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Natural abundance radiocarbon (14C) is an increasingly widely used tool for investigating
the organic carbon (OC) cycle in the contemporary ocean. Recent studies have provided
extensive information on the 14C characteristics of organic matter (OM) in sinking
particles and sediments in the East Asian Seas including studies from the Bohai Sea,
Yellow Sea, East China Sea, South China Sea, Japan Sea, and Japan Trench. 14C
investigations have provided insights into biogeochemical processes controlling the fate
of sedimentary OM in these settings. Here, we highlight these insights from oceanic
landscapes stretching across deltas, shelves, abyssal oceans, and the hadal zones
of the East Asian Seas; share our perspectives on the source-to-sink dynamics of
sedimentary OM in the ocean; and outline the challenges that need to be faced to
make the most out of interpreting 14C signals in sedimentary OC.
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INTRODUCTION

The net amount of carbon that is reduced and buried in the form of sedimentary organic
carbon (OC) is one key flux controlling global biogeochemical cycles over geologic timescales
(Berner, 1990). The journey begins with fixation by autotrophs incorporating the radiocarbon (14C)
signature of their sources. This carbon propagates through the food web until it is respired or enters
non-living pools of marine OC, which are subject to 14C radioactive decay. Expressed as a large
spread in 14C patterns in the ocean, sedimentary OC contains a spectrum of pools at varying states
of (radioactive) decay (McNichol and Aluwihare, 2007). The cosmogenic origin and 14C decay
provide insight into the timescales of source-to-sink carbon dynamics and the response of the
carbon cycle to perturbations (Eglinton and Repeta, 2014). Natural abundance 14C has established
itself as a cornerstone for assessing sources and processes governing the fate of sedimentary OC in
the oceans (Williams et al., 1992; Wang et al., 1996; Eglinton et al., 1997; Masiello and Druffel,
1998; Drenzek et al., 2009; Griffith et al., 2010). Recent technical developments in accelerator
mass spectrometry reducing sample size requirements (Synal et al., 2007; Xu et al., 2016; Yamane
et al., 2019) and increasing throughput by interfacing with direct CO2 intake systems by elemental
analyzers (McIntyre et al., 2017) or gas bench-type systems (Wacker et al., 2013) are poised to
continue this progress.
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In marine environments, interpretations of 14C in
sedimentary OC often require going beyond a straightforward
chronological approach and are convoluted owing to a series
of factors. Across the vast expanses of oceanic landscapes
stretching deltas, shelves, abyssal plains, and hadal trenches,
“radiocarbonscapes” (here, defined as spatiotemporal variations,
characteristics, and patterns of radiocarbon) of sedimentary OC
are markedly different, providing insight into the stories that
carbon has to tell as it traverses from sedimentary source to sink.
The East Asian Seas host natural laboratories characterized by a
range of depositional environments from vast shelves spanning
hundreds of kilometers to the deepest trenches scarring the
face of our planet. To date, extensive 14C datasets exist for
these natural laboratories with starkly contrasting underpinning
controls, which we divide into four different themes shaping
radiocarbonscapes including (A) provenance, (B) hydrodynamic
processes, (C) event-driven sedimentation, and (D) organic
matter (OM)–mineral interactions. In this contribution, we
highlight several OC 14C studies from the East Asian Seas and
review these distinct radiocarbonscapes from the perspectives of
these four themes.

DISCUSSION

Provenance
The East Asian marginal seas receive continentally derived
sedimentary OM exported from some of the world’s largest
rivers including the Yangtze, Yellow, and Pearl Rivers (Wang
et al., 2012; Tao et al., 2015; Wu et al., 2018; Lin et al.,
2019). After fixation from the atmosphere, terrigenous OC may
undergo long storage times on land, reducing its 14C content.
For example, particulate OM from the Yellow River contains
a higher percentage of aged OC (Tao et al., 2015, 2016; Yu
et al., 2019); hence, the corresponding deltaic area shows lower
14C content than elsewhere in the Bohai Sea (Bao et al., 2016;
Figure 1A). Similarly, based on cluster analysis of combined
sedimentary OC content and its 14C concentration across the
vast expanses of the East China Sea, the radiocarbonscape
emanating from the Yangtze River reflects heavy terrestrial
influence (Van der Voort et al., 2018). An extreme case of
provenance-dominated oceanic radiocarbonscape is exemplified
by the export of 14C-free OC of petrogenic origin (i.e., kerogen)
(Kao and Liu, 1996; Hilton et al., 2008; Lin et al., 2020).
Surrounding Taiwan island, these contributions of petrogenic
OC appear as anomalously low 14C signatures in sedimentary
OC (Figure 1A; Bao et al., 2016; Zheng et al., 2017). Therefore,
low 14C concentrations in sedimentary OC of deltaic and land-
proximal settings may reflect a provenance-based effect with the
addition of pre-aged sedimentary OM from terrestrial sources
to recently synthesized marine OM (see also South China Sea
investigation by Mollenhauer et al., 2005).

Hydrodynamic Processes
Often, the 14C content of sedimentary OC is to a first-
order determined by provenance; however, when viewing
spatiotemporal patterns in radiocarbon contents of sedimentary

OC (Figure 1A), it is apparent that highly variable 14C
contents in distal shelf settings are prevalent. Sedimentary
redistribution processes (e.g., resuspension and dispersal) affect
particles with different hydrodynamic properties differently,
resulting in these highly variable patterns. Thus, there is
size-dependent redistribution, as well as lateral transport
time, recorded by the 14C “clock,” leading to a highly
variable radiocarbonscape dependent on transport pathways
(Bao et al., 2018c). Resuspension remobilizes aged sedimentary
OM associated especially with intermediate grain size fractions
in shallow inner-shelf settings, whereas in deeper regions and
erosional areas, bedload transport exerts the strongest influence
on redistribution of aged sedimentary OM, especially for the
coarser fractions (Bao et al., 2016; Figure 1B). The aged
sedimentary OM spreads into deep-sea settings that receive
sedimentary input from these areas. In the East Asian Seas,
based on 14C analyses of specific compounds and OM thermal
decomposition windows on specific grain size fractions, lateral
transport of sedimentary OM over millennial year timescales is
evident across hundreds of kilometers’ distance in the Bohai,
Yellow Sea, and East China Sea (Bao et al., 2018c, 2019a,b).
Such contributions of aged sedimentary OM are also apparent
in deeper waters adjacent to and receiving detrital input from
East Asian shelves, such as for aged suspended sedimentary OM
arriving in the Okinawa trough (Honda et al., 2000). Laterally
derived aged suspended sedimentary OM is also observed in
the lower water column of the Japan Sea (Kim et al., 2017,
2020). Hydrodynamic processes redistribute sedimentary OM
with aged 14C signatures, thereby overprinting 14C of OC in
surface sediments into which redeposition takes place leading
to considerable spatial variability in radiocarbonscapes and
uncertainty in 14C age-related information.

Event-Driven Sedimentation
Mass wasting events such as those triggered by earthquakes and
typhoons mobilize enormous pulses of sediments into the deep
sea (Carter et al., 2012; Kioka et al., 2019), carrying with it vast
amounts of OM (Tsai et al., 2010; Liu et al., 2013). The heavily
incised active margin shelves along the Japan Trench offer little
accommodation space for sediment storage, facilitating landslides
triggered by tectonic events. This old sedimentary OM, which is
mobilized, a consequence of protracted storage in intermediate
reservoirs on land (e.g., soils) and/or on the continental margin,
strongly influences the 14C contents of OC in the hadal zone such
as the Japan Trench (∼8,000-m water depth; Bao et al., 2018b).
Such events blanket the seafloor with turbidites containing aged
OM (Figure 1C; see also Nakamura et al., 1990). Similarly,
within the Gaoping canyon, directly south of Taiwan, event-
driven sedimentary inputs of terrestrial OC to the ocean are
common. In the case of typhoons, hyperpycnal flow conditions
directly export large contributions of land-derived biospheric and
petrogenic OC into the South China Sea via submarine canyons
(Hilton et al., 2008; Kao et al., 2014; Zheng et al., 2017; Lin et al.,
2020). Over hundreds of kilometers’ distance, sedimentary OC is
carried by turbidites (Zhang et al., 2018) or entrained in eddies
(Zhang et al., 2014), reflecting an event-driven overlay observed
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FIGURE 1 | 14C study highlights from East Asian Seas with (A) illustrating the spatial distribution of 14C concentration in sedimentary OC in the Bohai, Yellow, East
China Seas (Bao et al., 2016). (B) Shows the 14C concentrations of sedimentary OC in 125–250-µm grain size fractions of surface sediments in the East China Sea,
with the dashed line separating the result of mixing of OC sources on the left from the effect of sedimentary reworking on the right (water depth >50 m; Bao et al.,
2019a). (C) Illustrates a sedimentary profile in the Japan trench showing the 14C imprint on sedimentary OC in a turbidite deposit triggered by one earthquake (after
Bao et al., 2018b). (D) Shows the relationship between 14C content of sedimentary OC and phyllosilicate composition in abyssal South China Sea sinking particles
with modern marine OM associated with soil-derived smectite (after Blattmann et al., 2019).

over time series of sinking particles (Blattmann et al., 2018).
Therefore, these episodic aged or even petrogenic OM exports,
triggered by events such as earthquakes and typhoons, exert
large-scale control on radiocarbonscapes in the deep ocean.

OM–Mineral Interactions
Mineral ballast exerts key control over the sedimentary
transport and deposition of OM in aquatic environments
(Ittekkot et al., 1990; Wakeham et al., 2009). Investigations have

revealed the association of marine OM with lithogenic minerals
(Keil et al., 1997; Kennedy and Wagner, 2011), which is also
observed in the sinking particles of the South China Sea, which
impart a strong effect on 14C contents of sedimentary OC
(Blattmann et al., 2018). The systematic radiocarbonscapes with
contrasting modern and ancient forms of sedimentary OM
(see insert in Figure 1D), representing marine and petrogenic
OM forms, respectively, display strong relationships with
mineralogical composition, revealing mineral-specific behavior
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on the retention and release of terrestrial OM in the marine
environment by loss-and-replacement reactions (Figure 1D;
Blattmann et al., 2019). Smectite, a pedogenic mineral, loses its
association with pedogenic OM and associates with marine OM
in distal marine settings. By way of this mechanism, sedimentary
OM sourced from land is desorbed and/or degraded, leaving
marine OM with a straightforward source-to-sink trajectory
to repopulate the particulate phase (c.f., Zhang et al., 2019).
Organic matter–mineral interactions impart a systematic effect
on the fate of sedimentary OM in the ocean and govern the
type of OM that is stabilized, thereby changing the overall
radiocarbonscape.

SYNTHESIS AND PERSPECTIVES
14C is a one-dimensional value traditionally used to express
age based on its decay constant (Libby et al., 1949). Rather
than 14C expressing a single property (i.e., age, which is
commonly assumed), sedimentary OC in oceanic settings
integrates an overlay of processes, which contribute to an overall
radiocarbonscape. Delineating the manifold processes involved
given the scalar nature of this measurement often arrives at a
non-unique set of solutions. Toward resolving these ambiguities
by extending 14C into multidimensional space, sedimentary OM
can be dissected into different physical fractions [e.g., density
(Wakeham et al., 2009); grain size (Bao et al., 2019a), and
hydrodynamic (Coppola et al., 2007)], reactivity pools [e.g.,
chemical oxidation (Ohkouchi and Eglinton, 2006), thermal
treatment (Hemingway et al., 2019; Bao et al., 2018a)], and
individual compounds that can be targeted (e.g., Eglinton et al.,
1997; Tao et al., 2016). Based on the evidence accumulated thus
far, the “radiocarbonscapes” of the East Asian Seas are controlled
by a combination of (A) provenance, (B) hydrodynamics,
(C) event-driven sedimentation, (D) OM–mineral interactions,

and/or other potentially important and less-well understood
processes. 14C is a tracer that intersects with all of these themes,
and it is apparent that we need to continue our efforts to
deconvolve the complex tapestry of radiocarbonscapes in the
marine environment to resolve basic questions including the
following:

1. How do the four themes provenance, hydrodynamics,
event-driven sedimentation, and OM–mineral interactions
weigh against each other in shaping radiocarbonscapes?

2. How can quantitative information on these four themes be
extracted from radiocarbonscapes?

Based on the East Asian Sea natural laboratories, we
have developed our own perspectives toward answering
these questions and judged the relative influences of the
four themes on seafloor radiocarbonscapes (Figure 2). It
appears that the relative importance of these four themes
varies greatly across delta to deep-sea transects for active
and passive margin settings (c.f., Blair and Aller, 2012),
with provenance-based influence strongest in deltas and
more diffuse across passive margins with hydrodynamic
processes, leading to extensive imprints on radiocarbonscapes
on wide, high-energy shelf settings. In contrast, event-driven
sedimentation markedly impacts radiocarbonscapes across
active margin settings where episodic mobilization and
redistribution of vast amounts of sediment occur along with
a pronounced inheritance of a provenance signal. With their
areas of greatest influence difficult to pinpoint, OM–mineral
interactions control loss and replacement of terrestrial with
marine OM, thereby rewriting the organic geochemical
fingerprint of sedimentary OM. Based on individual case
studies of the East Asian Seas natural laboratories, the operation
of these four themes crystallizes out of radiocarbonscape
patterns. However, quantitative approaches for disentangling

FIGURE 2 | Radiocarbonscapes of sedimentary OC are influenced by several underpinning controls, with their relative influence represented by the thickness of the
tapered bars across source-to-sink sediment pathways as hypothesized by the authors. Top panel is modified from Bao et al. (2018d) and Blair and Aller (2012).
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radiocarbonscapes are needed where these four themes are
more intertwined, ultimately key for understanding marine
biogeochemical cycles.
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