canyon. SIMPER revealed the taxa that most contributed
to the observed structure in the benthic community within the
PBC. The first seven taxa that most contributed to the observed
compositional differences between habitats are L.glaberrima, H.
dedritifera, C. cidaris, A. beatrix, A. fenestratum, Stichopathes cf.
abyssicola and A. grandiflorus. Also, the first four species that
contributed to the compositional differences between canyon
head and flank are: L. glaberrima, H. dedritifera, C. cidaris,
and Stichopathes cf. abyssicola; between canyon head and south
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FIGURE 2 | Rarefaction curves for pooled data on: (A) substrata, (B) habitats,
and (C) site locations. Sample size for substrata, the different habitats, and
site locations are: bedrock (n = 141), dead/live coral (n = 65), coral rubble
(n = 666), sediment (n = 867), sediment and dropstone (n = 84), coral reef and
rubble habitat (n = 731), non-reef habitat (n = 1092), canyon flank (n = 555),
canyon head (n = 612), and canyon south (n = 656), respectively.

are L. glaberrima, C. cidaris, A. beatrix, and H. dedritifera;
and between flank and south are L. glaberrima, A. beatrix,
H. dedritifera, and Stichopathes cf. abyssicola. Non-reef habitats
are more variable than coral reef and rubble habitats (habitats are
represented by the different shapes of the objects— triangles and
circles) while the canyon head and south is more variable than
the flank (site locations are represented by the different colors
in the legend— red, blue, and green) as supported by nMDS
ordination. Also, objects closer together are more similar (and
tend to cluster) than are those farther apart. The nMDS analysis

showed the dissimilarities among the benthic taxa grouped into
habitats and site locations in the PBC (Figure 3).

Relationship Between Seabed Terrain,
Habitats, Site Locations and Benthic
Fauna Distribution
Aspect (northness and eastness) and rugosity were removed
from the model because they were not significant (P > 0.05).
The significance of the permutation test (P = 0.001) revealed
the utility of the CCA model to evaluate the relationships
among the terrain variables, habitats, site locations and the
benthic fauna, although only 5.39% of the total variation
was captured in the CCA. A similar permutation test also
revealed that the terrain variables, habitats and site locations
significantly (P = 0.001) accounted for the variation in benthic
fauna distribution. The test also revealed the first two axes,
CCA1 and CCA2, significantly (P = 0.001) accounted for
the variation between the variables and taxa distribution,
respectively (Figure 4). Axis CCA1 accounts for 46.95%
of the variation while CCA2 accounts for 26.50% of the
variation (Figure 4). Length of the arrow determines the
degree of influence of the terrain variables, habitats and site
locations on taxa distribution while a stronger relationship
exist between taxa closer to the arrow than for those farther
away (Figure 4). Furthermore, arrow lengths correlate to the
ordination axes, where a longer arrow suggests a stronger
correlation and potentially more variation being explained.
Also, the perpendicularity between the arrows reveals the vital
variables that contributed to benthic taxa distribution. Depth
and slope were the most important terrain features, although
depth exhibited greater influence on benthic taxa distribution
(Figure 4). The categorical variables, habitat and site locations,
were also important in the distribution of the benthic fauna in
the PBC (Figure 4).

Ecological Composition
Motility
Classification of the motile and sessile groups was made based
on the biology of the organisms (Table 5). Sessile taxa were
more abundant than the motile fauna in the two habitats
and three site locations in the canyon (Table 5). Sessile fauna
were high in abundance in each of the three site locations
with the characteristic most common coral species Stichopathes
cf. abyssicola and L. glaberrima and sponges A. beatrix and
H. dedritifera. The most common motile fauna on coral
reef and rubble and non-reef habitat was C. cidaris, while
A. fenestratum constituted the most common motile species
in non-reef habitat. Crinoid and Epizoanthus paguriphilus,
respectively were the only motile echinoderm and cnidarian
taxa observed in the canyon. Motile fauna were highest on the
flank (Table 5).

Mode of Feeding
Classification of the suspension/filter feeders, predators and
detritivorous was made based on the biology of the organisms
(Table 5). Suspension/filter feeders constituted a greater
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percentage in the different habitats and site locations in the
canyon (Table 5). Cnidarians identified in the canyons also
demonstrate predation mode of feeding (Scharf et al., 2006;
Bell, 2012; Massironi, 2016). The percentage composition of
predators and non-predators for habitats were coral reef and
rubble (40.68 and 59.32%) and non-reef (57.63 and 42.37%)
whilst the percentage composition for the site locations were
flank (50.85 and 49.15%), head (38.98 and 61.02%), and south
(30.51 and 69.49%), respectively. Some benthic organisms
have adopted other modes of feeding such as grazing and
scavenging (Macdonald et al., 2010; Massironi, 2016). For
instance, the echinoderm C. cidaris and Porania sp. are grazers
(Macdonald et al., 2010; Massironi, 2016). Suspension/filter
feeders (e.g., the sponges A. beatrix and H. dedritifera) were
observed where the sclerectinian L. pertusa and the black coral
L. glaberrima appeared well developed and actively growing

(i.e., making new polyps and accumulation of skeletal mass; e.g.,
Supplementary Figure S3C).

Bathymetry, Oceanography, POM, and
Hydrodynamics
Ship-based multibeam bathymetry data (Figure 1 and
Supplementary Figure S1) reveals the PBC as a double
canyon with two branches separated by a ridge. Both branches
exit into the Rockall Trough separately. The southern branch
(Figure 1 and Supplementary Figure S1) is smaller with its
head reaching to 1,900 m water depth near to station 65 and has
an arm that cuts into the south eastern margin of the canyon
up to a minimum water depth of 600 m and typically 700 m.
The main branch of the canyon has an asymmetrical profile
with the southeastern margin represented by a tectonically

TABLE 4 | Estimates of Shannon’s diversity and Pielou’s evenness obtained from percentage and density abundance data in the different habitats and site locations in
the Porcupine Bank Canyon (PBC).

Habitat and site locations Percentage estimate Density estimate

Shannon’s diversity (H′) Pielou’s evenness (J′) Shannon’s diversity (H′) Pielou’s evenness (J′)

Coral reef and rubble habitat 2.16 0.65 1.14 0.43

Non-reef habitat 2.38 0.71 1.72 0.54

Flank 2.36 0.74 1.97 0.65

Head 2.23 0.67 1.44 0.56

South 1.83 0.59 0.80 0.38

FIGURE 3 | Non-metric multidimensional scaling (nMDS) ordination using Bray–Curtis distance. Stress = 0.035. nMDS (n = 799) represents the dissimilarities
between the benthic taxa grouped into habitats and site locations in the Porcupine Bank Canyon (PBC). Circles: coral reef and rubble habitat; Triangle: Non-reef
habitat.
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FIGURE 4 | Canonical-correlation analyses showing the relationship among terrain features (slope and depth), habitat, site locations, and benthic taxa distribution
(n = 799). CCA, canonical correspondence analysis. Blue arrows are terrain variables, habitats and site location represented as vectors.

TABLE 5 | Percent composition of the functional groups in the different habitats and site locations in the Porcupine Bank Canyon (PBC).

Habitat and site locations Percentage (%) composition

Motility Mode of feeding

Motile Sessile Suspension/filter feeder Detritivore

Coral reef and rubble habitat 26.00 74.00 76.00 24.00

Non-reef habitat 35.00 65.00 67.00 33.00

Flank 38.00 62.00 62.00 38.00

Head 27.50 72.50 75.00 25.00

South 27.00 73.00 77.00 23.00

faulted, steep cliff from 1,600 to 750 m water depth. On the
north eastern margin, the head of the canyon is more gently
sloping, with even gentler gradients defining the north western
margin (Supplementary Figure S1). Small gullies around the
canyon margins feed into the two branches. The rim of the
canyon is plateaued.

Conductivity-temperature-depth data reveals that the eastern
North Atlantic water (ENAW) was the main watermass generally

bathing the benthic community from 600–1,200 m in the
PBC while the labrador sea water (LSW) occurred below
1,200 m (Supplementary Figure S5). The temperature and
salinity limits between 600–1,000 m are 6.5–9.8◦C and 35.18–
35.5 psu, respectively.

Particulate organic matter concentration ranged between
10–3,965 µg l−1. POM was highest in the south whereas
concentrations in the northern canyon head and flank were
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similar to each other (Supplementary Figure S6). Mean current
speed recorded in the canyon ranged between 18.2–31.3 cm
s−1. The highest mean current speed was measured on the
flank (31.3 cm s−1) from the southerly direction, followed by
measurement in the south (25.4 cm s−1) from the northwesterly
direction while current speed of 18.2 cm s−1 at the head was
recorded from the northerly direction.

DISCUSSION

Patterns of Fauna Composition and
Diversity
This research presents the findings of an extensive ROV-based
survey of the PBC, which includes a detailed analysis of 46.81 km
of ROV HD video data detailing the different substrata and
habitats within the PBC including a large coverage of coral
reef and rubble and non-reef habitats (Table 1). Although the
quadrat size (0.25 m2) was small, it was necessary to sample a
standardized area as both oblique and vertical images were used,
and also due to the fact that the number of species is proportional
to the area being sampled (Rosenzweig, 1995). According to
Clark et al. (2010), substratum characteristics influence benthic
taxa composition. Generally, coral rubble and dead/live corals
have been reported to support large numbers of species and
high Shannon’s diversity compared to non-reef habitat (Jonsson
et al., 2004; Mortensen and Fosså, 2006; Henry and Roberts,
2007; Wienberg et al., 2008) with a few studies reporting lower
taxa richness and diversity on coral rubble habitat (Robert et al.,
2014; Buhl-Mortensen L. et al., 2017). Moreover, as the sample
size for the substrata varied, it was appropriate to pool them
into habitats to mitigate the effect of uneven sample size on
taxa number (Figure 2). As such, the different substrata in
the present study were resolved into potentially more diverse
habitats (coral reef and rubble) and less diverse habitats (non-
reef) to allow for the evaluation of differences in taxa diversity
and richness between the two habitats and the different site
locations in the PBC.

Most surveys of cold-water corals are exploratory in nature,
and tend to focus their survey lines on reefs and/or interesting
features which most likely limit their biodiversity assessments
(Buhl-Mortensen P. et al., 2017). According to Buhl-Mortensen
P. et al. (2017), survey areas which were most likely to support
corals were chosen for their study. However, in the present study,
a canyon-wide systematic survey pattern was applied covering
all habitats proportional to seabed area. High biodiversity was
noted on coral reef and rubble but they are localized hotspots.
On balance, there is a higher number of taxa identified in
non-reef habitat than coral reef and rubble (Figure 2 and
Table 3), and consequently this influences the Shannon’s diversity
observed in non-reef compared to coral reef and rubble habitat,
although this observed difference was not significant (Table 4).
A more proportional abundance of benthic fauna in the non-reef
habitat and the canyon flank resulted in the highest Shannon’s
diversity and taxa evenness estimated in the canyon flank, but
again there was no significant difference observed. Similarly,
Ramirez-Llodra et al. (2010) observed high Pielou’s evenness

and Shannon’s diversity in the canyon head and walls of the
Blanes submarine canyon in the Mediterranean. In line with
the present study, the sponges A. beatrix and H. dedritifera
have been previously noted to colonize coral reef and rubble
habitats in high abundance (Pfannkuche et al., 2004; Buhl-
Mortensen L. et al., 2017; Boolukos et al., 2019). The ubiquitous
and frequent presence of the glass sponges A. beatrix and
H. dedritifera were observed on all substrates in relatively
high abundance during each dive. Similarly, the black corals
L. glaberrima and Stichopathes cf. abyssicola occurred on all
substrates in comparatively high abundance during each dive.
Faunal dominance was low in the non-reef habitat and canyon
flank, but this observation was also not significant (Table 4).
Non-dependence (from Geary’s C test) of sample points in the
different habitats and site locations was sufficient reason to use
either a t- or z-test (both tests assume independence of samples,
although a z-test was used in the present study) to assess the level
of significance of taxa diversity and evenness among habitats and
site locations in the PBC.

There are more exposed hard seabed substrates on the canyon
flank (Table 1) and the steepness (20–60◦) of the canyon flank
prevents sediment accumulation on this substrate. In addition,
this exposed bedrock on the flank and non-reef habitat provides
extra substrate for sessile benthic faunal attachment. According
to Wienberg et al. (2008) and Vertino et al. (2010), substrate
variability typically gives rise to high biodiversity. In general,
hard substrata and dropstones provide suitable habitats for
Stylasterids (Cairns, 1992). Similarly, our results show a low
abundance of the Stylasterid Pliobothrus symmetricus in coral
reef and rubble habitat with higher abundances in non-reef
habitat. There is a gradation from a more coral-rich area
in the south to a more sandy sediment area in the north
of the PBC. As a result, high abundance of echinoderms
on sediments and sediment and dropstone were observed in
the north. Particularly, C. cidaris and A. fenestratum, and
P. squamatus are the taxa that influence the abundance of
echinoderms on sediments and sediment and dropstone habitats,
respectively, in the canyon head in the north. In addition, the
sea pens Kophoblemnon sp. and Pennatula sp. are abundant
in the deeper parts of the PBC which is mostly sediment
(Hogan et al., 2019).

Benthic Fauna Composition and POM
High L. pertusa abundance in the canyon south (Supplementary
Figure S7) may be due to the high concentrations of POM
in the south of the canyon (Supplementary Figure S6).
Kiriakoulakis et al. (2007) shows that POM are food
source for benthic communities. Also, food availability and
composition in a submarine canyon structure the spatial
distribution of benthic fauna (Huvenne et al., 2011; Leduc
et al., 2014). POM in the sediment becomes available to
suspension feeders through resuspension by hydrographic
or biological activities in the canyon. However, human
activities such as trawl fishing and objects (Supplementary
Figure S8G) dropped to the seafloor also resuspend POM and
make them available to the benthic community (Wilson
et al., 2015: Daly et al., 2018). In the PBC, evidence of

Frontiers in Marine Science | www.frontiersin.org 10 October 2020 | Volume 7 | Article 571820

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-571820 October 5, 2020 Time: 16:7 # 11

Appah et al. PBC

past fishing activities included fish traps, fishing lines
(Supplementary Figure S8), and possible trawl/tool marks
(Supplementary Figure S8).

Ecological Composition
The biology of the benthic taxa influences the ecological
composition of benthic organisms in the PBC (Danovaro
et al., 2008). The burrowing activities of some benthic taxa
can resuspend sediment and POM, affecting structure of the
benthic community (Lampitt et al., 1986; Smith et al., 1986). In
addition, the variability of taxa composition can be attributed
to oceanographic and environmental factors prevailing in the
canyon (Henry et al., 2014). High abundances of motile fauna
were observed in non-reef habitat and on the flank. The
abundance of sessile fauna corresponds with the abundance
of suspension/filter feeders in the canyon. Similar observation
was made in other deep-sea studies (Jonsson et al., 2004;
Henry and Roberts, 2007). In line with Massironi (2016),
cnidarians are classified as predators (ambush or passive) in
the present study. Massironi (2016) classified cnidarians as
predators probably because they get their food by waiting in
ambush (and this seems to be the case). The ambush (sit
and wait) mode of predation is generally demonstrated by
organisms that have low energy requirements and also when
the prey (e.g., zooplankton, calanoid copepods, amphipods,
euphausiid crustaceans) are dense (Scharf et al., 2006; Bell,
2012). Moreover, the organism’s ability to capture live prey by
actively focusing the prey through its mouth with the aid of its
tentacles constitute and fit the definition for predation. The high
abundance of suspension/filter feeders and predators in the PBC
could be explained by the high concentrations of resuspended
POM (1,330–3,965 µg l−1) and the low rate of sedimentation
in the high energy environment (Jonsson et al., 2004; Henry
and Roberts, 2007). According to Gardner (1989) resuspended
particle concentrations may exceed 5,000 µg l−1 in high energy
environments of submarine canyons.

Environmental Drivers of Benthic Fauna
Distribution
Relationship Between Seabed Terrain, Habitats, Site
Locations and Benthic Fauna Distribution
Canonical correspondence analysis was performed to evaluate
the relationship between the terrain features (depth, rugosity,
aspect, and slope), habitats, site locations and the benthic
megafauna in the PBC. In the present study, seabed terrain
features (depth and slope) were the most important terrain
features that affected the spatial distribution of benthic fauna
while non-reef habitat and canyon head are the categorical
variables that affected fauna distribution (Figure 4). The
contributions of non-reef habitat and site locations on benthic
taxa distribution are succinctly observed from the high taxa
richness and Shannon’s diversity that they support in the
PBC. The canyon morphology, revealed by the MBES data
(Figure 1 and Supplementary Figure S1), contributes to
the distribution patterns in the canyon as the CCA analysis
showed that the different site locations (which show different

morphologies) also influenced taxa distribution. Henry and
Roberts (2007) recognized that vertical habitat heterogeneity
significantly influences benthic fauna diversity. In addition, depth
and other geomorphic canyon features have been found to affect
the spatial distribution of benthic fauna (De Mol et al., 2011;
Kenchington et al., 2014; Fanelli et al., 2018; Trotter et al.,
2019).

Oceanography and Hydrodynamics
The low variation in benthic fauna distribution accounted
for by the CCA1 and CCA2 axes, respectively (Figure 4)
suggest that in addition to seabed terrain, substrata and the
different site locations and morphologic features, other factors
such as oceanography and hydrodynamics may contribute to
the pattern of benthic fauna distribution observed in the
PBC. Cold-water coral distribution is largely influenced by
temperature and salinity (Freiwald, 2002; Roberts et al., 2006;
Davies et al., 2008; Dullo et al., 2008; Naumann et al., 2014).
In the present study, actively growing and well developed
corals (e.g., Supplementary Figures S3C, S8D) are restricted
to a bathymetric depth of 600–1,000 m and permanently
immersed in ENAW (Supplementary Figure S5), suggesting
that ENAW influences the distribution of the benthic fauna in
the PBC. A similar trend of fauna distribution was observed
by Mienis et al. (2007) in the Rockall Trough margins.
However, poorly developed corals were observed to coincide
with LSW below 1,200 m (Supplementary Figure S5). It is
noted that high taxa number and Shannon’s diversity were
observed on the canyon flank where mean current speed was
highest (31.3 cm s−1), although no direct link between current
speed and benthic fauna distribution was assessed. It is thus
highly probable that current regimes influence benthic fauna
distribution in the PBC. Deep-sea currents and POM have
also been recognized to influence the distribution of benthic
fauna (Levin et al., 2001; Cunha et al., 2011; Henry et al.,
2014).

Conservation and Management of the Benthic Fauna
and Habitats in the PBC
The expansion of human activities into the deep-seas, coupled
with climate change most likely threaten the coral ecosystem
in deep-seas (including the PBC) as human activities impact
negatively on species distribution and diversity (Hall-Spencer
et al., 2002; Glover and Smith, 2003; Grehan et al., 2004;
Gass and Roberts, 2006; Kaiser and Barnes, 2008; Danovaro
et al., 2017; Volkov et al., 2017; Durack et al., 2018; Miller
et al., 2020). Management and conservation biologists strive
to prevent habitats and species from permanent damage and
declines. Also, scientists have observed that some proportions
of habitat loss and population decline are recoverable while
some losses and declines are permanent, although many of these
losses and declines could have been prevented (Young, 2000).
Therefore, management is required to recover and fix those
that can be fixed whilst ensuring that permanent losses and
declines do not occur going forward. To this effect, we believe
that the findings of the present study would help conservation
and management efforts in regulating the activities of key
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stakeholders who interact with the PBC in order to protect
the different habitats and benthic fauna therein. Canyon-wide
conservation and management of the PBC is advocated here
due to the high benthic fauna abundance and consequently
high diversity observed in non-reef habitat (although not
significant) contrasting to what is usually reported in literature.
Scientists have recognized that processes/activities (e.g., increased
sedimentation through trawl fishing) happening in one part
of the canyon can potentially impact life elsewhere in the
canyon (Huvenne and Davies, 2014; Martín et al., 2014) and
hence the need to consider canyon-wide conservation and
management of the PBC.

CONCLUSION

The PBC is a submarine canyon on the Irish margin disconnected
from across-shelf transport and containing cold-water coral
habitats. As such, it provides a perfect ecosystem to identify
environmental control on cold-water coral and canyon habitats
without terrigenous inputs. The present study suggests that
the spatial distribution of benthic fauna is associated with the
availability of POM, oceanographic and hydrographic processes,
seabed terrain (depth and slope), canyon morphologic features
at the different site locations and habitats of the PBC. Analysis
of the benthic taxa of the PBC has revealed significant structure
in the faunal and ecological composition. Habitat heterogeneity
evidenced by the different substrata and morphologic features
in the canyon contributes to the trend of diversity, evenness
and taxa distribution observed in the canyon. The present
study also suggests that non-reef habitats have the potential
to hold high benthic fauna diversity in submarine canyons.
However, there is the need for standardization of methods for
deep-sea community studies, to allow for comparability and
effective conservation and management processes in submarine
canyons, which in many cases, are limited by the cost of deep-
sea research.
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Supplementary Figure S1 | A map showing the area of the Porcupine Bank
Canyon (PBC) and the Southwest Porcupine Bank designated as special area of
conservation (SAC; demarcated by red polygon). Coordinates of area of PBC
designated as SAC are listed in Supplementary Table S5 (as a separate
excel file).

Supplementary Figure S2 | Benthic taxa in the Porcupine Bank Canyon (PBC).
Scale bar = 10 cm: (A) Opisthoteuthis agassizii (B) Porifera sp. (C) Crinoid (D)
Kophobelemnon sp. (E) Geodia sp. (F) Leiopathes glaberrima (G) Chrysogorgia
sp. (H) Pennatula sp. (I) Bathypathes sp. (J) Hexadella dedritifera (K)
Anthomastus grandiflorus (L) Araeosoma fenestratum.

Supplementary Figure S3 | Benthic taxa in the Porcupine Bank Canyon (PBC).
Scale bar = 10 cm: (A) Pliobothrus symmetricus (B) Asteroidea sp. (C) Lophelia
pertusa.

Supplementary Figure S4 | Benthic taxa in the Porcupine Bank Canyon (PBC).
Scale bar = 10 cm: (A) Unidentified sp. (B) Euplectellid sp. (C) Asteroidea sp. (D)
Actinaria sp. (E) Chaecon affinis (F) Aphrocallistes beatrix (G) Ascidian sp. (H)
Asteroidea sp. (I) Bathypathes sp. with squat crab (J) Porania sp. (K) Decapoda
sp. (L) Stichopathes cf. abyssicola (M) Paramuricea sp.

Supplementary Figure S5 | T–S plot of conductivity-temperature-depth (CTD)
data with density contours to characterize the water mass properties through a
1,200 m depth from the surface water in the Porcupine Bank Canyon (PBC):
eastern North Atlantic water (ENAW), mediterranean outflow water (MOW), and
labrador sea water (LSW). Space between broken lines reveals the predicted
density envelope for NE Atlantic CWCs (Dullo et al., 2008).

Supplementary Figure S6 | Particulate organic matter (POM) distribution in the
Porcupine Bank Canyon (PBC).

Supplementary Figure S7 | Lophelia pertusa mean percentage cover among
site locations in the Porcupine Bank Canyon (PBC). A significant (P < 0.05)
difference between the canyon south and flank was observed. The sample size for
canyon flank, head, and south are 555, 612, and 656, respectively.

Supplementary Figure S8 | Seabed types that exist in the Porcupine Bank
Canyon (PBC) and identified evidence of human activities, scale bar = 10 cm:
(A) sediment and dropstone (SD; n = 84), (B) sediment (S; n = 867),
(C) bedrock (B; n = 141), (D) live/dead coral (DL; n = 65), (E) coral rubble (R;
n = 666), (F) fishing line, (G) metal fish trap, (H) tool marks (837 m), (I)
tool marks (774 m).

Supplementary Table S1 | ROV transects in the Porcupine Bank Canyon (PBC),
length (km), mean depth, depth range, and date for each transect.

Supplementary Table S2 | Seabed classification system used for this study.

Supplementary Table S4 | Seawater samples from the Porcupine Bank Canyon
(PBC) collected on 08-08-2018 showing Time (UTC), station number, sample
depth and coordinates.
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