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Productivity and trophic status of aquatic systems is traditionally quantified by
chlorophyll a measurements. Environmental conditions and ecological interactions
cause variability in chlorophyll a abundance. In coastal ecosystems, shallow
and complex bathymetry reduces vertical heterogeneity, but promotes horizontal
heterogeneity. However, coastal monitoring programs and scientific surveys are primarily
focused on the vertical dimension. Here we demonstrate the spatial patchiness of
chlorophyll a in coastal waters. We collected horizontally detailed and extensive in situ
chlorophyll a data from the coastal Baltic Sea (SW Finland), covering the ice-free
season of an annual cycle. Altogether, more than 200,000 observations were logged
by an automated underway measurement system equipped with an optical sensor
connected to a flow-through system. We analyzed the spatial heterogeneity of calibrated
chlorophyll a data by using multiple statistical approaches, and quantified the chlorophyll
a patches using a rolling average filter. We were able to identify patches and quantify their
abundance and size for each of the 11 sampling campaigns. On average, 285 patches,
ranging from 0.6 to 3142 m in size, were observed on the 830 km sampling transect. The
average size of the patches was 237 (95% CI 226–248) m, most patches being between
10 and 1000 m. Our results show that patches of chlorophyll a can be effectively
identified and quantified by modern in situ optical instrumentation. Such information is
both theoretically and practically relevant. First, these results increase our understanding
of the overall heterogeneity of the coastal environment. Further, they demonstrate the
value of knowing the magnitude and occurrence of chlorophyll a patchiness in accurate
detection of changes in coastal ecosystems caused by increased inputs of nutrients.

Keywords: estuary, eutrophication, littoral, trophic state, spatial heterogeneity, chlorophyll fluorescence, flow-
through measurement, water quality monitoring

INTRODUCTION

Understanding environmental change is founded on describing, explaining, and predicting
ecosystem state. The trophic state of an ecosystem, or the property of energy availability to its
food web (Dodds, 2007), is a fundamental manifestation of ecosystem structure (Scheffer et al.,
2001), function (Howarth et al., 2011), and services (Antón et al., 2011). It is thus pertinent for
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both basic and applied ecology to assess how the trophic state of
an ecosystem varies in space and time. Trophic state is typically
quantified through total organic carbon, primary producer
biomass, or macronutrient availability (Lindeman, 1942; Odum,
1956; Nixon, 1995). Most conventionally, phytoplankton
biomass—measured using chlorophyll a concentration (hereafter
Chl-a) as a proxy—has been applied as the prime indicator of
trophic state (Carlson, 1977).

Ecosystems vary in their trophic state depending primarily
on external and internal nutrient fluxes. While external
fluxes determine the level of nutrients in an ecosystem,
their distribution among its compartments is regulated by
internal fluxes, that thus govern how the nutrient level
is expressed in the trophic state of the system. External
nutrient loading leads to an increase in the trophic state of
the recipient ecosystem, that is, eutrophication. Essentially,
nutrient enrichment initiates a shift in species composition,
which involves concomitant changes in food web structure
and ecological transfer efficiency (Havens, 2014). The concrete
manifestations of this depend on the rate and degree of
eutrophication as well as on ecosystem-specific characteristics.
In coastal ecosystems, eutrophication has diminished water
clarity, caused toxic algal blooms, resulted in localized hypoxia,
and reduced macrovegetation in nearshore environments
(Boesch, 2019). In terms of coastal ecosystem services,
eutrophication can alter the functioning of the coastal filter,
e.g., carbon storage and cross-ecosystem nutrient transfer
(Asmala et al., 2017), erosion and pollution control (Barbier
et al., 2011), fisheries and nurseries (Worm et al., 2006), as
well as the recreational value and aesthetic quality of the
environment (Chung et al., 2015). While nutrient loading
from point sources has decreased substantially during the
past few decades (e.g., Reusch et al., 2018), inputs from
diffuse atmospheric and terrestrial sources are difficult to
reduce. This difficulty is compounded by the legacy storage
of nutrients in soils, waterways and groundwater (Boesch,
2019). Moreover, diffuse loading is challenging to mitigate
because of the spatiotemporal heterogeneity of the sources.
Consequently, coastal eutrophication is a globally topical
problem (Andersen et al., 2019).

In coastal waters, phytoplankton biomass is prone to be
patchy due to a combination of environmental, ecological and
physiological drivers. Bathymetry, tides, and currents combine
freshwater runoff and marine surface and deeper waters over
small spatial scales to create considerable spatial complexity in
hydrography, mixed layer depth, and nutrient content, driving
spatial complexity in phytoplankton biomass. Furthermore,
short temporal variability, similar in timescale with that of
phytoplankton physiological variability, is induced by advective
currents and wind-driven mixing (Carberry et al., 2019). Hence,
disregarding the patchiness of Chl-a in assessments of the trophic
state of coastal ecosystems is likely to result in spatiotemporally
skewed or overgeneralized interpretation of their properties.
Robust measurements of Chl-a on adequate scales of space
and time are also relevant for planning, prioritizing, targeting,
and following up management actions that can alter external
nutrient loading.

Quantification of Chl-a patchiness—including the quantity,
extent, prevalence, and intensity of the patches—requires
sampling with sufficiently high precision and resolution. Two
principal sampling approaches are being used: discrete water
sampling and in situ observations. Both of these involve their own
constraints that complicate the determination of the different
patchiness parameters. Discrete water sampling is well suited
for the precise quantification of Chl-a, since the pigment
can be extracted from the cells and measured reliably and
accurately by various methods such as high-performance liquid
chromatography (HPLC), spectrophotometry or -fluorometry.
However, the quantification of small-scale spatiotemporal
variation by discrete sampling is virtually impossible due
to the labor-intensity of the approach—resulting in high
precision but low resolution (Cloern et al., 1989). By contrast,
in situ observations have fewer limitations regarding spatial
and temporal resolution. Chl-a can be assessed through
in vivo fluorescence from different remote sensing vehicles or
waterborne platforms. While these approaches allow for high
resolution, their precision is significantly lower with raw values
than that of the methods based on chlorophyll a extraction
(e.g., Cullen, 1982). The in vivo fluorescence yield per Chl-a
may vary depending primarily on the size (Alpine and Cloern,
1985) and species (Proctor and Roesler, 2010) of phytoplankton,
and the photochemical (Sosik and Mitchell, 1991) and non-
photochemical (Misumi et al., 2016) quenching properties of the
species. On top of these proximate causes, the optical complexity
of coastal waters in the form of other compounds (e.g., DOM
and non-living particles) that fluoresce at similar wavelengths
as chlorophyll a will further distort in situ fluorescence
measurements. Although in situ observations can be calibrated
using discrete water samples, the work is often logistically too
challenging due to match up issues (Carberry et al., 2019).

Here, we present a cost-efficient methodological framework
that enables the quantification of Chl-a patchiness and its
subsequent decomposition into the basic patchiness parameters
in heterogeneous coastal waters. Our overall aim was to identify
and quantify the chlorophyll a patches, and use these as indicators
for patchiness of the coastal environment, in general. The
framework builds upon spatially high-frequency Chl-a in situ
observations in a geographically complex coastal archipelago
environment. To collect the data, we surveyed Chl-a at high
resolution in the coastal waters of SW Finland along an 830 km
long transect throughout the entire ice-free season of 2019.

MATERIALS AND METHODS

Study Site and General Description of
the Area
The study was carried out within a 40 km by 50 km rectangular
area around the SW tip of mainland Finland on both sides of the
60th parallel north and the 23rd meridian east, in the northern
Baltic Sea. The area encompasses the entire coastal waters of
the cities of Hanko and Raseborg, thus covering parts of the
Finnish Archipelago Sea in the west and parts of the Gulf of
Finland in the East. The climate of the study area is cold and
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temperate, or “Dfb” according to the Köppen–Geiger climate
classification. The long-term average annual air temperature is
5.3◦C, and the average annual rainfall is 603 mm. The sea starts to
freeze typically in October, while the ice cover tends to disappear
completely in May. However, there are pronounced differences in
the prevalence, thickness, and permanence of the ice cover within
the area (HELCOM, 2010).

The coastal zone of the northern Baltic Sea exemplifies the
heterogeneity of coastal environments, as it is characterized by
its vast mosaic-like archipelago consisting of thousands of small
islands. Further, littoral zone constitutes a large proportion of
these coastal waters due to the planar profile of the region, its
fine-scale topographical variability, and the extensive length of
the aggregate shoreline. These features translate as comparatively
high photic zone coverage as well as strong benthic-pelagic,
terrestrial, and atmospheric coupling (McGlathery et al., 2007).
While temperature and light modulate phytoplankton dynamics
during the ice-free season, primarily nutrient availability and
to a lesser extent grazing drive the timing and amount of
phytoplankton standing stock biomass, or Chl-a (Lyngsgaard
et al., 2017). Further, in shallow and intensively mixed waters
phytoplankton production can be very high already before the
onset of thermal stratification (Sommer and Lengfellner, 2008).
Since nutrients are continuously cycled within the well-mixed
system, phytoplankton production is more permanently fueled by
the dissolved nutrient resources than in pelagic areas.

Sampling Methods
Flow-Through System Including the Chlorophyll a
Sensor
The spatially detailed and extensive in situ Chl-a data were
collected by an automated underway measurement system
equipped with an optical Chlorophyll a sensor. The system
was constructed by Luode Consulting Inc. and installed in a
rigid inflatable boat (RIB) (Brig N610H) with 0.4 m draft. The
system consisted of seven sequential components as follows:
The water intake was placed at 0.5 m depth, facing forward
right below the left-hand stern. Since the water intake was the
lowest part of the whole system, its minimum operation depth
was also 0.5 m. After passing the pump at 29 L/min, the water
was led through a lamellar debubbler before entering a 0.5-L
cylindrical chamber enclosing an EXO2 sonde equipped with
a dual-channel fluorescence sensor (Xylem Inc., United States)
for integrated Chl-a detection, incorporating also cyanobacterial
contribution by applying two excitation wavelengths; 470 ± 15
and 590 ± 15 nm and one emission detection wavelength
at 685 ± 15 nm. From the sonde, the water passed by a
faucet for water collection before being led back to the sea
from an outflow pipe at the right-hand rail of the boat. Time
and GPS position were tracked continuously for geolocating
the Chl-a measurements by using an EXO Handheld unit
(Xylem Inc., United States) connected to the sonde with a data
transmission cable.

Data were constantly recorded at 5 s intervals, while the
typical traveling speed of the boat was 22.3 knots (12 m/s),
resulting in the vast majority of the data being logged at 60-m

intervals. As the spatial resolution of the applied method was
determined by the traveling speed of the boat, resolution finer
than 60 m could only be achieved at velocities lower than the
standard traveling speed at the chosen logging interval. Due
to, e.g., complex navigation, marine traffic regulations, or very
shallow water depth, the speed of the boat was reduced in few
locations. In any given location, traveling speed was virtually
invariable among the campaigns, allowing for unbiased temporal
comparisons of the patchiness data. In order to maximize the
geolocation precision, the total response time of the flow-through
system was determined according to Crawford et al. (2015) and
adjusted to 10 s by altering the length of the water hose between
the water intake and the pump. The total response time consists
of the hydraulic lag between the water intake and the cylindrical
chamber (8 s), the total exchange of the water in the chamber
(0.5 s), and the response time (T63) of the sensor (<2 s).

Sampling Schedule
The samples were collected along an 830 km long transect
(Figure 1), where water depth varied between 0.5 and 80 m.
The transect was surveyed with 3-week intervals throughout the
entire ice-free season from week 14 at the turn of March and
April until week 44 at the turn of October and November 2019.
However, only a fraction of the transect could be sampled during
the first occasion, since sea ice was still covering most of the
transect. During all the later occasions, the transect could be
followed in high detail so that both the route and the traveling
speeds at different parts of the route were virtually constant.
Apart from the first sampling occasion, each sampling campaign
was carried out during four consecutive days. During each
occasion, the number of data points collected was approximately
20,000, totaling 212,150 observations from the eleven sampling
occasions. Eight locations were chosen randomly to represent
variation in local Chl-a dynamics (Figure 1).

Calibration of the in situ Chl-a Observations
During each sampling occasion, 20 discrete water samples were
collected for calibrating the in situ Chl-a data. To represent
maximal variability in terms of phytoplankton composition and
biomass, and of the surrounding conditions, the 20 sampling
stations were located along three distinctive environmental
gradients, each starting from a river mouth and ending at the
open sea. Since the gradients were spatially apart from each
other, and each gradient was geographically extensive (12, 18,
and 38 km), the collected samples also represented different
sampling days and contrasting times of each day. During the
brief stop at each sampling station, 50 mL of water was collected
into a plastic centrifuge tube from the faucet for water collection
while logging parallel Chl-a data. Each sample was immediately
filtered onto a GF/F (Whatman) filter. The filter was submerged
in ethanol in a glass scintillation vial. The vials were transported
in a dark cool box to the laboratory by the end of each
sampling day. In the laboratory, the samples were incubated in
the dark in a −20◦C freezer for 72 h prior to the analysis. The
concentration of the extracted Chlorophyll a was determined
by fluorometry (Varian Cary Eclipse spectrofluorometer, Agilent,
United States) using a plate reader (Simis et al., 2012). Finally,
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FIGURE 1 | Map of study area with the route of the boat (black solid line) and eight reference stations (1 = Båtviken, 2 = Elimogrundet, 3 = Gästans, 4 = Gyltviken,
5 = Kiskonjoki, 6 = Stakasund, 7 = Stödjekobbarna, 8 = Svärtesviken). Inset figure of the northern Baltic Sea.

the coefficient of determination between the temporally parallel
in situ and extracted Chl-a measurements was calculated by
using linear regression with 0 as the intercept (in situ data
was validly 0-calibrated). Thus, the slope of the model function
was used as the correction factor for the in situ Chl-a data
(Supplementary Figure S1).

Data Analysis
We used the calibrated values for the analysis of spatial and
temporal variation in Chl-a. Average values for each sampling
campaign were calculated, as well as average values for the eight
specific locations indicated in Figure 1. Spatial autocorrelation
shows the correlation within variables across georeferenced space
(Getis, 2008). Although spatial autocorrelation can be used
to determine the average size of patches (Sokal and Oden,
1978), autocorrelation occurs over some minimal scale that
is dependent on both processes and sampling. Consequently,
autocorrelation may not capture patterns smaller than this
inherent minimal scale, and other methods to quantify patterns
at smaller scales may be needed (Underwood and Chapman,
1996). Autocorrelation (covariance) of the Chl-a observations
was calculated for each round separately, up to lag value
equaling maximum number of observations for each campaign.

We acknowledged the inherent autocorrelation of the high
frequency Chl-a observations and used it to identify the
large-scale patchiness of Chl-a. Using the sequence of Chl-a
observations from each sampling campaign, the difference in
Chl-a observations between two sampling points with n number
of observations in between was calculated. The difference was
calculated for n values of 1–300, which corresponds to 18 km.
To complement the autocorrelation analysis and to identify and
quantify the local heterogeneity on a smaller scale, we identified
patches, i.e., operational units of local heterogeneity by using
a rolling mean filter along the sequence of Chl-a observations.
This approach allows identification and quantification of local
heterogeneity beyond autocorrelation analysis (Underwood and
Chapman, 1996). We used the rollapply function from the R
package zoo (Zeileis and Grothendieck, 2005) with a rolling
bin width of 101 observations (50 observations to both forward
and backward from each observation). This corresponded to a
distance of 6 m on average, which is approximately four times the
size of phytoplankton patches identified by Platt et al. (1970). We
applied a threshold of 25%, which means that Chl-a values that
deviated (either negatively or positively) more than 25% from the
rolling mean value, were categorized as patches. The performance
of a range of thresholds and bin widths in patch detection was
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tested with simulated data, and the combination of threshold
value 25% and bin width identified patches from simulated
dataset with a 100% accuracy (Supplementary Figure S2).
Consecutive observations categorized as patches were assigned
a unique patch ID, and the spatial extent of each patch was
calculated using the geospatial information of each observation
using the R package sf (Pebesma, 2018). The patch extent was
determined as the maximum extent, as the distance between
the two farthest points of each patch. Paired relationships
between average Chl-a, number of patches, and patch extent
were analyzed with simple linear regression for each sampling
campaign. All statistical analyses were done by using R software
(R Core Team, 2014).

RESULTS

The measured Chl-a ranged from 0.76 to 195 µg l−1 during the
study period from late March to early November (Figure 2 and
Supplementary Figure S3). The overall average was 7.65 µg l−1,
but the values varied considerably among sampling campaigns
and locations. The lowest average values were observed during
the first campaign (4.75 µg l−1), and the highest 3 weeks later,
during the second campaign (14.24 µg l−1).

Chl-a varied considerably among the eight randomly chosen
sampling points (Figure 3). The lowest values were observed in
Stödjekobbarna (3.8 [95% CI 3.6–4.1], range 1.3–7.5 µg l−1), and
the highest in Svärtesviken (19.4 [13.9–24.8], 2.2–149.1 µg l−1).
The apparent seasonal pattern varied also considerably among
the chosen points, and in general, did not follow the overall
regional pattern (c.f. Figure 2).

Differences in Chl-a among sampling points, i.e., patchiness,
varied from one sampling campaign to another (Figure 4).
In general, the mean difference between two sampling points
increased in concert with the number of observations in between.

This increase was not linear, as the difference increase was
steepest in the range of ∼<50 observations in between. During
the campaign in week 17, the differences were the highest,
reaching on average 3.9 (95% CI 3.8–4.0) µg l−1 between two
observations that were 300 observations apart. During week 14,
the mean difference at an interval of 300 observations was less
than 1 µg l−1, as well as during week 20. After week 20, the mean
differences gradually increased toward the autumn, reaching 2.8
(2.7–2.9) µg l−1 in week 44.

For the identification of the potential patches in Chl-a
observations, we used a rolling mean filter and a deviation
threshold, as exemplified in Supplementary Figure S4. By using
this approach, we were able to identify multiple patches from
each sampling day.

The number of patches varied between the sampling
campaigns; from 5 in week 14 and 458 in week 17, and the average
number of patches was 285 (Figure 5 and Table 1).

The location of individual patches changed from one sampling
to another, appearing apparently randomly across the region
(Figure 6). There was a weak positive relationship with average
Chl-a and the number of patches during the samplings (p = 0.07).

Compared to the number of patches, the size of the patches
varied less among the sampling occasions, the average values
ranging from 141 m in week 14 to 272 m in week 38 (Figure 7).
After low patch extent values in week 20 (183 m on average), there
was a general increasing trend in patch extents toward autumn.
As with the number of patches, patch extent did not have a
significant relationship with the average Chl-a of each sampling
occasion (p = 0.13).

The size of the patches (patch extent) ranged from 0.6 to
3142 m (Figure 8). Most patches were in the range of 10–1000 m,
and the modal values between 50 and 100 m.

Chl-a had weak positive relationship with patch extent
(Figure 9A) and number of patches (Figure 9B). The number
of patches and the mean patch extent had a significant positive
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FIGURE 2 | Chl-a during each sampling campaign. Lower and upper ends of boxes indicate the interquartile range (Q3–Q1), whiskers the lowest and the highest
values within the range of 1.5 IQR, and thick black line indicates median value. Mean values are indicated by red diamonds, and horizontal line represents the overall
mean value across all samplings (7.65 µg l−1). On week 14, the number of observations was only 5514 due to ice cover.
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FIGURE 3 | Chl-a at eight randomly selected sampling points, whose locations are indicated in Figure 1. The first sampling campaign (week 14) was not included
due to ice cover in most of the points.
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FIGURE 4 | Mean difference in observed Chl-a along a lag gradient, i.e., number of observations between the observations being compared. Gray area indicates
0.65 standard deviation, which corresponds to a 50% confidence interval. Note: week 23 not included.

relationship (Figure 9C). In other words, the more patches were
observed, the larger they were on average.

DISCUSSION

Chlorophyll Concentrations and
Phenology
The total average Chl-a across all sampling points and campaigns
was 7.65 µg l−1 (Figure 2), which generalizes the eutrophication
status of the sampling area to mesotrophic (Carlson, 1977).
We observed weak spring and autumn peaks (in April–May
and September–October) typical for temperate, pelagic areas
(Cebrián and Valiela, 1999; Gasiûnaitë et al., 2005), as well as an

apparent unimodal midsummer maximum (July) characteristic
for temperate, littoral areas (Harding et al., 2019) from the
overall average dynamics of the whole area. The average dynamics
appeared relatively static compared to other temperate coastal
areas (Carstensen et al., 2015; Harding et al., 2019), since the
coastal sampling route averaged and canceled off the seasonality.
In other words, the small difference between minima and
maxima was simply a manifestation of average dynamics with
high variability due to large spatial differences in Chl-a levels
and phenology. Annual mean Chl-a levels varied substantially
among different locations, while the different locations displayed
highly different temporal dynamics (Figure 3). Both sorts of
differences are characteristic for nearshore areas and marginal
seas, in general (Song et al., 2019). The phenological differences
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FIGURE 5 | Number of individual patches identified during 10 sampling campaigns. Note that during week 14 the route was limited to offshore areas with only
∼5000 observations. Note: week 23 not included.

can result from multiple different factors—including the
local overall Chl-a level—that affect phytoplankton dynamics.
Accordingly, site-specific internal processes, related to their
actual trophic state, may change the N:P stoichiometry, overall
nutrient availability, or grazing pressure (Sommer et al., 2012).
Moreover, especially in the more enclosed areas, temperature
and salinity differences are more pronounced and abrupt,
driving changes in the temperature- (Yvon-Durocher et al.,
2017) or salinity-sensitive (Oseji et al., 2019) parts of the
plankton community. Finally, inherent stochasticity can cause
spatial heterogeneity in organism and resource distributions,
which leads to temporal heterogeneity in resource access for
phytoplankton (Anderies and Beisner, 2000).

Chlorophyll Patchiness
Patchiness, here defined as the contrast in Chl-a among different
observations as a function of the observation sequence, varied
across the year (Figure 4 and Supplementary Figure S5). This
applied both to the intensity and scale of patchiness, illustrated
by the systematic temporal changes in the level (intensity) and
slope (scale) of the mean difference in Chl-a in relation to
the observation sequence (Figure 4). The temporal variation
in the intensity and scale of patchiness underline that the
theoretical and practical implications of patchiness are far from
the same around the year. However, the relationship between the
intensity and scale of patchiness appeared comparably constant

throughout the season, indicating that Chl-a patchiness is a
ubiquitous characteristic of coastal waters.

The temporal patterns in the intensity and scale of patchiness
may partially be attributed to external nutrient loading. Like in
other coastal environments, most of the external nutrient loading
in the study area originates from diffuse terrestrial sources
(Boesch, 2019). In the spring, high transient loading from diffuse
sources is likely to promote considerable horizontal heterogeneity
in resource availability, leading to high intensity and scale of
patchiness in the distribution of phytoplankton biomass in April
(Figure 4). The subsequent collapse in patchiness may be due to,
e.g., patch-targeted top-down control of phytoplankton (Sommer
et al., 1986) and stochastic dilution by diffusion of the nutrient
resources (Romero et al., 2016). During the following months,
the considerably decreased but still substantial level of patchiness
was maintained probably by the legacy storage of nutrients in
the sediments (Vahtera et al., 2007). These sources of internal
loading should reflect the diffuse geography of the external ones,
while nutrient resuspension rates in shallow and vertically well-
mixed waters tend to be driven by temperature (Harding et al.,
2019). The gradual increase of the intensity and scale of Chl-a
patchiness from the late-spring minimum until the late fall also
coincides with the amount of terrestrial runoff in the boreal
region. However, the apparent temporal relationship between
runoff and patchiness does not lead to predictable appearance
of patches to given locations (Figure 5). In addition to internal
patch dynamics (Denman and Dower, 2008), this relationship
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TABLE 1 | Summary statistics of the peak extents during 10 sampling campaigns.

Time Mean patch extent (m) Range (m) Number of patches Patch coverage (km)

Week 14 141 (0–327) 14.1–377 5 <1 (<1%)

Week 17 245 (214–276) 1.6–2790 458 112 (13.5%)

Week 20 183 (135–231) 3.7–2201 150 27 (3.3%)

Week 26 208 (181–235) 1.2–1955 295 61 (7.4%)

Week 29 209 (181–237) 0.6–1391 340 71 (8.5%)

Week 32 251 (218–284) 1.6–2261 354 89 (10.7%)

Week 35 234 (204–264) 1.2–1998 335 78 (9.4%)

Week 38 272 (230–314) 1.7–3123 241 66 (7.9%)

Week 41 263 (232–294) 3–2669 371 98 (11.7%)

Week 44 240 (204–276) 0.6–3142 297 71 (8.6%)

All weeks 237 (226–248) 0.6–3142 285 68 (8.1%)

Mean value with 95% confidence interval and range of the patch extent is given.
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FIGURE 6 | Chl-a patches from each round overlaid on map. Route of the boat marked with black solid line.

is distorted by the fact that both the quantity and quality of
terrestrial runoff vary substantially depending on local land-use
(Delkash et al., 2018).

The chosen method of rolling (moving) average analysis
proved to be effective in identifying the patches in the Chl-a data
(Supplementary Figure S4). Essentially, patches were defined
as deviations from local average. Sensitivity analysis of the
rolling average method revealed that the width of the bin is less
important than the threshold in defining the patch characteristics

(Supplementary Figure S6). With this method, we were able
to identify both positive and negative patches (Supplementary
Figure S7). Positive patches result from phytoplankton growth
and immigration locally exceeding the mortality and emigration,
and in negative patches mortality exceeds growth (Wroblewski
and O’Brien, 1976). In addition to biological factors, abiotic
factors may result in spatially varying higher- or lower-than
average phytoplankton biomass (Therriault and Platt, 1981).
The identified patches did not overlap in general, but appeared
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FIGURE 7 | Mean patch extent on each sampling campaign. Error bars
indicate ± 1 standard error of mean. Red line indicates locally estimated
scatterplot smoothing and gray area 95% confidence interval of the local
regression. Note: week 23 not included.
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FIGURE 8 | Patch extent distribution density along the size gradient from 0.6
to 3142 m.

to be distributed randomly in the study area (Figure 5). This
indicates that the processes behind patch formation are not linked
with specific locations, but vary spatiotemporally and may occur
apparently anywhere in the coastal environment. Most patches
were observed during week 17 (Figure 6), which coincides with
the typical timing of the pelagic spring bloom and the highest
overall Chl-a during the annual cycle (Figure 4). In general,
there was a weak positive relationship between the number of
patches and Chl-a concentrations (p = 0.07). This is an indication
of relatively higher spatial variability in conditions with high
phytoplankton biomass (Maso and Duarte, 1989). The magnitude
of changes in patch abundance was similar to the magnitude of
the overall Chl-a dynamics, both varying by a factor of three over
the sampling period.

The patches covered 3–14% of the total passage during
sampling campaigns. The size of the individual patches (patch
extent) is temporally much less variable than Chl-a or number
of patches (Figure 7). This indicates that the biotic and abiotic
processes forming and breaking up patches are similar during
the annual cycle (Therriault and Platt, 1981). Most observed

patches were between 10 and 1000 m, indicating lower and
upper bounds of typical phytoplankton patches (Figure 8). Lower
bound is strongly related to the spatial sampling frequency, as
patches smaller than sampling resolution cannot be detected.
Overall, our observed range concurs with previous estimates of
phytoplankton patches from different environments, suggesting
that there are universal factors determining the typical size
of phytoplankton patches (Platt, 1972; Lovejoy et al., 2001;
Bulit et al., 2004; Fossum et al., 2019). The largest patches on
average were observed in spring, suggesting that the apparent
regional spring bloom consists of multiple small and local blooms
(Seuront, 2005). We observed patches decreasing in number after
spring, but not in size (Table 1). Typically, after the spring bloom,
the heterogeneity of phytoplankton communities in temperate
areas increases, leading to the emergence of relatively short-lived
patches dominated by varying species (Cetinić et al., 2015). The
number of patches had a significant positive relationship with
the average patch extent, but the number varied threefold (150–
458), whereas the extent only with a factor of 1.5 (183–272 m).
This indicates that the constraints over patch size are more rigid
than constraints over their number, which is likely the result of
the physical forcing (e.g., wind, turbulence), which are critical in
defining the upper bound of the plankton patch sizes (Therriault
and Platt, 1981; Blukacz et al., 2009).

Considerations About the Use of
High-Frequency Measurements in
Coastal Environment
Patchiness has been associated as an inherent property of
plankton since the 1800s (Horwood, 1978). From the early
estimates ranging from a few feet to hundreds of kilometers
(Bainbridge, 1957), today it is thought that this heterogeneity
spans many orders of magnitude from planetary down to
microscale (Sale et al., 2006). While this general statement is
logically true, it is dependent on the very definition of Chl-a
patchiness. In empirical studies that rely on discrete water
sampling, the operational definition of Chl-a patchiness and
its methods of quantification depend on the objectives of the
assessment. Those determine the accuracy and resolution of
the sampling. Similar context-dependency applies to the general
patch properties; quantity, extent, prevalence, and intensity. Since
these basic parameters are inherently interdependent, at least
one of them is typically predetermined by the objectives of the
assessment in order to deduce the others from observational data.
Under the circumstances, direct comparisons of Chl-a patchiness
and patch characteristics across studies that use different,
discrete sampling strategies can yield only a limited amount of
generalizable information. In principle, such information can
be derived from empirical data by using phenomenological
models. While they can deal with the variability of resolution
among different geospatial datasets, the accuracy of these
approaches is challenged by the complexity and diversity of
the underlying processes (Carberry et al., 2019). In short, the
observed outcome is a result of physical, chemical and biological
interactions (McGillicuddy, 2008). Accordingly, dissolved and
suspended matter is continually redistributed by advection and
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FIGURE 9 | Relationship between (A) Chl a and mean patch extent, (B) Chl a and number of patches and (C) number of patches and mean patch extent for each
sampling occasion (week 23 excluded). Red solid line indicates a significant (p < 0.05) linear relationship between variables, and gray dotted line indicates
non-significant (p ≥ 0.05).

convection, while the spatial or temporal alterations in these flows
affect the chemical and biological interactions. Moreover, living
planktonic organisms actively move in the flow field. Although
some of these processes have successfully been incorporated in
phenomenological models (Carberry et al., 2019), they still rely
on inherent assumptions about the relative contribution of most
of the underlying processes.

To overcome the problems of resolution and accuracy, we
have presented a methodological framework that enables the
identification of Chl-a patches and their decomposition into
basic patchiness parameters through robustly calibrated, high-
frequency in situ observations. Further, by defining patches as
deviations from their proximate context, our data can yield
up patterns that are central from the perspectives of food
web dynamics, and consequently, coastal zone management. In
complex coastal environments, the detailed composition and
relative process rates that drive Chl-a vary considerably in space
and time. Therefore, Chl-a does not reflect only the trophic
state of its environment but rather the synergistic effects of all
the surrounding conditions. Those other conditions being equal,
Chl-a patches are principally promoted by increased nutrient
input and demoted by trophic transfer. Since both types of
ecological interactions depend on their physical context, Chl-a
patches defined as local deviations from the mean provide specific
information about the roles of these processes. This is relevant for
understanding food-web dynamics, since the prevalence, extent,
and intensity of the local patches are associated with nutrient
availability for primary producers, but also with food availability
for the higher trophic levels. Correspondingly, the location and
the fundamental characteristics of the patches are pertinent for
coastal management actions such as the mitigation of nutrient
discharges or the identification of conservation hotspots.

CONCLUSION

We documented ubiquitous Chl-a patchiness in the
heterogeneous coastal environment. Chl-a had a positive
relationship with both patch number and extent, showing that
in conditions with high phytoplankton biomass, patches tend to
be more abundant and larger in size. Most patches were between

10 and 1000 m in size across the spatial and temporal range
sampled, indicating constraints by common physico-chemical
and biological drivers. Knowing the magnitude and occurrence
of phytoplankton patchiness is pertinent in understanding the
overall heterogeneity of the coastal environment and in accurate
detection of changes in coastal ecosystems caused by increased
inputs of nutrients.
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