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INTRODUCTION

Sea surface temperature (SST) is a commonly monitored variable in marine sciences, because
it plays a key role in several oceanographic processes (Stewart, 2008; Deser et al., 2010; Kämpf
and Chapman, 2016) and influences marine species distribution (Sanford, 2014; Henderson et al.,
2017; Vallée et al., 2019). In Atlantic Canada, studies documenting SST patterns have been prolific,
especially in recent years. As a result, the basic patterns of spatial and temporal variation in SST
are reasonably well understood for oceanic waters off Nova Scotia, particularly on the Scotian Shelf
(Hutt et al., 2002; Cyr and Larouche, 2015; Loder and Wang, 2015; Hebert et al., 2016; Larouche
and Galbraith, 2016; Richaud et al., 2016; Thomas et al., 2017; Greenan et al., 2018).

For intertidal environments along the Nova Scotia coast, however, the latitudinal and seasonal
variation in SST remains largely unknown. This is so because the studies that have described SST
patterns in waters offNova Scotia (cited above) did notmonitor intertidal environments. Moreover,
for large stretches of the Nova Scotia coastline, SST data for coastal waters even up to 10 km from
the shore are unavailable (Hebert et al., 2016; Richaud et al., 2016). Knowledge on intertidal SST
patterns is important, for example, to predict changes in the biogeography of intertidal species as
conditions change (Sagarin et al., 1999; Mieszkowska et al., 2006; Adey and Hayek, 2011; Khan
et al., 2018). Therefore, in this Data Report, we document for the first time the latitudinal and
seasonal variation of intertidal SST along the Nova Scotia coast. As satellite SST data are often a
poor predictor of intertidal SST (Smale andWernberg, 2009), we measured SST in-situ in intertidal
environments. To describe latitudinal patterns, we took measurements at nine intertidal locations
along this coast. To describe seasonal patterns, we focused on monthly changes in intertidal SST,
following the approach used to describe basic offshore SST patterns (Loder and Wang, 2015;
Larouche and Galbraith, 2016). To get a sense of the consistency of the latitudinal and seasonal
patterns in intertidal SST, we took measurements for a period of 4.5 years. Overall, the goals of
this Data Report are to identify the main latitudinal and seasonal patterns in intertidal SST and to
provide the underlying data set to help advance coastal marine science in this region and to allow
other researchers to make comparisons with other regions.

MATERIALS AND METHODS

We measured intertidal SST every day from 1 May 2014 to 31 October 2018 (with a few
exceptions noted below) at nine intertidal locations spanning the full extent of the Atlantic coast
of mainland Nova Scotia, nearly 415 km (Figure 1). For ease of interpretation, these locations are
hereafter referred to as L1–L9, from north to south: Glasgow Head (L1; 45.3203N, 60.9592W),
Deming Island (L2; 45.2121N, 61.1738W), Tor Bay Provincial Park (L3; 45.1823N, 61.3553W),
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FIGURE 1 | Map indicating the position of the nine wave-exposed intertidal locations surveyed along the Atlantic coast of mainland Nova Scotia, Canada (see section

Materials and Methods for their geographic coordinates).

Barachois Head (L4; 45.0890N, 61.6933W), Sober Island (L5;
44.8223N, 62.4573W), Duck Reef (L6; 44.4913N, 63.5270W),
Western Head (L7; 43.9896N, 64.6607W), West Point (L8;
43.6533N, 65.1309W), and Baccaro Point (L9; 43.4496N,
65.4697W). These intertidal locations are wave-exposed, as
they face the open waters of the Atlantic Ocean without any
physical obstructions. Values of daily maximum water velocity
(an indication of wave exposure) measured with dynamometers
(see design in Bell and Denny, 1994) in wave-exposed intertidal
habitats from this coast range between 6 and 12m s−1 (Hunt
and Scheibling, 2001; Scrosati and Heaven, 2007; Ellrich and
Scrosati, 2017). The substrate of the studied intertidal locations
is stable bedrock.

We measured intertidal SST with submersible loggers (HOBO
Pendant logger, Onset Computer, Bourne, MA, USA) that were
kept attached to the intertidal substrate with plastic cable ties
secured to eye screws drilled into the substrate, allowing almost
no contact between the loggers and the substrate. We installed
loggers for the first time in late April 2014 at L2–L9 and in late

April 2015 at L1. At each location, we installed two loggers several
m apart from one another at an elevation just above the mid-
intertidal zone. We set the loggers to record temperature every
30min. To maintain a continuous temperature record during
the 4.5 years of the study, we replaced the loggers periodically.
From the resulting time series of temperature, we extracted the
values of daily SST, which we considered to be the temperature
recorded closest to the time of the highest tide of each day, when
the loggers were fully submerged in seawater. We determined
the time of such tides using information (Tide and Current
Predictor, 2020) for the tide reference stations that are closest
to our intertidal locations: Canso (45.3500N, 61.0000W) for
L1, Whitehead (45.2333N, 61.1833W) for L2, Larry’s River
(45.2167N, 61.3833W) for L3, Port Bickerton (45.1000N,
61.7333W) for L4 and L5, Sambro (44.4833N, 63.6000W) for L6,
Liverpool (44.0500N, 64.7167W) for L7, Lockport (43.7000N,
65.1167W) for L8, and Ingomar (43.5667N, 65.3333W) for
L9. For each studied intertidal location, daily SST was highly
correlated between replicate loggers (mean r = 0.98, n = 9
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locations), so we averaged the corresponding daily values to
generate one time series of daily SST data for each location for
the studied period (Scrosati and Ellrich, 2020a).

To identify basic latitudinal and seasonal trends in intertidal
SST, we calculated monthly means of SST for each location
using the corresponding values of daily SST (Scrosati and Ellrich,
2020a). We were able to calculate monthly SST means for all
cases except between May 2014 and May 2015 for L1 (because
we deployed loggers for the first time at L1 in late April 2015)
and between October 2014 and May 2015 for L9 (because the
loggers deployed at L9 in October 2014 were eventually lost to
heavy surf and were only replaced in late April 2015). Because of
logger loss at L1 caused by drift sea ice coming from theGulf of St.
Lawrence at the end of the 2017 winter, SST data are unavailable
for L1 between 20 March and 12 April 2017, so we calculated
monthly SST means for March and April 2017 for L1 based on
the available dates.

With the monthly SST means, we calculated the annual SST
range for each location and year as the difference between the
corresponding highest and lowest monthly SST means. Annual
SST ranges are unavailable for 2014 because of the unavailability
of winter SST data for 2014, since this study began in the
spring of 2014. Annual SST ranges are also unavailable for L1
and L9 in 2015 because no winter SST data were available
for those locations in 2015, as noted above. Even though this
study concluded on 31 October 2018, we calculated annual SST
ranges for all locations for 2018 because, in this study, the
highestmonthly SSTmeans consistently occurred in summer and
the lowest monthly SST means consistently occurred in winter,
periods that we did survey in 2018 at all locations.

For each location and year, we also calculated annual mean
SST as the average of all corresponding monthly SST means.
Because of the pattern of monthly coverage of SST described
above, annual SST means for 2015 are available only for locations
L2–L8 but for all nine locations in 2016 and 2017.

We note that SST anomalies cannot be reported because of the
inexistence of previous long-term baselines for intertidal SST for
our coast. In fact, as noted in the Introduction, ours is the first
data set ever produced on intertidal SST at this level of spatial
and temporal coverage for the area under scope.

RESULTS

The 4.5 years of data collection revealed relatively persistent
latitudinal and seasonal trends in intertidal SST on the Atlantic
coast of Nova Scotia. Warming toward the summer and cooling
toward the winter occurred along the entire coast every year
(Figure 2A). However, also every year, the latitudinal SST trend
experienced a basic reversal between winter and summer. Such
a reversal is most evident when viewing the coast at a relatively
broad scale, as patchiness across neighboring locations along
the coast naturally also occurred to some extent (Figure 2A).
Overall, in winter months (considered for discussion purposes
as January to March), monthly mean SST generally increased
toward the south (Figure 2A), the lowest monthlymean recorded
in winter at L1 being−0.2◦C but only 1.5◦C at L9 (Figure 2B). In

contrast, in summer months (July to September for discussion
purposes), monthly mean SST generally decreased toward the
south (Figure 2A), the highest monthly mean recorded in
summer at L1 being 20.1◦C but only 13.5◦C at L9 (Figure 2C). In
spring (April to June) and fall (October to December), monthly
mean SST generally showed intermediate values between those of
winter and summer (Figure 2A).

As a result of those seasonal patterns along the coast, the
annual SST range generally decreased toward the south: the
highest value of annual SST range at L1 was 20.3◦C but only
14.5◦C at L9 (Figure 2D). Despite such a latitudinal trend
for annual SST range, annual mean SST differed little among
locations, as the maximum difference in annual mean SST
between the two most different locations in any given year was
only 0.8◦C (Figure 2E).

DISCUSSION AND IMPLICATIONS

This is the first account of the latitudinal and seasonal variation
of SST in wave-exposed intertidal environments along the
Atlantic coast of Nova Scotia, Canada. The underlying data
are particularly valuable because they were measured in situ, a
better approach than those that measure SST remotely (e.g., with
satellites), which are less reliable for intertidal habitats (Smale
and Wernberg, 2009). Overall, the expected warming toward the
summer and cooling toward the winter occurred along the entire
coast every year. However, the latitudinal trend in intertidal
SST exhibited basically a winter-to-summer reversal. Northern
locations were typically cooler than southern locations in winter,
while the reverse was generally true in summer. Again, such a
pattern reversal is most evident when viewing the coast at a
relatively coarse scale, as patchiness across neighboring locations
along the coast also took place to some degree at times.

In winter, the northward decrease of intertidal SST could
be mainly a result of latitudinal changes in heat flux from the
atmosphere (Stewart, 2008; Deser et al., 2010; Shan et al., 2016),
although other processes are also generally at play in coastal
environments (Hebert et al., 2016; Larouche and Galbraith,
2016). Specifically for our coast, the extensive formation of sea
ice across the Gulf of St. Lawrence every winter (Saucier et al.,
2003) might also contribute to keeping intertidal SST low at our
northern locations. Waters from the Gulf of St. Lawrence that
eventually leave the gulf flow southwards following the coast of
mainland Nova Scotia (Han et al., 1997; Hebert et al., 2016; Dever
et al., 2018), reaching our northern locations first (Figure 1)
before they have the chance to warm up. In this sense, it is
interesting to note that winter values of intertidal SST at our
northern locations were often near the freezing point of seawater
(Scrosati and Ellrich, 2020a).

In summer, the southward decrease of intertidal SST may be
a consequence of alongshore differences in coastal upwelling. On
the Atlantic coast of Nova Scotia, upwelling-favorable winds are
more common in summer than in winter (Garrett and Loucks,
1976; Dever et al., 2018) and, although alongshore differences in
upwelling have not been studied in detail, they seem to exist. For
example, Petrie et al. (1987) reported that seawater temperature
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FIGURE 2 | (A) Heatmap indicating monthly mean SST (◦C) for the nine intertidal locations (L1–L9) studied between May 2014 and October 2018 (no data are

available between May 2014 and April 2015 for L1 and between October 2014 and April 2015 for L9), (B) minimum monthly SST means for winter months, (C)

maximum monthly SST means for summer months, (D) annual SST ranges, and (E) annual SST means. See section Materials and Methods for the explanation of the

locations and months that qualified for the comparisons shown in (B–E).

decreased between June and July 1984 at 6–20m of depth near
L6 and L7 because of wind-driven upwelling, while temperature
increased in more northern waters on the mainland Nova Scotia
coast for that depth range and period. More recently, Shan
et al. (2016) have also referred to the occurrence of wind-driven
upwelling on the southeastern Nova Scotia coast. A detailed
analysis of daily changes in intertidal SST exceeds the objectives
of this Data Report. However, the time series of intertidal SST
generated for the nine studied locations (Figure 3) reveal basic
differences in summer cooling between northern and southern
locations. Summer cooling events were generally stronger in
southern locations, especially at L6 and L7, where intertidal
SST could drop by 10◦C in 5–10 days, in some cases reaching
SST values below 5◦C (Figure 3). An analysis of coastal winds
at L6 and L7 indicated that wind-driven upwelling explained
the marked cooling observed at those locations in July 2014
(Scrosati and Ellrich, 2020b). Although persistent, the summer
cooling signal that was often pronounced at L6 and L7 weakened
progressively toward northern locations, especially at L1 and L2.
In fact, at L1, intertidal SST never dropped below 10◦C in the
summer (Figure 3). We suggest to quantify upwelling along the
Nova Scotia coast to formally evaluate its apparent influence

on the alongshore SST trend in summer revealed by our data.
When quantifying upwelling, other possible drivers to consider in
addition to coastal wind, at least for our southernmost location,
are tidal mixing and submarine topography, as these factors
influence upwelling off southwestern Nova Scotia (Tee et al.,
1993; Chegini et al., 2018). An additional factor to consider as
a possible determinant of alongshore differences in SST could
be air temperature. Overall, we hope that these considerations
help orient future studies aiming to unravel the oceanographic
and climatic drivers of the latitudinal changes in intertidal SST
revealed by our surveys.

The SST data set described in this paper should also be helpful
to understand patterns in intertidal species distribution along
the Nova Scotia coast. Studies on intertidal biogeography have
made important contributions to biogeographic theory (Sagarin
and Gaines, 2002; Menge and Menge, 2013; Shanks and Morgan,
2018; Catalán et al., 2020) and marine species distribution
depends on seawater temperature averages, extremes, and
variability (Bennedetti-Cecchi et al., 2006; Somero, 2007;
Blanchette et al., 2008; Lucey and Nye, 2010; Henderson et al.,
2017). For Nova Scotia, there is already evidence that SST
influences the biogeography of intertidal predator-prey systems
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FIGURE 3 | Daily SST at the nine wave-exposed intertidal locations (L1–L9, from north to south) surveyed along the Atlantic coast of mainland Nova Scotia between 1

May 2014 and 31 October 2018 (with exceptions as noted in section Materials and Methods). Each monthly tick mark along the X axis is positioned on the first day of

the month.
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along the coast (Scrosati and Ellrich, 2018). Knowledge of
extreme temperatures recorded at specific locations is also
important for coastal fisheries management (Larouche and
Galbraith, 2016). In this sense, although mean annual SST
varied little along the Nova Scotia coast, its annual variability
increased with latitude, suggesting that thermal variability might
be ecologically more important for species toward our northern
locations. Additionally, the low winter values of SST at our
northern locations might limit the abundance of species that
thrive in warmer environments farther south on this coast.

Overall, this data set emerges as the first baseline on intertidal
SST produced for the Nova Scotia coast. Given the interannual
(e.g., NAO and ENSO) and decadal-scale (e.g., AMO) variability
in climate and oceanography (Greene et al., 2013; Ting et al.,
2014; Loder andWang, 2015; Nalley et al., 2019; Chen et al., 2020)
and the ongoing anthropogenic climate change that is predicted
to alter SST patterns in eastern Canada (Saba et al., 2016; Greenan
et al., 2018), further monitoring of this coast is encouraged to
understand how those factors may influence intertidal SST and,
ultimately, the variety of abiotic and biotic phenomena that
depend on this key variable.
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