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Subtropical gyres are large areas of the ocean characterized by high stratification,
low nutrients, and low primary production. The Canary Current System (CanCS)
shows a rather strong seasonal thermocline during most of the annual cycle, which
erodes through convective mixing from January to March promoting the so-called Late
Winter Bloom (LWB). Atmospheric deposition from the Sahara desert is also another
key feature of the CanCS providing additional nutrients to the euphotic zone. As a
consequence of global warming, these oligotrophic regimes systems are expanding
and the temperature increase affects phytoplankton, and reverberate on the food web
structure and biogeochemical cycles. In the CanCS, the effect of warming and dust
deposition on the planktonic community remains poorly know. Here, we show the effects
of a 0.5◦C increase in ocean temperature during two consecutive years. During 2011,
winter temperature allowed the development of the LWB, promoting the increase of
autotrophic cells and the coexistence of the microbial loop and the “classic” trophic web.
The former predominated before and after the LWB, while the latter prevailed during
the LWB. The rather high temperature during 2010 prevented the LWB development,
causing highly oligotrophic conditions and episodic events of Saharan dust contributing
to nutrient inputs. During this warm year, we found a dominance of small cells such as
nanoflagellates and dinoflagellates, and surprisingly high biomass of mesozooplankton,
hinting at the “tunneling effect” as an alternative trophic pathway (rapid uptake of
phosphate by prokaryotes which are consumed by flagellates and then by zooplankton).
These changes show the impact of a slight increase in temperature in this oligotrophic
system and how future scenarios in the context of global warming could promote
considerable shifts in the trophic web structure.

Keywords: phytoplankton, microplankton, late winter bloom, oligotrophic waters, tunneling effect

INTRODUCTION

Subtropical gyres include large oligotrophic areas of the ocean in which, despite the low nutrient
concentration, complex trophic webs are common (Longhurst, 1998), and episodic annual
production rates could be as high as in temperate ecosystems (Menzel and Ryther, 1961). The
seasonal and interannual production cycle in north subtropical gyres is fairly well known from
the Ocean Long-Term Time-Series Stations at Hawaii (HOT) and Bermuda (BATS). In these
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subtropical regions, light is not a limiting factor and nutrient
regeneration supports production during most of the annual
cycle (Dugdale and Goering, 1967). Sea surface cooling and some
episodic wind stirring during winter promotes the deepening of
the mixed layer, allowing nutrient enriched waters to reach the
ocean surface promoting the so-called Late Winter Bloom (LWB;
Menzel and Ryther, 1961).

The Canary Current System (CanCS), located in the eastern
North Atlantic subtropical gyre, is characterized by oligotrophic
waters due to strong stratification during most of the year (De
Leon and Braun, 1973; Braun, 1980). During winter, surface
cooling erodes the thermocline allowing nutrient input into the
photic layer (De Leon and Braun, 1973; Braun, 1980; Barton et al.,
1998; Arístegui et al., 2001; Cianca et al., 2007; Neuer et al., 2007),
promoting maximum values of chlorophyll a (Chla) and primary
production (De Leon and Braun, 1973; Braun, 1980; Arístegui
et al., 2001). Micro- and mesozooplankton communities also
increase during the winter bloom, taking advantage of the
available resources (Hernández-León et al., 1984; Schmoker et al.,
2012, 2014; Schmoker and Hernández-León, 2013).

Atmospheric deposition is another major source of limiting
nutrients to the open ocean, and the Sahara desert also provide
nutrients to the CanCS. Nitrogen and phosphorus are found
in dust (Donaghay et al., 1992; Guerzoni et al., 1999; Duarte
et al., 2006) as well as micronutrients such as iron, nickel, and
cupper (Duce and Tindale, 1991; Jickells, 1999). Dust transports
rather high concentrations of crustal elements involved in marine
biological cycles such as silicate, aluminum, and manganese
(Goudie and Middleton, 2001; Viana et al., 2002). Studies based
on experiments of dust addition have reported the effect of
nutrients from Saharan dust on phytoplankton growth (Bonnet
et al., 2005; Herut et al., 2005; Duarte et al., 2006; Marañón et al.,
2010; Giovagnetti et al., 2013; Pitta et al., 2017). However, the
intensity of the response in the field is still not clear. Bishop
et al. (2002) observed an enhanced biological response after
a dust storm based on in situ particulate organic carbon and
Chla in High Nutrient Low Chlorophyll (HNLC) waters of the
North Pacific. Similarly, in oligotrophic waters of the South
China Sea, Chla concentration increased significantly during a
heavy dust year (Wang et al., 2012). However, Chami et al.
(2012) observed a negative effect of dust on primary production
in the subtropical Atlantic Ocean due to the attenuation of
photosynthetic active radiation (PAR) produced by the dust
aerosol layer in the atmosphere. In the Mediterranean Sea, a
relationship between phytoplankton and dust was only observed
when atmospheric events coincided with the stratified season
(Eker-Develi et al., 2006; Volpe et al., 2009). Hence, it has
been hypothesized that Saharan dust would only have a major
influence on primary production at local and short-time scales,
immediately after an atmospheric deposition event has taken
place (Guerzoni et al., 1999).

The microbial loop controls most of the flow of energy
and matter in subtropical gyres (Pomeroy, 1974; Azam et al.,
1983; Longhurst, 1998). Picophytoplankton accounts for a large
proportion of the primary productivity (Li et al., 1983), which
is mostly consumed by nano- and micrograzers (Calbet and
Landry, 2004; Armengol et al., 2019). Micrograzers control more

than 80% of primary production in the CanCS (Arístegui et al.,
2001; Marañón et al., 2007), and microzooplankton grazing
has been pointed out as the principal mechanism limiting the
phytoplankton growth both in artificial iron injections (Landry
et al., 2000a,b; de Baar et al., 2005; Boyd et al., 2007; Henjes
et al., 2007) and in dust addition experiments (Herut et al., 2005;
Marañón et al., 2010). On the other hand, larger diatoms are the
most favored organisms when primary production is artificially
induced (Landry et al., 2000b; de Baar et al., 2005; Boyd et al.,
2007; Henjes et al., 2007) because of their higher growth rates
and a lower grazing pressure compared to prokaryotic algae
(Landry et al., 2000a,b; Henjes et al., 2007; Armengol et al.,
2017). Mesozooplankton controls microplankton (Schmoker
and Hernández-León, 2013; Armengol et al., 2017), which
mainly prey on non-pigmented organisms (Arístegui et al.,
2001; Hernández-León et al., 2004). Finally, diel vertical
migrants (mainly zooplankton a micronekton) exert a predation
pressure on mesozooplankton (Moore, 1950; Uda, 1956; Angel,
1989; Hernández-León et al., 2010). Hence, all these trophic
interactions modulate the planktonic variability and composition
resulting in a succession of biomass peaks during the LWB in the
Canary Island waters (Schmoker et al., 2012).

Ocean warming is promoting an expansion of oligotrophic
gyres at a rate of 0.8–4.3% y−1 (McClain et al., 2004; Polovina
et al., 2008; Irwin and Oliver, 2009). A number of studies
have observed a decrease in phytoplankton biomass related
to an increase in temperature (McClain et al., 2004; Gregg
et al., 2005; Behrenfeld et al., 2006; Kahru et al., 2009; Boyce
et al., 2010). Specifically, primary production in the subtropical
gyres of the Atlantic Ocean has decreased due to increase in
temperature and nitracline depth (Marañón et al., 2003). The
decrease of autotrophic organisms affects the entire trophic web
and biogeochemical cycles in the eutrophic zone (Sherr and
Sherr, 1994; Jones, 2000; Boëchat et al., 2007; Assmy et al.,
2014). Due to the continuous emissions of CO2 and the effect
of greenhouse gases, modeling studies predict an increase of
temperature in the ocean between 1.8 and 3.3◦C by 2040 (Cai
et al., 2014; Cheng et al., 2019). Considering how temperature
influences phytoplankton, it is of paramount importance to
know the effect of an increase in temperature on the natural
planktonic community in order to predict future landscapes in
the subtropical ocean.

The effect of warmer years on plankton community or
the role of the different planktonic groups throughout the
year remains poorly known in the CanCS. In order to better
understand the complex trophic interactions in subtropical
waters, we studied the planktonic community composition
in these waters during a warm and a cold year. In the
CanCS, the year 2010 was the warmest recorded for the last
30 years, reaching temperatures above 19◦C throughout the
year (Cropper et al., 2014). In order to study the episodic late
winter bloom in these warm waters, we performed a weekly
sampling covering the productive period during 2010 and 2011.
Differences between bloom and non-bloom conditions and dust
conditions were assessed, as well as the variability in terms of
abundance, biomass, and primary productivity between two quite
different years.
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MATERIALS AND METHODS

Sampling and Hydrographic
Measurements
Weekly sampling was carried out in the Canary Islands waters
to the north of Gran Canaria Island from February 2010 to
June 2011 on board the R/V Atlantic Explorer. Three stations
separated 10 nautical miles (Figure 1) were sampled in the mixed
layer at 20 m depth using a General Oceanics rosette equipped
with 4 L PVC Niskin bottles, Seabird-25 CTD, and a Turner Scufa
Fluorometer. Mixed layer depth was estimated using an optimal
linear fitting method (Chu and Fan, 2010), and employing the
method proposed by Kelly (2018) in R programming language.

Nutrients
Inorganic nutrients were sampled from surface waters and
analyzed using a Technicon II segmented-flow autoanalyzer
and using the method of Armstrong et al. (1967) (see also
Benavides et al., 2013).

Atmospheric Dust Measurements
Atmospheric particulate matter data were collected from
Gobierno de Canarias web1. Dust concentration in our study is
the average value of the three stations located north and northeast
of Gran Canaria Island (Figure 1).

Primary Production
Primary production (PP) data were obtained from the
Ocean Productivity website2 using the VGPM model
following Behrenfeld and Falkowski (1997).

Chlorophyll a and Picoplankton
Samples of 500 mL were obtained for Chla at 20 m depth
using a Niskin bottle, filtered through 25 mm Whatman GF/F
filters, and stored frozen (−20◦C) until their analysis in the
laboratory. Pigments were extracted in cold (−20◦C) acetone
(90%) for 24 h and analyzed using an AU Turner Designs
bench fluorometer previously calibrated with pure Chla (Sigma
Aldrich) according to Yentsch and Menzel (1963), and acidified
following Welschmeyer (1994). Picoplankton were sampled from
the Niskin bottle, fixed with 20% of paraformaldehyde, incubated
at 4◦C for 30 min, placed in liquid nitrogen immediately after
30 min incubation, and stored at −80◦C until their analysis.
Autotrophic picoeukaryotes, Synechococcus, Prochlorococcus, and
heterotrophic prokaryotes were counted by flow cytometry using
a FACScalibur cytometer (Gasol and Del Giorgio, 2000).

Nano- and Microplankton Analysis
Samples of 45 ml of autotrophic and heterotrophic
nanoflagellates were sampled, fixed with glutaraldehyde
(0.3% final concentration), stored in the dark at 4◦C until their
filtration onto 25 mm polycarbonate filter with 0.45 µm pore size,
and stained with diamidino-2-phenylindole (DAPI) following

1http://www.gobiernodecanarias.org/medioambiente/calidaddelaire/inicio.do
2http://www.science.oregonstate.edu/ocean.productivity/index.php

the procedure suggested by Haas (1982). The filter was then
mounted on a microscope slide and analyzed by epifluorescence
microscopy with a Zeiss Axiovert 35 microscope.

Samples of 500 ml of microplankton organisms were sampled
from station 3 in a dark bottles, fixed with acid Lugol’s iodine (2%
final concentration), and stored at room temperature in darkness
until analysis. Aliquots of 100 mL of sample were placed in
Utermöhl sedimentation chambers for 48 h, organisms counted
using a Zeiss Axiovert 35 inverted microscope, and classified
in main groups: diatoms, dinoflagellates, ciliates, tintinnids,
and silicoflagellates.

Mesozooplankton
Mesozooplankton was sampled from 200 m depth to surface
using a WP-2 equipped with 100 µm mesh net (UNESCO, 1968).
Samples were fixed in 4% buffered formaldehyde and stored
until analysis. In the laboratory, samples were sieved in size
ranges (0.1–0.2, 0.2–0.5, 0.5–1 mm, and >1 mm) and dry weight
obtained following Lovegrove (1966).

Microzooplankton Grazing Experiments
The dilution technique was used to estimate phytoplankton
growth and microzooplankton grazing (Landry and Hassett,
1982; Landry et al., 1995). Seawater from station 4 was sampled
at the mixed layer using a 30 L Niskin bottle. Briefly, seawater in
treatments of 100, 75, 50, 25, and 10% whole seawater (WSW)
were used for experiments during 2010, and 100, 70, 40, and
5% for experiments during 2011. WSW were incubated in 2.4 L
polycarbonate Nalgene bottles in triplicate for 24 h simulating
in situ conditions of light and temperature. To simulate in situ
conditions, light was measured using a Secchi Disk, and then
light attenuating meshes were used to reduce radiation over
the incubated bottles. A continuous seawater input system was
used to maintain temperature conditions. A concentration of
0.5 µM NH4Cl and 0.03 µM PO4 were added to each bottle to
avoid phytoplankton growth limitation. Moreover, three bottles
at 100% WSW were filled without adding nutrients to assess the
effects of nutrient enrichment on phytoplankton growth. A 100%
filtered seawater (FSW) was incubated to ensure the filtration
system worked properly.

Growth (µ) and mortality by microzooplankton consumption
(m) were determined for all planktonic groups by linear
regression between net growth rate (ki) and dilution factor (Di):

ki = ln
Ct

C0
· t−1

= µ−m · Di

where Ct and C0 are final and initial concentration respectively of
Chla or specific organism abundance, and t is the incubation time
(1 day). Mortality rate (m) is the slope of regression, while the
y-intercept is the growth rate obtained from nutrient amended
treatment (µn). Intrinsic growth rate (µ0) was calculated as:

µ0 = k0 +m

Negative values of µ0 were converted to 0.001 d−1, while negative
values of g were converted to 0 d−1 (Calbet and Landry, 2004).
Daily production (P, µgC L−1 d−1) and consumption (G, µgC
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FIGURE 1 | Location of the oceanographic stations (•) and the dust stations (�) at the North of Gran Canaria (Canary Islands).

L−1 d−1) for every group was determined according Landry et al.
(2000a):

P = µ · Cm

G = µ · Cm

Cm =
C0 (e(µ−m)t

− 1)

(µ−m) t

Where C0 and Cm represent the initial and mean carbon
concentration during incubation, respectively. The impact
of microzooplankton consumption on production (%) was
estimated as:

% PP =
G
P
· 100 =

m
µ
· 100

Biomass Conversion Factors
Converting abundance into carbon biomass allowed the
comparison between organisms belonging to different taxonomic
groups. The separation by size ranges within each taxonomic
group also resulted in a more accurate and precise biomass
data. Abundance of organisms were converted to biomass using
conversion factors: Chla concentration was converted to carbon
using a C:Chla ratio of 50 (Harris, 1986); while abundance of
Prochlorococcus, Synechococcus, autotrophic picoeukaryotes and
heterotrophic prokaryotes were converted using 29 fgC cell−1,
100 fgC cell−1 (Zubkov et al., 2000), 1500 fgC cell−1 (Zubkov
et al., 1998), and 17 fgC cell−1 (Bode et al., 2001), respectively.

Abundances of nanoflagellates were converted to carbon using
the biovolume (BV) estimated by microscopy and conversion
factors of 220 fgC µm−3 for heterotrophic nanoflagellates
(Borsheim and Bratbak, 1987) and 0.433(BV)0.863 pgC cell−1

(Verity et al., 1992) for autotrophic nanoflagellates. Finally,
microplankton abundance was converted to biomass using total
biovolume data obtained by microscopy fitting organisms to
suitable shape (Hillebrand et al., 1999) and using the biomass
conversion factor from Menden-Deuer and Lessard (2000):

log pgC cell−1
= log a+ b · log BV

Statistical Analysis
One-way analysis of variance (ANOVA) was used to test for
significant differences in temperature, salinity, and atmospheric
particulate matter for each station. When Kolmogorov-Smirnov
Test (to evaluate the normality of data) failed, the Kruskal-
Wallis One Way ANOVA was used. The ANOVA critical
significance value p was given in the text to indicate the
level of difference. The t-test was used to study the significant
differences between 2010 and 2011 periods for each station.
When Saphiro-Wilk test (to study normality) failed, we used
the Mann-Whitney Rank Sum test. We conducted a Principal
Component Analysis (PCA) to study the ordination of the
organisms and physical-chemical variables to identify the
essential components contributing to the total variance of
organisms. We performed a stepwise multiple linear regression
with both forward and backward selection to explore the
relationships between organisms and environmental factors.
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FIGURE 2 | Temporal variability of average (A) temperature (◦C), (B) salinity, and (C) Chlorophyll a (mgChla m-3) from surface to 200 m in stations 2, 3, and 4. White
spaces indicate no data available.

Variance inflation factors (VIF > 6) were used to identify co-
linearity between independent variables and removed before
analysis (Zuur et al., 2009). Mallow’s Cp were applied to
identify the best model. Pearson rank correlation was generated
in order to observe the interconnection correlation between
all environmental and biological variables, and the level of
significance of the respective correlations.

RESULTS

Environmental Parameters and
Chlorophyll a
Two clear scenarios were observed during 2010 and 2011 winters.
A highly stratified water column was found from February to
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June 2010, while we observed characteristic features of the LWB
from February to April 2011 with an average depth of the mixed
layer of 150 m (Figure 2). The water column was stratified
from April to June 2011 as expected. During 2010 significantly
higher temperature and salinity of 0.5 ± 0.05◦C and 0.04 ± 0.02
(mean ± SD), respectively, were found in the photic layer
compared to 2011 (Mann-Whitney Rank Sum, p < 0.05).

The deep chlorophyll maximum (DCM) was limited to a
small depth range, reaching maximum values of 0.4 mg m−3

during February to April 2010; while in 2011 the DCM was
wider and reached maximum values of 0.5 mg m−3 during the
same period (Figure 2). Moreover, comparing May and June for
both years, the DCM was stronger during 2011 (0.35–0.4 mg
m−3) than during 2010 (0.2–0.25 mg m−3). Chla was explained
at 62% by temperature, NO3 + NO2, PO4

3−, heterotrophic
prokaryotes, and mesozooplankton (Table 1). Moreover, Chla
showed a positive correlation with NO3 + NO2 and total
nutrients (Spearman test, ρ = 0.49 p < 0.001 and ρ = 0.30
p < 0.001, respectively; Table 2).

The average concentration of atmospheric particulate matter
(PM) north of Gran Canaria Island throughout both years was
31.55 ± 50.45 µg m−3 (mean ± SD) (Figure 3A). Significantly
higher dust events were observed in February 22nd, March 18th,
June 4th 2010, and November 22th; and during January 6th and
17th, and May 14th 2011 (Kruskal-Wallis One-way ANOVA,
p < 0.05). Maximum values of PM were found in March 2010 and
January 2011 (383.34 ± 70.71 µg m−3 and 223.83 ± 101.96 µg
m−3, respectively; mean± SD).

Besides warm temperature and water column stratification,
the year 2010 was also characterized by significantly lower
concentration of NO3 +NO2 compared to 2011, while strikingly
PO4

3− was higher during 2010 compared to 2011 (Mann-
Whitney Rank Sum Test, p < 0.05) (Figure 3B). During 2010,
the maximum PO4

3− concentration was observed at the end
of March, coinciding with a slightly shallower mixing layer and
a large dust event (Figure 3). However, on average, nutrient
concentration was higher in 2011 for SiO4

3− (0.68 µM ± 0.34
versus 0.53 µM ± 0.12 in 2010; mean ± SD; Mann-Whitney
Rank Sum Test, p = 0.09) and significantly for NO3 + NO2
(0.18 µM ± 0.17 versus 0.06 µM ± 0.01 in 2010; mean ± SD;
Mann-Whitney Rank Sum Test, p < 0.001), while PO4

3−

was significantly higher in 2010 (0.12 µM ± 0.05 versus
0.07 µM ± 0.03 in 2011; mean ± SD; Mann-Whitney Rank Sum
Test, p < 0.001) (Figure 3B). We did not observe a correlation
between dust deposition and nutrient concentration (Pearson,
r =−0.05 p > 0.05), but NO3+NO2 showed a significant positive
correlation with Chla (Pearson test, r = 0.49 p < 0.001) (Table 2).

Chla concentration in the mixed layer was significantly higher
in 2011 compared to 2010 (Mann-Whitney Rank Sum Test,
p < 0.05) (Figure 3A), particularly during March 2011 coinciding
with the LWB period. With the exception of the LWB period in
2011, the satellite PP during 2010 and 2011 were not significantly
different, and values ranged 341–400 mgC m−2 d−1. During
the LWB in 2011, PP was significantly higher than during other
periods (Mann-Whitney Rank Sum Test, p < 0.05), with average
values of 557± 56 mgC m−2 d−1 (Figure 3B).

Plankton Community
Differences in biomass among both years were sharp
(Figure 4A). Prochlorococcus dominated the picoplankton
community in all stations during 2010 and most of 2011,
except for the LWB months when the community shifted to
autotrophic picoeukaryotes and Synechococcus (Figure 4B).
Prochlorococcus showed a negative correlation with phosphates,
while autotrophic picoeukaryotes and Synechococcus showed a
positive correlation with NO3 + NO2, and both Synechococcus
and Prochlorococcus displayed a positive correlation with
atmospheric PM (Spearman test, Table 2). Sixty eight per
cent of autotrophic picoeukaryote biomass variability was
explained by NO3 + NO2, PO4

3−, Synechococcus, heterotrophic
prokaryotes, dinoflagellates and ciliates, whereas 62% of
Synechococcus biomass distribution was due to temperature,
PO4

3−, autotrophic picoeukaryotes, heterotrophic prokaryotes,
heterotrophic nanoflagellates, dinoflagellates, silicoflagellates and
ciliates (PCA and Stepwise multiple regression model, Table 1).
At 66% of Prochlorococcus biomass was explained by PO4

3−,
PM, heterotrophic prokaryotes, dinoflagellates, silicoflagellates,
ciliates and tintinnids (PCA and Stepwise multiple regression
model, Table 1).

Heterotrophic bacteria dominated the picoplankton
community in both years, however, the highest biomass occurred
during the LWB in 2010 (Figure 5 and Table 2). Temperature,
NO3 + NO2, PO4

3−, Chla, autotrophic picoeukaryotes,
Synechococcus, dinoflagellates, and ciliates explained 67.8% of
the heterotrophic bacteria biomass variability (PCA and Stepwise
multiple regression model, Table 1), and showed a positive
correlation with almost all groups (Spearman test, Table 2).

In contrast to picoplankton results, both autotrophic and
heterotrophic nanoflagellates displayed a significant increase in
biomass related to temperature (positive significant correlation,
Spearman test; Table 2), and autotrophic nanoflagellates
even dominated the autotrophic community for a few
periods during 2010 (Figure 6). Biomass of heterotrophic
nanoflagellates exceeded that of autotrophic nanoflagellates
during March 2010, while during the coldest period (2011),
heterotrophic nanoflagellates biomass was higher than
autotrophic nanoflagellates. The latter almost disappeared
for a few months during 2011, showing a positive correlation
with PO4

3− (Spearman test, Table 2). Sixty six percent of the
variation in autotrophic nanoflagellate biomass was explained by
PO4

3−, heterotrophic prokaryotes, heterotrophic nanoflagellates,
dinoflagellates and tintinnids (PCA and Stepwise multiple
regression model, Table 1); whilst heterotrophic nanoflagellates
were related to temperature, NO3 + NO2, PO4

3−, Chla,
autotrophic picoeukaryotes, Synechococcus, dinoflagellates,
and ciliates (68%, PCA and Stepwise multiple regression
model; Table 1).

Microplankton data were only available for station 3
(Figure 7). Similar to picoplankton, microplankton biomass
during 2011 was significantly higher than during 2010 (Mann-
Whitney Rank Sum, p < 0.05). Dinoflagellates dominated the
community during 2010 and practically throughout 2011, except
during the mixing period (December 2010 to January 2011)
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TABLE 1 | Principal Component Analysis (PCA) and Stepwise multiple regression model for groups of organisms using biological and physiochemical variables as effects:
Temperature (T◦), Chlorophyll a (Chla), autotrophic picoeukaryotes (APE), Synechococcus (Syn), Prochlorococcus (Prochl), autotrophic nanoflagellates (AN), heterotrophic
nanoflagellates (HN), heterotrophic bacteria (HB), diatoms (Dia), dinoflagellates (Din), silicoflagellates (Sil), ciliates (Cil), tintinnids (Tin), and mesozooplankton (MZ).

Variable Predictors PCA (variance, %) Regression statistics

Cp R2 S t ± SE

Chla 62 6 0.737 0.01

T◦ 2.89 0.01

NO3 + NO2 5.44 0.08

PO4
3 0.44 0.35

HB 2.71 0.01

MZ −0.43 0

APE 67.96 7 0.79 0.28

NO3 + NO2 −1.31 0.69

PO4
3

−0.96 2.55

Syn 3.96 0.19

HB 2.13 0.07

Din −1.472 0.09

Cil 0.657 0.27

Syn 62.36 7.04 0.854 0.11

T◦ −3.91 0.09

PO4
3

−0.59 1.92

APE 2.17 0.12

HB 0.87 0.05

HN −0.198 0.14

Din −0.46 0.08

Sil 1.6 2.74

Cil 1.79 0.2

Prochl 65.76 7.11 0.75 0.22

PO4
3

−0.89 2.38

PM 2.5 4.41 0.03

PM 10 −1.84 0.02

HB 1.83 0.05

Din 1.28 0.08

Sil 1.77 3.46

Cil 0.33 0.23

Tin 1.03 3.8

AN 66.15 6 0.25 6

PO4
3 0.83 3.86

HB −0.89 0.07

HN 1.6 0.28

Din 0.6 0.13

Tin −0.68 5.6

HN 64.43 6 0.12 0.28

T◦ 0.75 0.13

APE −0.25 0.16

Prochl 0.11 0.16

HB 0.6 0.07

Din 1.54 0.12

HB 67.75 7.05 0.83 1.46

T◦ 0.23 0.37

NO3 + NO2 1.52 1.97

PO4
3

−0.45 6.93

Chla 2.04 2.73

APE 1.74 0.45

(Continued)
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TABLE 1 | Continued

Variable Predictors PCA (variance, %) Regression statistics

Cp R2 S t ± SE

Syn 1.23 0.8

Din −1.36 0.28

Cil −0.46 0.86

Dia 67.39 5.28 0.4 45.86

T◦ −2.73 1.59

SiO4
3−

−0.81 4.52

PO4
3

−2.13 35.85

Sil 2.75 53.53

Cil −0.53 4.04

MZ −1.07 0.69

Sil 65.72 6.01 0.44 0

T◦ 1.9 0

PM 10 −1.44 0

NO3 + NO2 −0.86 0.03

APE −0.12 0.01

Syn 1.91 0.02

Cil −0.37 0.02

MZ −1.8 0

Din 62.99 7.04 0.28 1.46

PO4
3 1.04 6.17

Chla 0.23 2.57

APE −1.31 0.43

Syn 0.45 0.54

Prochl 0.83 0.35

HB −0.21 0.19

Sil 0.23 9.21

Cil 69.49 6 0.56 0.11

APE 0.82 0.11

Syn 0.83 0.15

Prochl 1.88 0.08

Dia 3.82 0

MZ 1.54 0.3

Tin 78.33 4.02 0.3 0.19

T◦ 0.71 0.01

Prochl 1.29 0.01

AN −0.53 0.01

HN 0.14 0.01

Cil 1.46 0.01

MZ 70.31 5 0.06 4.5

Chla −0.65 4.18

HB 0.58 0.24

Sil −1.23 15.48

Cil 0.4 1.01

PCA variance for the 1st axes; Mallows’s Cp used to assess the best fit of regression model; mean squared error (S), t-value (±SE).

and the LWB, when community shifted to diatoms. During
the LWB, diatoms dominated the community and increased
the microplankton biomass for a short period from ca. 8 µgC
L−1 to 200 µgC L−1 (Figure 7B). Sixty seven percent of
the variation in diatom biomass was explained temperature,
SiO4

3−, PO4
3−, silicoflagellates, ciliates and mesozooplankton;

while PO4
3, Chla, autotrophic picoeukaryotes, Synechococcus,

Prochlorococcus, heterotrophic prokaryotes, and silicoflagellates
accounted for ca. 63% of the variance in biomass of dinoflagellates
(PCA and Stepwise multiple regression model, Table 1). During

2011, biomass of tintinnids, silicoflagellates, and ciliates increased
by almost an order of magnitude with respect to the previous
year (Figure 7B). Temperature, Synechococcus, Prochlorococcus
and diatoms accounted for 78.3% of the variance in biomass
of tintinnids, while autotrophic picoeukaryotes, Synechococcus,
Prochlorococcus, diatoms and mesozooplankton accounted for
69.5% of the variance in biomass of ciliates (Table 1). Ciliates
and tintinnids were significantly correlated with the smallest
planktonic groups of autotrophic picoeukaryotes, Synechococcus
and Prochlorococcus (Spearman test, Table 2).
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TABLE 2 | Spearman correlation coefficients between biologic variables: temperature (T◦), Chlorophyll a (Chla), autotrophic picoeukaryotes (APE), Synechococcus (Syn),
Prochlorococcus (Prochl), autotrophic nanoflagellates (AN), heterotrophic nanoflagellates (HN), heterotrophic bacteria (HB), diatoms (Dia), dinoflagellates (Din),
silicoflagellates (Sil), ciliates (Cil), tintinnids (Tin), mesozooplankton (MZ); and environmental variables: NO3 + NO2, SiO4

3−, PO4
3−, total nutrients (TN), atmospheric

particulated matter 2.5 µm (APM 2.5), atmospheric particulated matter 10 µm (APM 10).

T◦ Chla APE Syn Prochl AN HN HB Dia Din Sil Cil Tin MZ

T◦ 1.00

Chla 0.04 1.00

APE −0.10 0.48*** 1.00

Syn −0.34*** 0.43*** 0.74*** 1.00

Prochl 0.42*** 0.39*** 0.53*** 0.62*** 1.00

AN 0.22* −0.33*** −0.47*** −0.49*** −0.33*** 1.00

HN 0.25** −0.10 −0.10 −0.23** −0.10 0.41*** 1.00

HB −0.22* 0.53*** 0.79*** 0.78*** 0.49*** −0.50*** −0.14 1.00

Dia −0.06 0.19 0.56*** 0.41* 0.40* 0.00 0.11 0.43** 1.00

Din −0.19 −0.08 −0.41 −0.26 −0.07 0.12 0.03 −0.36* −0.20 1.00

Sil 0.08 0.16 0.53*** 0.45** 0.50** −0.13 0.10 0.37* 0.60*** −0.30 1.00

Cil −0.23 0.38* 0.64*** 0.59*** 0.49** −0.23 0.04 0.56*** 0.59*** −0.04 0.42* 1.00

Tin 0.22 0.08 0.26 0.35* 0.60*** −0.20 −0.05 0.21 0.22 −0.15 0.36* 0.32* 1.00

MZ −0.25** −0.08 −0.11 −0.08 −0.27** 0.17 0.02 −0.09 −0.01 0.17 −0.18 0.18 0.03 1.00

NO3 + NO2 −0.11 0.49*** 0.35*** 0.24** 0.13 −0.29*** −0.08 0.40*** 0.11432 −0.1517 0.0507 0.1279 −0.123 −0.101

SiO4
3− 0.04 0.09 0.02 0.15 0.13 −0.10 −0.11 0.10 −0.15 0.00 0.01 −0.22 −0.06 0.05

PO4
3−

−0.41*** −0.15 −0.56*** −0.29*** −0.43*** 0.20* −0.06 −0.44*** −0.44** 0.48** −0.34* −0.38* −0.30 0.21*
TN −0.04 0.30*** 0.09 0.17* 0.14 −0.14 −0.12 0.25** −0.12 −0.05 0.08 −0.15 −0.06 0.02

APM 2.5 0.41*** 0.07 0.13 0.16 0.47*** −0.20* −0.01 0.10 −0.05 −0.12 −0.04 0.06 0.32 −0.30***
APM 10 −0.05 −0.08 0.06 0.19* 0.23** −0.30*** −0.15 0.12 −0.06 0.04 −0.18 0.06 0.09 −0.20*

Bold numbers represent significant correlation at *p < 0.05, **p < 0.01, ***p < 0.001.

Mesozooplankton biomass was significantly higher during
2010 (Mann-Whitney Rank Sum, p < 0.05) (Figure 8), especially
during March 2010. Maximum values were observed, however,
during the LWB in 2011 (Figure 8). Chla, heterotrophic
prokaryotes, silicoflagellate, and ciliates explained 70.3% of the
variation in mesozooplankton biomass (Table 1).

Comparing both years (Figure 9), biomass was significantly
higher for autotrophic picoeukaryotes, Synechococcus,
Prochlorococcus, heterotrophic prokaryotes, diatoms, tintinnids,
silicoflagellates (Mann-Whitney Rank Sum, p < 0.05) and ciliates
(t-test, p < 0.05) during the cold year (2011). By contrast,
autotrophic and heterotrophic nanoflagellates, dinoflagellates,
and mesozooplankton (Mann-Whitney Rank Sum, p < 0.05)
were significant higher during the warm year (2010) (Figure 9).
In agreement, we found significant negative correlations between
temperature and Synechococcus, heterotrophic prokaryotes
and mesozooplankton (Pearson test, Table 2), and significant
positive correlations between temperature and Prochlorococcus
and both autotrophic and heterotrophic nanoflagellates (Pearson
test, Table 2).

Microzooplankton Grazing and
Phytoplankton Growth
Dilution experiments performed during the warm (D1–D5) and
cold years (D6 and D7) (Table 3) did not show a relationship
between temperature and growth or mortality rates. In terms of
Chla, growth showed highest rates during 2010 while grazing
remained constant during both years (Figures 10A,B). For
specific plankton groups, growth for autotrophic picoeukaryotes,
Synechococcus and Prochlorococcus was higher in 2010, while

for heterotrophic prokaryotes, autotrophic and heterotrophic
nanoflagellates, and the growth was higher in 2011 (Figure 10A).
All groups showed lower grazing rates during 2011 compared
to 2010 (Figure 10B). The daily production removed by
microzooplankton (%PP) showed the highest values in 2010
for autotrophic and heterotrophic nanoflagellates. Chla and
heterotrophic prokaryotes displayed highest rates in 2011
(Figure 10C). We also found a significant positive correlation
between heterotrophic nanoflagellate biomass and grazing of
Synechococcus, and %PP of Synechococcus (Pearson test, r = 0.87
p < 0.05 and r = 0.87 p < 0.05; respectively).

DISCUSSION

Two contrasted scenarios were observed during 2010 and 2011
in the subtropical waters off the Canary Islands. Winter 2010
was the warmest of the last 30 years in these waters (Cropper
and Hanna, 2014), also coinciding with the exceptionally warm
temperatures in Europe (Barriopedro et al., 2011). In the eastern
North Atlantic subtropical gyre, the cooling of surface waters
and some episodic wind stirring in winter stimulates convection
which erodes the thermocline and re-supplies nutrients to the
photic zone, developing the LWB (Menzel and Ryther, 1961; De
Leon and Braun, 1973; Braun, 1980; Karl et al., 1996; Barton
et al., 1998; Arístegui et al., 2001; Cianca et al., 2007; Neuer
et al., 2007). Temperature was above 19◦C during the productive
period of 2010, limiting the flux of nutrients into the euphotic
layer by convective mixing. These climatic conditions promoted
oligotrophic conditions during 2010, preventing the formation
of the typical LWB in these waters. The annual average values
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FIGURE 3 | Temporal variability of (A) average dust concentration of atmospheric Particulated Matter (PM, µg m−3) from three dust stations for particle size of
10 µm (�) and 2.5 µm (�), mean annual dust concentration at the North of Gran Canaria (– – –), statistically significant (Kruskal-Wallis One-way ANOVA, p < 0.05)
dust events (downarrow), Chlorophyll a concentration (mg m−3,•) in the mixed layer and Primary Production from satellite (mgC m−2 d−1,•); (B) average
concentration (µM) of NO3 + NO2 (•), SiO4

3− (•) and PO4
3− (•) in the mixed layer for stations 2, 3, and 4. * No data available.

of satellite Chla from 2003 to 2014 was 0.4 mg Chla m−3
±

0.14 (mean ±SD)3, while during 2010 average value was 0.21 ±
0.19 (mean ± SD). By contrast, normal productive conditions
were observed during winter 2011 as we noticed the development
of the winter bloom. Physical conditions during winter directly
impacted the biomass of planktonic organisms and most likely
the trophic relationships among different groups.

Impact of Late Winter Bloom
Development on Autotroph Community
The ∼0.5◦C increase in temperature during 2010 led to a high
stratification of the mixed layer, which limited the development of
the LWB during February and March and the subsequent increase
in Chla (Figures 2, 3A). By contrast, the cooling of surface waters
during 2011 promoted the development of a deep mixed layer
and the consequent nutrient availability in the euphotic zone,
favoring the development of the LWB. In terms of Chla, the
magnitude of the LWB in 2011 was similar to previous studies
in the area (e.g., Schmoker and Hernández-León, 2013). During
spring, surface waters became warmer and autotrophic biomass

3https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/

decreased (Figures 3, 6) as expected (Arístegui et al., 2001;
Schmoker et al., 2012, 2014).

Saharan Dust Fertilization and Nutrient
Pumping
The year 2010 was a period of more intense dust events in
recent years (Cropper et al., 2014), and March 2010 showed
the highest deposition (Figure 3A). Dust transported significant
concentrations of iron, aluminum and manganese as measured
during the same events (see Jaramillo-Vélez et al., 2016;
Menéndez et al., 2017; Báez-Hernández et al., 2019) and promote
some nutrient stress relief (Neuer et al., 2004). The strong
stratification of the water column during winter 2010 limited
the replenishment of nutrients to the euphotic layer. However,
it is also known that Saharan dust releases relatively high
concentrations of phosphorus (Bonnet et al., 2005; Herut et al.,
2005; Duarte et al., 2006), which would explain, at least in part,
the higher PO4

3− concentration during 2010 (0.12 µM ± 0.05
SD) compared to 2011 (0.07 µM ± 0.03 SD) (Mann-Whitney
Rank Sum Test, p < 0.001), with previous measurements at
the time-series from station ESTOC (Neuer et al., 2007), and
at the northeast subtropical gyre (Marañón et al., 2000, 2003).
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FIGURE 4 | (A) Temporal variability of average values (mean ± SE) of biomass for stations 1, 2, and 3, and (B) Percentage for Prochlorococcus (Prochl,�),
Synechococcus (Syn,�), and autotrophic picoeukaryotes (APE,�). * No data available.

FIGURE 5 | Temporal variability of heterotrophic bacteria biomass (�). Values are the average of values (mean ± SE) for stations 1, 2, and 3. No data available is
represented by an asterisk.

Saharan dust also contains silicates (Goudie and Middleton,
2001; Viana et al., 2002) although its concentration in the ocean
remained slightly lower in 2010 (0.52 µM ± 0.13 SD) than in
2011 (0.66 µM ± 0.3 SD) but not significantly different. It was

not surprising to find a higher concentration of NO3 + NO2 in
2011 (0.19 µM ± 0.18 SD) due to higher mixing in that year
compared to 2010 (0.06 µM ± 0.01 SD). However, NO3 + NO2
peaks observed after dust events (Figure 3) were also reported by
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FIGURE 6 | (A) Temporal variability of averages values (mean ± SE) of biomass for stations 1, 2, and 3, and (B) Percentage for heterotrophic (HN,�) and
autotrophic (AN,�) nanoflagellates. No data available is represented by an asterisk.

other authors (e.g., Mills et al., 2004) as Saharan dust is also an
important source of NO2

− and especially NO3
− (Formenti et al.,

2003; Morales-Baquero et al., 2006; Tang et al., 2010).

Community Succession
Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes
biomass were extremely low during 2010 compared to 2011
(Figure 4). This biomass was also quite low compared to
previous years in the same area (see Schmoker and Hernández-
León, 2013). Prochlorococcus dominated throughout the study
except during the bloom, when Synechococcus and autotrophic
picoeukaryotes took over the picoplankton community
(Figure 4B), something observed as a common feature of
subtropical gyres (Zubkov et al., 2000; DuRand et al., 2001;
Baltar et al., 2009; Giovannoni and Vergin, 2012; Schmoker et al.,
2012; Schmoker and Hernández-León, 2013). Heterotrophic
prokaryotes dominated the picoplankton community during
2010 although their biomass was lower than during 2011.
Gómez-Consarnau et al. (2019) reported that bacteria with
proteorhodopsins exhibit a hybrid metabolism obtaining
energy from organic matter degradation or through light-
driven energy generation. In highly oligotrophic environments,
biomass generation by these bacteria can exceed that of primary
production. However, we can only speculate that heterotrophic

prokaryotes dominance over other picoplankton during 2010
was due to bacteria with proteorhodopsins since no more specific
analyses were made during this study.

The diatom peak at the beginning of the bloom period
is another feature of the LWB already observed in Canary
Island waters (Ojeda, 1998; Schmoker et al., 2014). The large
and episodic increase in diatoms biomass during 2011 was a
striking result since temperature were slightly higher than in
previous studies (see Schmoker and Hernández-León, 2013).
Therefore, we would expect a lower availability of nutrients
developing a less favorable scenario for these large algae. Kemp
and Villareal (2013) observed diatoms involved in diazotrophic
diatom symbioses increasing primary production in stratified and
oligotrophic waters. However, we cannot prove that Chaetoceros
sp., the largest contributors to the diatom biomass in February
2011, was involved in diazotrophic diatom assemblages. Another
possibility to explain the diatom peak could be that Saharan
dust deposition during January 2011 fertilized surface waters,
enhancing the availability of nutrients due to mixing and favoring
the extraordinary peak of diatoms.

Dinoflagellates dominated the planktonic community during
2010, and had higher biomass than in 2011 (Figures 7, 9).
Dinoflagellates are dominant during oligotrophic, warm, and
stratified periods as observed in the tropical and subtropical
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FIGURE 7 | (A) Temporal variability of averages values (mean ± SE) of biomass for stations 1, 2, and 3, and (B) Percentage for diatoms (Dia,�), dinoflagellates
(Din,�), silicoflagellates (Sil,�), ciliates (Cil,�) and tintinnids (Tin,�). No data available is represented by an asterisk.

FIGURE 8 | Temporal variability of mesozooplankton biomass (�). Values are the average of values (mean ± SE) for stations 1, 2, and 3. No data available is
represented by an asterisk.

ocean (e.g., Armengol et al., 2019). Outside the productive
period during 2011, dinoflagellates also predominated in the
microplankton community as previously observed in the

oligotrophic subtropical ocean (Buck et al., 1996; Bode et al.,
2001; Naik et al., 2015; Armengol et al., 2019). Opposite to our
results, Schmoker and Hernández-León (2013) found ciliates as
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FIGURE 9 | Changes in biomass (mgC m−3) (±SE) of autotrophic picoeukaryotes (�), Synechococcus (�), Prochlorococcus (�), autotrophic nanoflagellates (�),
heterotrophic nanoflagellates (�), heterotrophic bacteria (�), diatoms (�), dinoflagellates (�), silicoflagellates (�), ciliates (�), tintinnids (�), and mesozooplankton
(�) between 2010 and 2011 years. Right values indicate more biomass in 2011, while left values indicate more biomass in 2010.

TABLE 3 | Mortality (m) and growth (µ) rates (d−) of total phytoplankton (Chla), autotrophic picoeukaryotes (APE), Synechococcus (Syn), Prochlorococcus (Prochl),
autotrophic nanoflagellates (AN), heterotrophic bacteria (HB) and heterotrophic nanoflagellates (HN) for each dilution experiment.

Experiment Date Chla APE Syn Prochl AN HB HN

m µ0 m µ0 m µ0 m µ0 m µ0 m µ0 m µ0

D1 10/3/10 0 3.8 0 0.43 0.15 0.74 0.23 0.63 0.42 0.42 1.81 1.74 1.26 0.76

D2 17/3/10 0 0.42 0.89 1.18 0.29 0.36 0.3 0.05 n.a n.a 1.59 1.32 n.a n.a

D3 24/5/10 0.2 0.27 0.16 0.45 0 0.05 1.39 2.2 n.a n.a 1.32 1.45 n.a n.a

D4 2/6/10 0 0.63 0.27 0.001 0 0.33 0.02 1.09 n.a n.a 0.36 0.001 n.a n.a

D5 9/6/10 2.06 1.92 0.28 0.56 0.07 0.23 1.24 1.58 2.67 1.51 0.57 0.87 1.87 1.24

D6 20/1/11 0.85 0.27 0 0.001 0 0.001 0 0.29 0.61 1.43 0.76 0.75 0.25 1.57

D7 27/4/11 0.07 0.74 0 0.001 0 0.001 0 0.07 1.62 1.65 1.45 1.54 1.64 0.78

No data available (n.a).

the most abundant organisms of the microplankton community
during their study between 2005 and 2007. We hypothesize that
the large biomass of mesozooplankton during 2010 preyed on
ciliates as the preference of copepods for ciliates is well known
(Stibor et al., 2004a,b; Vadstein et al., 2004; Calbet and Saiz,
2005; Armengol et al., 2017), potentially explaining in part the
low ciliate biomass during 2010 (0.70 mgC m−3

± 0.25 SD) in
comparison to 2011 (1.12 mgC m−3

± 0.54 SD).
The mesozooplankton biomass increased after dust deposition

(Figure 8), especially after the main event on March 18th,
in accordance with previous studies in the area (Hernández-
León et al., 2004). Herrera et al. (2017) suggested that the
increase in mesozooplankton was the consequence of the
so-called luxury consumption (Pitta et al., 2016) based on
phosphorus input changing the stoichiometry of preys and
favoring mesozooplankton (see below).

Trophic Web Relationships
During this study, we observed how physical and chemical
conditions in our area of study shifted from very oligotrophic
(2010) to oligotrophic (2011) and productive conditions (LWB).
Temperature and availability of nutrients/preys were the main

shaping agents of the planktonic communities as shown by
correlations found between both variables and different groups
of organisms (Tables 1, 2). However, trophic interactions
have a strong impact on planktonic communities, given that
grazing is an important driver of primary producers, even when
phytoplankton growth increases (Landry et al., 2000b,a; de Baar
et al., 2005; Herut et al., 2005; Boyd et al., 2007; Henjes et al.,
2007; Marañón et al., 2010). Productive environments differ
biologically from oligotrophic ones as in the latter small cells
dominate the planktonic community (Marañón et al., 2010). In
oligotrophic environments, microzooplankton is more efficient
at consuming phytoplankton as a result of their similar size to
its prey, high growth, and metabolic rates (Fenchel, 1987; Sherr
and Sherr, 1994; Jones, 2000; Boëchat et al., 2007), and their
consumption can exceed more than 70% of primary production
(Landry and Calbet, 2004; Armengol et al., 2019). Conversely,
in productive environments large cells such as diatoms
dominate the community (e.g., Wilkerson et al., 2000). Here,
microzooplankton are the main consumers of bacteria, small
autotrophs, flagellates and even other protists (e.g., Campbell,
1927, 1926; Sherr et al., 1986; Strom, 1991; Hansen, 1992;
Sherr and Sherr, 2003). Nanoflagellates are efficient bacterivores
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FIGURE 10 | Rates of (A) growth (d−1), (B) grazing (d−1), and (C) daily production removed (%) (± SE) in 2010 and 2011 for chlorophyll a (Chla,�), autotrophic
picoeukaryotes (APE,�), Synechococcus (Syn,�), Prochlorococcus (Prochl,�), autotrophic nanoflagellates (AN,�), heterotrophic nanoflagellates (HN,�) and
heterotrophic bacteria (HB).

(Azam et al., 1983) and could be preying on cyanobacteria
and heterotrophic prokaryotes as shown by the relationships
found between heterotrophic nanoflagellates and Synechococcus
(Tables 1, 2). The large biomass of dinoflagellates and the
decrease in autotrophic picoeukaryotes and Synechococcus
biomass (Figures 4, 7) during the productive period in March
2010, as well as the high grazing rates found (Table 3), and the

significant relationships between dinoflagellates and autotrophic
picoeukaryotes (Tables 1, 2), suggest the grazing of dinoflagellates
upon autotrophic picoeukaryotes. The relative high availability
of potential preys during 2011 (Figure 4) did not result in high
grazing rates on pico- and nanoplankton. This is a common
feature of oligotrophic systems because nanograzers are the
largest consumers of primary production (Calbet, 2008). Previous

Frontiers in Marine Science | www.frontiersin.org 15 August 2020 | Volume 7 | Article 677

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00677 August 13, 2020 Time: 17:6 # 16

Armengol et al. Plankton Community Changes in Subtropical Ocean

studies (Schmoker and Hernández-León, 2013; Armengol et al.,
2017) found a strong correlation between microplankton and
autotrophic picoplankton in these waters and suggested that
small-sized microplankton controlled smaller autotrophic cells,
supporting our results.

Trophodynamics depends on both physical and chemical
factors such as temperature or dust deposition and organisms
abundance. Thereby, we hypothesize three trophic scenarios
were taking place depending on environmental conditions and
promoting productive, oligotrophic, or highly oligotrophic
conditions. Water became more productive during the
LWB and experienced an increase in autotrophic organisms,
especially diatoms. From results of biomass and statistics
test obtained, we speculate mesozooplankton could consume
the diatom bloom enhanced by the continuous pumping
of nutrients from deep waters due to mixing, while
ciliates could graze upon picoplankton. Mesozooplankton
(mainly copepods) could also be preying upon ciliates.
Thus, in this scenario, we speculate that a “classic trophic
chain” prevailed (Mills, 1989). In this environment large
organisms dominated the community while dinoflagellates
decreased in biomass.

Outside the LWB period waters were warmer, stratification
increased, and nutrients diminished. Now, smaller organisms
such as dinoflagellates and heterotrophic prokaryotes
dominated the planktonic community while ciliates decreased.
Mesozooplankton biomass decreased during this period probably
due to its inability to take advantage of new available resources.
The mesozooplankton decline suggests a small transfer of matter
and energy from primary producers to higher trophic levels, and
a potentially a higher remineralization of organic matter typical
of the microbial loop (Azam et al., 1983).

The last scenario observed was the highly oligotrophic
conditions during 2010 as a result of the strongly stratified
waters which prevented mixing and nutrient availability. During
this period, the Saharan dust events were almost the sole
nutrient input. We observed a decrease in Chla and an increase
in the biomass of heterotrophic prokaryotes, nanoflagellates,
and mesozooplankton after dust events, especially after the
most important one in March 18th, 2010. These pattern could
be fingerprints of an alternative trophic pathway similar to
the so-called “tunneling effect” (Thingstad and Cuevas, 2010),
whereby rapid luxury consumption (rapid uptake of phosphate)
by bacteria could be quickly consumed by heterotrophic
nanoflagellates and dinoflagellates, increasing its biomass and
mesozooplankton feeding as proposed by Herrera et al.
(2017). If we consider heterotrophic prokaryotes as bacteria
with proteorhodopsins, as proposed by Gómez-Consarnau
et al. (2019) in highly oligotrophic waters, autotrophic and
mixotrophic dinoflagellates could be the major consumers of
phosphates, explaining in part the high biomass of dinoflagellates
throughout 2010. Also the biomass of mesozooplankton
remained relatively high until June 2010, showing some
fingerprints of fertilization effects through these non-exclusive
trophic pathway due to dust events during April, May, and
June 2010, transferring energy and matter from lower to
higher trophic levels.

In summary, the increase of 0.5◦C in temperature in
subtropical waters prevented the development of the LWB and
caused highly oligotrophic conditions, whereby the episodic
Saharan dust events provided an important input of nutrients.
In this environment, we expected the dominance of small
cells and low mesozooplankton biomass. However, we found
a relatively high mesozooplankton biomass, hinting at other
trophic pathways such as the “tunneling effect.” In 2011,
lower temperature conditions and mixing improved nutrient
availability in the euphotic zone and allowed the development of
the LWB during 2011. In this period, autotrophic cells dominated
the community, whereby diatoms showed a massive peak,
coinciding with an increase of ciliates and mesozooplankton. We
suggest that during the LWB, coexistence of the microbial loop
and the “classic” trophic web occurred, increasing efficiency in
matter transfer to higher trophic levels. However, the LWB is only
a short productive pulse in the normal oligotrophic conditions
dominating subtropical waters throughout the year. Before and
after the bloom, we found the dominance of typical small cells
of oligotrophic environments, wherein microbial loop usually
predominates with a high nutrient recycling.
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