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The diving behavior of southern elephant seals,Mirounga leonina, is investigated through

the analysis of time-depth dive profiles. The originality of this work is to consider

dive profiles as continuous curves. For this purpose, a Functional Data Analysis (FDA)

approach is proposed for the shape analysis of a collection of dive profiles. Complexity

of dive shapes is characterized by a mixture of three main shape variations accounting

for about 80% of the entire variability: U or V shape, vertical depth variability during the

bottom time, and skewed left or right. Model-based clustering allows the identification of

eight dive shape clusters in a quick and automated way. Connection between shape

patterns and classical descriptors, as well as the number of prey capture events, is

achieved, showing that the clusters are coherent to specific foraging behaviors previously

identified in the literature labeled as drift, exploratory and active dives. Finally, FDA is

compared to classical methods relying on the computation of discrete dive descriptors.

Results show that taking the shape of the dive as a whole is more resilient to corrupted or

incomplete sampled data. FDA is, therefore, an efficient tool adapted for processing and

comparing dive data with different sampling frequencies and for improving the quality

and the accuracy of transmitted data.

Keywords: elephant seals, foraging behavior, functional data analysis, capture events, dive, curves

INTRODUCTION

In a global warming context, studying and understanding the foraging behavior of predators
and their relationships with their surrounding environment is fundamental for conservation and
management programs (Runge et al., 2014). According to optimal foraging theory, individuals are
expected to minimize the time spent searching for and capturing food while maximizing their
energy intake (Stephens and Krebs, 1986). Aquatic predators, such as birds, reptiles, and mammals
that feed underwater but must breathe at the surface, are expected to optimize their capture
success within the constraints of oxygen availability (Kooyman, 2012). For 20 years, the behavior
of these specific animals has been widely studied with the implementation of tags that allow the
sampling of numerous data both on their dive behavior, their physiology, and their biological and
physical surrounding environment. Nowadays, bio-logging devices are the most appropriate tools
to provide critical information on the diving and foraging of free-ranging animals (Evans et al.,
2013). Technological advances have led to size and weight reduction of autonomous devices with
gains in battery lifetime and memory size as well as new variables monitored. This emergence of
new data sampled at high frequency (Block et al., 2011) enables the study of diving behaviors at
various scales in time and space (Jonsen et al., 2007; Scheffer et al., 2012; Nowacek et al., 2016).
Time Depth Recorders (TDRs) provide a large amount of data that are downloaded from sensors to
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computer systems where they are stored. In addition, many
of these tags also sample environmental data (Harcourt et al.,
2019). Despite concrete advances in the study of foraging
behavior, a gap remains between fast advances in sampling
technologies and adapted methods of data analysis required to
face the increase in data complexity. Technological innovation
and development of new measuring devices are much faster than
the invention and validation of newmethods for operational data
processing. It is because innovative methods are often unknown
to the scientists who build up the sampling design but also
because the required methods are not yet available. New data
leads, indeed, to problems that no one had ever thought of.
Besides, many tags require on-board processing for satellite data
transmission (Fedak et al., 2002). Energy costs impose constraints
in this on-board processing to reduce computational time and
to improve the quality of transmitted data while minimizing the
amount of transmitted information. It is therefore necessary to
have access to adapted methods to find the best compromises to
satisfy these constraints.

One example of this fast increase is the biologging data
volume provided by the long term monitoring of the deep and
continuously diving southern elephant seal (Mirounga leonina) in
the Southern Ocean as part of the National Observatory System
MEMO (Mammals as Ocean Samplers) (Harcourt et al., 2019)
or as a part of the Marine Mammals Exploring the Oceans
Pole to Pole MEOP consortium (Treasure et al., 2017). These
animals are equipped with a TDR tag and/or with a conductivity–
temperature–depth Satellite Relay Data Logger (CTD-SRDL)
tag measuring time-depth profiles (subsequently referred to as
“SRDL”). Large numbers of deployments have given rise to
large databases that provide access to sampled oceanographic
variables (temperature, salinity, and fluorescence profiles) as well
as movements of equipped individuals, especially dives (Fedak
et al., 2001; Roquet et al., 2014).

Figure 1 displays an example of time-depth dive profiles
of southern elephant seals, Mirounga leonina. During offshore
periods lasting 3–7 months, a female elephant seal performs
quasi-continuous long deep dives (26min in average, 432m deep)
punctuated by short breathing episodes at the surface (Hindell
et al., 2016). The availability of high-frequency data combined
with this continuous aspect of the dives lead us to consider that
dives can be handled as curves. Data that arrive as observed
curves are called functional data because they are observations of
a variable (depth) indexed over a continuum (time). Time-depth
dive profiles share common features:

• They start from the surface and end at the surface.
• The ending time and maximum depth are different between

two dives.
• An observed dive is constituted with numerous

sampled points.
• The number of sampled points changes between two dives.
• The sampled grid might not be equally spaced in time.
• Random errors may occur (e.g., time-depth sensor problems).
• An elephant seal can achieve several thousands of dives.

In their raw form, it is almost impossible to compare different
dive shapes and even less to identify a small number of specific
foraging behaviors.

Many studies deal with dive classification methods to organize
dives in meaningful categories (Hindell et al., 1991; Campagna
et al., 1995; Dragon et al., 2012). Classically, a finite set of
descriptors, such as mean and maximum depth, duration of the
descent, ascent, and bottom phases of the dive (see Hindell et al.,
1991; Le Boeuf et al., 1993; Tremblay and Cherel, 2000; Watwood
et al., 2006), are extracted from the high-frequency sampled
dive data. These descriptors allow the construction of a table of
observations and variables (the descriptors) over which standard
multivariate analyses, such as reduction dimension methods (i.e.,
PCA), classification, or statistical tests (e.g., Random Forest,
Thums et al., 2008; HMM, Ngô et al., 2019) will be performed.

This work proposes that we study the diving behavior of
Mirounga leonina through the shape comparison of time-depth
dive curves without the use of predefined numerical descriptors.
Indeed, the choice of the descriptors relies on empirical and
historical knowledge of the diving behaviors. Here, we argue that
if the option of a finite number of well-suited descriptors is the
predominant method to compare a collection of dives, it remains
a partial description of the entire shape of the sampled curves.We
assume that shape potentially contains all the possible descriptors
of a dive curve. Therefore, this work first aims at comparing
dive shape and numerical descriptors. In a second step, identified
shape patterns in dive profiles will be connected with prey capture
events to better understand foraging behaviors and the structure
of the surrounding prey field.

After that, the document introduces the data obtained from
southern elephant seal tags. In a second step, technical points
for the transformation of discrete data to continuous functions
are presented. We then propose some dimension reduction and
classification methods adapted to data that are curves to compare
and to characterize diving behaviors. A comparison with classical
descriptor-based methods and tests for robustness is achieved
with simulations on downsampled data. The ecological relevance
of the results is finally discussed by comparing the characteristic
shape to the number of prey capture events. The different steps
of the method used in the article are summarized in Figure 2.

MATERIALS AND METHODS

Processed Data
A total of 17 post-breeding southern elephant seal females,
Mirounga leonina were tagged. Fieldwork was conducted at
the Kerguelen Islands (Figure 3), from November to January
2010–2011 for three females, 2014–2015 for the six females,
2015–2016 for four females, and 2017–2018 for the four
others. The seals were equipped with a TDR (Mk10, Wildlife
Computer) recording time and depth at 0.5 or 1 Hz. For
twelve females, the TDR was combined with an accelerometer.
TDR-accelerometers sampled accelerations on three axes. The
acceleration measured simultaneously on these three axes was
used to estimate prey capture attempts (Viviant et al., 2010).
Animals were captured and anesthetized using a 1:1 combination
of tiletamine and zolazepam (Zoletil 100), which was injected
intravenously (McMahon et al., 2000). After cleaning the fur
with acetone, data loggers were glued on the head of the seals,
using quick-setting epoxy (Araldite AW 2101). Therefore, the
data loggers collectedN = 87, 691 dives (Figure 1). All fieldwork
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FIGURE 1 | Four dive examples from Mirounga leonina. Each dive is plotted as depth vs. time. These dives are functional data because the variable of interest (depth)

is a function of time. Dives have different length in depth and time. The number and the position of the sampled points are different. Random errors can occur due to

time-depth sensor problems. In this raw form, it is impossible to compare their shape.

activities were approved by TAAF (French Antarctic and sub-
Antarctic Territories) Ethic committee (Comité Environnement
et Préfet des Terres Australes et Antarctiques Françaises). All
effort was made to minimize handling time.

Dive Curve Construction
Let us consider a sampled dive. Data arrive as a collection of
L pairs (t1, p1), · · · , (tL, pL) where tl is time (min), and pl the
observed depth (m). We suppose that an observation pl of the
diving depth at time tl may be well-represented by a continuous
function π of time such that:

pl = π(tl)+ εl

where π is the deterministic part of the dive, and ε is a remainder.
If the function π is well-chosen, it is hoped that this remainder is
as small as possible. The form of π , which is directly connected
to the shape of the dive, is expressed as a linear combination of K
known basis functions φ1, · · · ,φK such that

π(t) = α1φ1(t)+ α2φ2(t)+ · · · + αKφK(t).

The basis functions φk are chosen by the practitioner
and are continuous functions of time. The shape of the
function π is entirely determined by the knowledge of the
coefficients α1, · · · ,αK which are estimated using the data
(t1, p1), · · · , (tL, pL) by penalized least squares regression (see
Supplementary Material).

This regression procedure is influenced by the following:

• the choice of the very nature of the basis (i.e., Fourier basis,
B-splines basis, and polynomial basis);

• the choice of the number K of basis functions (i.e., the number
of coefficients); and

• the choice of additional constraints suggested by the data (or
by some knowledge of the practitioner).

Many choices for basis functions are possible. Fourier basis,
polynomial basis, splines, wavelets may be used. However, the
choice for the basis has little influence for describing the shape of
a dive (Ramsay and Silverman, 2005). In our case, cubic B-splines
basis (piecewise polynomials of degree 3) is the most advisable
choice as it combines fast computation capabilities and flexibility.
This is a critical point for the onboard processing of data in
satellite relayed data loggers.

Although a small numberK < L of basis functions is generally
sufficient to capture the main variations in the shape of any dive,
the choice of this number may have a significant influence on the
shape of the estimated curves. The bigger K is, the closer the fit
will be to the data, as usual in a regression problem (Figure 4).

However, the penalized regression procedure allows for
getting rid of this choice by giving a compromise between the
regularity of the obtained curve and its closeness to the data. This
particular point will be illustrated in detail in the Result section.

Finally, a more detailed look at the data suggests that
additional constraints must be included when searching for
the best fit. Due to 0-offset correction, each dive starts from
the surface [i.e., (t1, p1) = (0, 0)], and ends at the surface
[i.e., (tL, pL) = (tM , 0) where tM is the duration of the
dive]. The B-spline must reach the surface at least at the
beginning and at the end of a dive, which does not occur with
a non-constrained regression procedure. One other advantage
of using penalized B-splines is that it is easy to include
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FIGURE 2 | Workflow of functional data analysis for the study of diving behavior of Mirounga leonina. Time-depth sampled profiles (a) can be approximated with

continuous curves by a linear combination of K known functions (b). This first step reduces the dimensionality of the initial data and provides a new data frame.

Observations are projected with PCA in a space of small dimensions using a number Q of principal component scores. Each component reflects a specific

deformation of the shape of curves (c). By construction, deformations are independent, and their magnitude can be ordered according to a percentage of explained

variance. PCA scores are used as inputs for model-based clustering in order to identify characteristic shapes of sampled curves (G1, G2, G3, and G4) (d).

FIGURE 3 | Post-breeding foraging trips around the Kerguelen Islands of 17 female southern elephant seals equipped between October 2010 and October 2017

(gray lines). The coastline’s contours are indicated in black, and land areas are in brown.

some additional pointwise constraints while keeping a simple
solution to the regression problem (Ramsay and Silverman,
2005). These constraints can take various forms, especially if

the curve must go through some points or if the derivative of
the curve must have some values on some particular points
(see Supplementary Material).
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FIGURE 4 | An example of data fitting using a B-spline basis. The dotted line is a sample of a dive (259 sampling location), and the red line is the fitting curve. As the

number K of basis functions increases, the quality of the fit is improved.

Shape is all the geometrical information that remains when
location, scale, and rotation effects are filtered out from an
object (Dryden and Mardia, 2016). Therefore, the comparison
between several diving shapes imposes that every estimated
curves must start and finish at the same diving time. It is
not the case as the diving time changes from dive to dive
(Figure 1). In the same way, the shape of each curve must be
independent of their maximum dive. These differences arise from
physical and/or biological factors (prey density, frontal area, body
condition). As shown in Figure 5, if care is taken to normalize
diving curves by reducing both time and depth range to segment
[0, 1], very different dives get the same shapes, which might
highlight similar behaviors. Sampled data are then normalized
before B-splines are computed, as shown in Figure 5.

Principal Component Analysis of
Functional Data
Starting from the estimated curves π1, · · · ,πN constructed as
above, the aim is now to compare the shape of dives to identify
a small number of dive patterns. The high number (N = 87, 691)
of observed curves makes this task not easy. We propose the
use of a functional PCA adapted to data that arrive as curves
(FPCA). The PCA is similar to that performed on a data table

crossing N individuals (the dives) and P variables except that
variables are now B-splines coefficients (Ramsay and Silverman,
2005). In that case, the PCA loadings are curves instead of
vectors (eigenfunctions instead of eigenvectors). The scores of
FPCA allows representing observations that are curves in a space
of small dimension. Finally, observations can be reconstituted
in this space of small dimensions as a linear combination
between some factors of variability (the eigenfunctions) and
the scores according to a given amount of variability (see
Supplementary Material).

Clustering
Characteristic curve clusters are identified with classification
methods. Heuristic analyses of classical use (hierarchical
clustering, k-means) may be a problem when determining the
number of classes and when handling outliers (Melnykov and
Maitra, 2010).

Model-based clustering (MBC) is a possible alternative to
find a reasonable number of clusters and to deal with outliers.
The idea behind MBC is that the sample of observations
(dive profiles) arises from a distribution that is a mixture
(a linear combination) of several components. Each of these
components is associated with a distribution function and an
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FIGURE 5 | On the left, the representation of some dives (raw data). On the right, the representation of the same dives after normalization. Dives have different

maximum depth, different duration, but dive patterns are similar.

associated proportion in the mixture. In general, it is supposed
that the distribution is gaussian multivariate. A cluster will be
characterized by the parameters of the distributions (mean and
variance) and by the weight (the proportion) associated with
this distribution. The estimation of both distribution parameters
and mixture probabilities is achieved by the expectation-
maximization (EM) algorithm for maximum likelihood (Fraley
and Raftery, 2002). The most suitable model and the number
of clusters are determined using Integrated Complete-data
Likelihood (Biernacki et al., 2000).

Moreover, MBC associates a measure of uncertainty when
assigning an observation (a dive) to a given cluster. Observations
detected as outliers are those for which the probability of
belonging to any cluster is low, such as giving birth to a cluster
of outliers. Notice that computational time is dependent on the
dimension of the observations (K) and can be very expensive.
One way to circumvent this problem is to achieve classification in
the space of the first Q < K principal components of the FPCA,
accounting for a sufficient amount of variability (let’s say 90%).

Evaluation of the Robustness of the
Approach
With remote sampled data, it often happens that the retrieved
data are corrupted due to time-depth sensor problems. It can
also happen that when tags are not recovered only a few points
per dives are obtained by satellite transmission (Boehme et al.,
2009). It raises several critical issues on the use of incomplete
profiles, on how much results change when using downsampled
data. Functional data analysis provides meaningful solutions to
those problems.

The scores of an FPCA provide a useful pointwise
representation of the relationships between observations
that are curves. Test for robustness of Functional Data Analysis

(FDA) is conducted with the following method. First, dive
profiles are constructed using the whole set of observations,
as described in section Dive Curve Construction. A reference
FPCA is then achieved (see section Principal Component
Analysis of Functional Data). Next, successive downsampling
steps are performed by randomly removing an increasing
number of pairwise observations (t, p), and dive profiles are
re-estimated. Going through this process will modify the shape
of the estimated dive profiles at each step. Comparing scores of
successive FPCAs conducted on modified samples will help in
understanding to which extent internal relationships between
observations are changed. We place the downsampling step in
the worst case to test the robustness of our method. One can also
proceed by downsampling on a regular grid, which will lead to
similar results.

In the same way, a reference PCA is achieved using the set
of discrete descriptors computed on the raw non-normalized
dive data: maximum depth, dive duration, bottom time duration,
descent and ascent speed and the vertical sinuosity in the bottom
phase (as in Hindell et al., 1991; Le Boeuf et al., 1993; Tremblay
and Cherel, 2000; Watwood et al., 2006). The discrete descriptors
are also computed when downsampling the raw data, and PCAs
are achieved to compare the effects of sample modifications. In
both cases (FPCA and standard PCA), each raw dive is damaged
by removing a proportion of random points ranging from 20 to
90% of the available data.

One way to measure the deviation from the scores of the
successive FPCA (resp. PCA scores) configurations to the scores
of the reference FPCA (resp. PCA scores) configuration is
to compute a distance between point clouds using the same
number of relevant principal components. Because of the
properties of any PCA, and thus FPCA, the sign of axes can
be different from one FPCA to another. It is not advisable
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to compare separate FPCA coordinates straightforwardly. An
appropriate distance is computed by keeping the reference
configuration fixed and matching the others. This technique
is termed Procrustes registration in the literature (Krzanowski,
2000). Once the Procrustes registration achieved, Krzanowski
distance (Krzanowski, 2000) is computed between the reference
FPCA and successive FPCAs on downsampled data using a
fixed number of principal components accounting for a given
amount of the variability (say 90%). This distance is also
computed between the reference PCA on discrete descriptors and
successive PCAs on downsampled data using the same number of
principal components. Krzanowski distances must be normalized
to compare the results obtained with FPCAs to those with
PCAs. This normalization is obtained by dividing each FPCA
(or PCA) scores by the entire variance of the corresponding
point cloud. It reduces the variance (sum of squares of the
PCA scores) of each obtained point cloud to the unit value (see
Supplementary Material).

RESULTS

Choosing the Number K of Basis Functions
As previously mentioned (section Dive Curve Construction), the
choice of the number K of basis functions may influence the
accuracy of the fits when constructing curves from raw data. The
larger K, the better data are fitted, but the fit may also include
some noise or spurious local variations. On the other hand, if K
is too small, some essential features of the curve can be missed
(Figure 4). The choice of an optimal value of K is achieved using
the same idea as to test the robustness of the FDA approach
(section Evaluation of the Robustness of the Approach). First,
a reference FPCA is carried out using a great number K = 50
of basis functions. The idea is now to achieve FPCAs on curves
fitted when decreasing the number K to check in which extent
internal relationships between observations are modified. The
Krzanowski distance is computed by keeping the reference FPCA
fixed and matching the others.
Figure 6 displays variations of the distance between the reference
FPCA configuration (K = 50) and other FPCAs when increasing
the number K of basis functions. The first five principal
components of each FPCA accounts for about 90% of the
variability (88.2± 4.3%).

The Krzanowski distance is rapidly decreasing and vanishes to
zero for K ≥ 8 of basis functions. It means that using more than
eight basis functions has a few effects on the internal relationships
between observations. For the following, an arbitrary number
K = 20 is chosen as a reasonable number of basis functions.

Summary Statistics
Classical summary statistics can also be computed when
considering data as curves. Figure 7A displays the mean curve
given with

π̄(t) =
1

N

N
∑

n=1

πn(t)

where N is the number of sampled dives, and the standard
deviation function computed with

σ 2(t) =
1

N

N
∑

n=1

[

πn(t)− π̄(t)
]

.

Mean dive gets a symmetrical U-shape with a maximum depth
at 0.8 (Figure 7A). When normalized, the maximum depth of
each curve is 1. The mean curve of a set of dives with varying
maximumdepth (in time andmagnitude) cannot reach a depth of
1. In the same way, the shape of the standard deviation function
can be split into three parts: descent, bottom, and ascent phase.
An increasing shape variability is observed during the descent.
The bottom phase or bottom behavior phase is characterized by
an equal vertical depth variability around 0.2, and this variability
decreases with the ascent. As all dive curves start and finish at the
surface, the variability vanishes to zero close to the surface. One
can also use the correlation bivariate function

corrN(t, s) =
1

N

N
∑

n=1

(

πn(t)− π̄(t)

σ (t)

)(

πn(s)− π̄(s)

σ (s)

)

to summarize the dependency of records across different values
of normalized time.

At each point of the Figure 7B, it is possible to read the
correlation for different pairs of time (t, s). The correlation is
strong between the beginning and the end of dives (s = 0.05,
t = 0.95). The white areas display weak negative correlations
(lower than −0.2). The descent phase influences the bottom
behavior. The more vertical the descent, the earlier maximum
depth is reached.

The computation of these statistics is easy because each
observed dive has been transformed into functional data over the
same range [0; 1]. Without fitting the curves, it is not possible to
compute these summary statistics using the raw data because the
position and number of sampled points change between dives.

Shape Characterization and Comparison
The 2D mapping of the FPCA accounting for 65.1% of the
entire variability shows the relative positions of each observation
(N = 87, 691) depicting a dive, according to the two first
factors (Figure 8). A kernel density estimation (gray areas) show
that dives are roughly distributed in two groups characterized
by curves (A) and (B). A practical way to understand how the
FPCA shapes the structure of the point cloud is to represent
the deformation generated by a factor (an eigenfunction) when
moving along a factorial axis. Consider the mean curve π(t)
projected at coordinate (0, 0) in Figure 8. Panels (C) and (D)
show how that mean curve (red curve) is deformed when
subtracting [panel (C), black curve] or adding [panel (D),
black curve] the effect of the first factor ξ1(t) associated to the
eigenvalue λ1 such that

π(t)±
√

λ1ξ1(t). (1)

This first axis opposes V-shape observations [panel (C)] with
square-shape observations [panel (D)]. Dives are ordered along

Frontiers in Marine Science | www.frontiersin.org 7 September 2020 | Volume 7 | Article 595

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Godard et al. Study of Mirounga leonina Diving Behavior

FIGURE 6 | Krzanowski distance computed between reference FPCA (K = 50 basis functions) and FPCAs with K ranging from 5 to 50. Distances are computed

using five principal components, accounting for about 90% of the entire variability in every case.

FIGURE 7 | (A) Mean dive (solid curve) and standard deviation function (dotted curve). (B) Contour plot of the correlation corrN (t, s) computed on the entire set of

coefficients of the B-splines expansion of the normalized dives. This bivariate function is symmetrical as a correlation matrix. It shows the correlation of normalized

dives for each couple of times (t, s). For example, the correlation between the beginning of dives (s = 0.05) and dives at t = 0.6 is minimum (−0.25). Correlation scale

from −0.25 (white) to 1 (dark blue).

this axis according to the bottom behavior time. Remember that,
when normalized, the maximum depth of each dive is 1 and that
the mean curve of a set of dives with many wiggles does not
reach a depth of 1. Then, the second axis opposes dives with
variability at the bottom behavior [panel (F)] against dives with
small variability [panel (E)]. The two major behaviors previously
identified thus correspond to dives with a short bottom time
with low variability [panel (A)] to dives with a long bottom

time with high variability [panel (B)]. Finally, the third axis
explaining 13% of the variance (not shown here) differentiates
dives according to their skewness. Skewed right means that the
maximum depth of the dive is on the right (i.e., near the end of
the dive), and skewed left means that the maximum is on the left
(i.e., near the beginning of the dive). Thanks to the functional
PCA, each dive can be reconstituted as a linear combination of
these three independent previous factors (U or V shape, bottom
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FIGURE 8 | Kernel density display of the 2D FPCA map of dives of southern elephant seals. It accounts for 65.1% of the entire shape variability. The successive gray

surfaces increasingly darker correspond to those containing, respectively 2.5, 25, 50, 75, and 97.5% of the data centered around local density maximums. Black

points are those that escape the 97.5% area. At the top, normalized sample dives corresponding to the closest curves to the local maximums of density (a,b). At the

bottom, representation of the influence of the first factorial axis (41.6% of explained variance) on the shape of the normalized curves (c,d). On the right, the influence

of the second one (23.5% variance explained) (e,f). Red curves correspond to the mean curve. Black curves represent the deformation generated by the

corresponding factor.

variability, and asymmetry), accounting for about 80% of the
entire variability.

Pattern Identification and Relationship
With Prey Capture Events (PCE)
Taking advantage of the FPCA dimension reduction, the MBC
algorithm is realized in the space of the Q = 5 first principal
components accounting for 87.3% of the entire variability.

Clustering in the space of principal components will make the
composition of the clusters more robust if changes occur in
sample composition. We identified a number of 8 clusters whose
mean and quantile curves are represented in Figure 9 (outliers
are excluded).

According to Dragon et al. (2012), dive shapes can be
categorized as drift, exploratory and active dives [respectively
(A), (B), and (C)]. Note that drift dives are non-symmetric
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FIGURE 9 | The different clusters of dives. The 2.5, 25, 75, and 97.5% quantile curves are in black dotted lines. Cluster mean curves are in solid red lines. The three

categories are (a) drift, (b) exploratory, and (c) active according to the literature. Clusters in category (c) are sorted according to decreasing mean time spent at the

bottom.

dives with low variability in opposition to the other clusters.
Additionally, exploratory and active dives are distinguished by
their shape: V-shape for the first and square-shape for the
second. However, differences occur within the same category.
These differences are represented by a slight modification of
the global shape due to time spent at the bottom, or variability
expressed by discrepancies of the quantile curves. Active dives
are sorted according to the duration of the bottom time. The
behavioral meanings of the dive clusters and their differences will
be discussed in detail in the Discussion section. The dive clusters
will, now, be labeled according to their position in Figure 9 (i.e.,
drift, exploratory 1, active 3).

Identified patterns of dive shapes can be connected to foraging
behaviors through the number of prey capture events (PCE)
during dives. As a reminder, PCE are estimated according to the
analysis of TDR-accelerometer data (Viviant et al., 2010).

The distribution of prey capture events (PCE) varies clearly
according to the 8 dive shapes categories, as illustrated in
Figure 10. As expected, drift dives are characterized by the
fewest number of PCE (median close to 0). In contrast, foraging
dives have the highest PCE values with a clear ranking in
the median number of PCE according to the four foraging-
dives categories evidenced by the functional analysis approach.
Differences in foraging efficiency during active dives match

with the proportion of bottom time and sinuosity during the
bottom phase. Exploratory dives categories exhibit intermediate
PCE values.

Robustness of the Approach
We compare in this section, the efficiency of both classical
PCA with numerical descriptors as variables and FPCA on dive
curves through simulations of increasing downsampled datasets.
Krzanowski distance is calculated between the reference FPCA
(resp. PCA) and other FPCAs (resp. PCAs) on downsampled data
(Figure 11).

In the functional case, the distance remains close to 0 up to
80% degradation. In the case where classical descriptors are used,
the distance increases from the beginning to obtain a maximum
at 90% degradation, which is much higher than in the functional
case (0.26 compared with 0.07).

DISCUSSION

In this study, we propose some statistical methods to cluster dives
into categories which are ecologically appropriate and consistent
with previous dives classification methods by distinguishing
resting, exploring, and foraging dives. The characterization of
dive shape combined with PCE allows the identification of
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FIGURE 10 | Boxplots of the number of estimated prey capture events per cluster. Labels identify the three major categories of diving behaviors.

FIGURE 11 | Krzanowski distance calculated between reference PCA of raw dives and PCAs of downsampled dives in functional case (red line) and using classic

descriptors (black dotted line). Each raw dive has been downsampled by removing a percentage of points ranging from 20 to 90% by 5%. Both distances have been

normalized for the ease of comparison.
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TABLE 1 | Characteristics of dive clusters. All differences between median of these groups are statistically significant (p < 0.001, Kruskal Wallis test).

Drift Exploratory 1 Exploratory 2 Exploratory 3 Active 1 Active 2 Active 3 Active 4

Frequency 0.05 0.09 0.14 0.10 0.15 0.24 0.11 0.12

Max. Depth (m) 326.6 ± 111 391.5 ± 183.9 523.4 ± 196.6 536.6 ± 153.2 162.3 ± 59.3 198.5 ± 88.7 354.7 ± 109.4 443.8 ± 101.2

Desc. Speed (m/s) 1.19 ± 0.42 1.31 ± 0.45 1.44 ± 0.40 1.42 ± 0.33 1.50 ± 0.33 1.45 ± 0.42 1.62 ± 0.34 1.54 ± 0.33

Asc. Speed (m/s) 1.27 ± 0.25 1.24 ± 0.37 1.32 ± 0.27 1.39 ± 0.20 1.52 ± 0.30 1.26 ± 0.35 1.46 ± 0.24 1.45 ± 0.21

Max. Depth corresponds to the maximum depth of the dive. Desc. Speed and Asc. Speed stand, respectively for descent and ascent speed.

particular foraging behaviors conditional to prey density. It
therefore provides information on the spatial and temporal
distribution of resources. The originality of this work is to
consider the functional nature of the data: dives are curves,
and the statistical methods include this property. It is then
possible to study a sample of dive curves using the shape of the
dives. Classification with MBC allows the identification of more
diving behavior subcategories within each main diving categories
proposed in the literature. These dive categories are ecologically
relevant in terms of variation in the number of prey catch
events. Even if many factors (e.g., environmental or physiological
variables) can drive foraging behaviors, each dive category
matches to a different level of prey catch levels. Furthermore, the
proposed methods are more robust to downsampled data than
previous classification methods based on numerical descriptors.

In this study, the physical dimensions of dives (time and
depth) are deliberately excluded by a normalization step when
focusing on the shape analysis of dives. Putting dives back
to their real dimensions is a mandatory task to make the
connection between dive shape and real physical variables
(related to depth and time mostly). In other words, the study
of dive shape does not prevent the computation of classical
numerical descriptors. However, dive shape analysis provides
some additional information.

Dives are characterized by three major factors (section Shape
Characterization and Comparison). The first one is associated
with variations in the proportion of bottom time (U or V shape),
irrespective of the absolute bottom time, a usual descriptor
specific to each dive. The second one is associated with variations
in vertical movements during the bottom time, as defined as
sinuosity, a numerical descriptor as in Bailleul et al. (2008). The
third one is attached to variations in asymmetry in shape, the
equivalent of which is not available as a numerical descriptor.
This asymmetry is found in many diving species: pinnipeds, sea-
birds, and seals (Schreer et al., 2001). The role and the origin
of this asymmetry are manifold. In some cases, asymmetry is
an indicator of body conditions (i.e., buoyancy). Vertical ascent
speed tends to be more constrained than descent speed, likely
in response to ecophysiological constraints to reduce the risk of
decompression accident (see Richard et al., 2014). The proposed
methods are, therefore, able to identify the importance of this
asymmetry factor in an automated way.

Looking now at the clustering, eight dive clusters have been
labeled as drift, exploratory, and active (Figure 9). These groups
own characteristic shapes, which are a mixture of the three
previous factors identified with FPCA accounting for about 80%
of the variability between curves. Among then, the first category

of dives corresponds to drift dives or resting/food processing
dives (Crocker et al., 1997; Mitani et al., 2010). Exploratory dives
are traveling and/or observation dives. Active dives are associated
with foraging because individuals optimize the duration of
bottom time to increase overall foraging success (Hindell et al.,
1991; Fedak et al., 2001). However, the analysis of dive shapes
suggests that it is more a question of optimizing the proportion of
bottom time (according to the duration of the dive)more than the
absolute bottom time. It could provide support for a non-linear
relationship between search time and prey acquisition (Thums
et al., 2012). The vertical depth variability (i.e., sinuosity) during
the bottom phase of active dive clusters expresses movements
related to prey captures. These two criteria have a real and
well-known behavioral meaning. A proportion of 72–76% of
the feeding events takes place during the bottom phase of the
dive (Guinet et al., 2014; Jouma’a et al., 2016). Le Bras et al. (2016)
also shows that the higher the sinuosity of the bottom phase
of the dive over a narrower depth range (i.e., a limited depth
range), the higher the number of PCE. The different classes of
foraging dives are mainly driven by the vertical accessibility of the
prey (close to the surface to deep) and their distribution within
the water column (aggregated or dispersed over narrow or large
layers). Most of the dive range bottom duration time of southern
elephant seals tends to increase with prey encounter (Jouma’a
et al., 2016). Therefore, the variation in southern elephant seal
behavior at the bottom of their foraging dive constitutes, as we
should expect, a response to the variation of the prey distribution
with an increase in PCE during foraging dives. It is reflected by
the variation of the number of PCE for each dive cluster. Foraging
dives, that have the longest bottom time, have the highest number
of PCE (boxplots in Figure 10). The differences in the variability,
series of changes in depth, underline the link between foraging
behavior and spatial distribution of prey patches. Active 1 class
has less variability but more PCE. It can be assumed that more
dense, less dispersed patches allow individuals a higher number
of captures.

Characteristic shapes in clusters can be compared to
numerical descriptors computed from raw data (Table 1). The
relative proportion of each group varies, with active dives
being the most represented and drift dives the least. Active
1 and 2 are the shallowest. Active 3 and 4 are deepest.
There are, therefore, two groups of active dive clusters:
shallow active (1 and 2) with more PCE, and deep active
(3 and 4). The longer the duration of the bottom time, the
shallower the dives, and the higher the number of PCE.
Active dives maximize foraging time by minimizing descent and
ascent time.
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Except exploratory 1 cluster, exploratory dives are the deepest,
and they have the lowest duration of bottom time. Exploratory 1
dives have a skewed left shape, and the other exploratory dives
have a V-shape. These are observation and/or traveling dives.
Drift dives have a reasonable maximum depth with low descent
and ascent speed. Individuals make little effort during these dives.
In addition, the number of PCE is close to 0 (Figure 10). It is
in line with the hypothesis that these dives are food processing
and/or resting dives. Even if they are scarce, these drift dives
are very well and identified in an automated way using the
FDA approach.

During a foraging migration of an animal, it happens
that the retrieved data are damaged due to sensor problems.
Furthermore, when tags are not recovered, only a few depth
points per dives are transmitted by satellite (Boehme et al.,
2009). Classically, the transmitted depth points are selected
through a broken-stick approach (Heerah et al., 2014). The FDA
approach can be useful to optimize the transmitted amount
of data. For instance, it is possible to transmit fewer basis
coefficients to reconstruct the entire profile easily. It is also
possible to optimize the position of spline knots to get an
accurate fitted profile with few coefficients. The FDA approach
is also suitable for processing and comparing dive data with
different sampling frequencies. This particular point has been
illustrated through the analysis of simulated data sets. Our
results show that the functional data analysis is more resilient
to corrupted data compare to classification methods relying on
discrete dive descriptors. Furthermore, the FDA computation
time is significantly shorter than the computation time with
the broken-stick algorithm. The computation time for the
FDA approximation of N = 87, 691 entire curves was 357 s
against 4, 404 s for the broken-stick algorithm on a 2.7 GHz
processor. The broken-stick algorithm gives only 6 pairs of
time-depth points, whereas the FDA approximation is pretty
good, taking a basis expansion with six coefficients as previously
shown in Figure 3. This information is relevant when aiming at
reducing computation time and, therefore, energy consumption
for onboard processing and real-time transmission of dive
profiles.

CONCLUSIONS AND PERSPECTIVES

This study demonstrates the potentiality of the FDA method
for the characterization and the classification of time-depth dive
profiles. Using the shape of dive profiles enables us to obtain,
in a very visual way, results that are ecologically consistent and
coherent with previous dive classification methods implemented
on elephant seal diving data. Moreover, diving behaviors of
Mirounga leonina are straightforwardly related to a small number
of independent factors connected to shape variations in dives and
to account for most of the entire variability in curve shape. The
processed data set is large (N = 87, 691 dives), and FDA makes
it possible to process large amounts of data automatically and
quickly. Such an approach will be relevant to conduct analyses,
such as inter-annual or longer-term variations in the diving
behavior of the elephant seal. Besides, the proposed methods

allow the efficient discrimination of drift dives used to monitor
the change of buoyancy, and therefore, body condition of the
seal during their migration. Studying the ratio between buoyancy
(obtained thanks to the asymmetry of dives with principal
component scores) and the number of active dives would
highlight the foraging efficiency of individuals in geographical
areas of interest. The use of FDA allows the correct processing
of downsampled data. It is possible to process low frequency
transmitted data from unrecovered tags and to compare them
with high-frequency data. It is a real advantage if one considers
the possibility to compare high-frequency current data to less
accurate historical recorded data. Finally, the new results of
this study raise further questions on the origin of the diving
behaviors and on the forces that shape them. The next promising
step is to integrate environmental covariates (temperature,
salinity, and chlorophyll) that can also be considered as
profiles better to understand links between dive curve shapes
and behaviors.
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