
fmars-07-00505 July 6, 2020 Time: 20:39 # 1

ORIGINAL RESEARCH
published: 08 July 2020

doi: 10.3389/fmars.2020.00505

Edited by:
Wolfgang Koeve,

GEOMAR Helmholtz Center for Ocean
Research Kiel, Germany

Reviewed by:
Lionel Arteaga,

Princeton University, United States
Emma Louise Cavan,

University of Tasmania, Australia
Friederike A.E. Prowe,

GEOMAR Helmholtz Center for Ocean
Research Kiel, Germany

*Correspondence:
Kelsey Bisson

bissonk@oregonstate.edu

Specialty section:
This article was submitted to

Marine Biogeochemistry,
a section of the journal

Frontiers in Marine Science

Received: 10 December 2019
Accepted: 03 June 2020
Published: 08 July 2020

Citation:
Bisson K, Siegel DA and

DeVries T (2020) Diagnosing
Mechanisms of Ocean Carbon Export
in a Satellite-Based Food Web Model.

Front. Mar. Sci. 7:505.
doi: 10.3389/fmars.2020.00505

Diagnosing Mechanisms of Ocean
Carbon Export in a Satellite-Based
Food Web Model
Kelsey Bisson1,2* , David A. Siegel1 and Timothy DeVries1

1 Earth Research Institute and Department of Geography, University of California, Santa Barbara, Santa Barbara, CA,
United States, 2 Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States

The net primary productivity (NPP) of marine phytoplankton is ∼50 Pg C year−1, and
roughly 10–20% of this NPP is exported out of the surface ocean as sinking particulate
organic carbon (POC). Numerous mechanisms are hypothesized to control POC export
out of the surface ocean but the relative importance of the various mechanisms remains
poorly quantified on global scales. Here, we use a previously published satellite-based
mechanistic model of POC export to examine the effects on global POC export of size-
specific physical aggregation, size-specific and temperature-dependent zooplankton
fecal pellet production, and size-specific and temperature-dependent non-grazing
phytoplankton mortality. We test these mechanisms in different model configurations
to determine if these processes improve the ability of the model to match POC export
observations, and to assess the role of each process in controlling global POC export.
We find that all model configurations predict that over 60% of the global POC export is
from small zooplankton fecal pellets. All model configurations predict similar total POC
export, and we find only small differences in the magnitude, timing, and geographical
variations of total POC export. However, the fraction of total POC export due to sinking
phytoplankton aggregates, and that due to the fecal pellets of large zooplankton, vary by
more than a factor of two across the different model configurations. The POC export in
all models is most sensitive to parameters controlling zooplankton fecal fluxes and non-
grazing phytoplankton mortality. We compared zooplankton grazing rates predicted by
the models to results of experimental data, and found that some models match the
experimental grazing rates better than others, although data uncertainties remain large.
More field measurements of bulk ecosystem rates (i.e., phytoplankton aggregation and
zooplankton grazing), as well as explicit determinations of of the proportion of fecal
matter to phytoplankton aggregation, will help to better constrain mechanistic models
of global POC export.

Keywords: carbon export, remote sensing, phytoplankton mortality, zooplankton grazing, particle aggregation,
marine ecology
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INTRODUCTION

The passive sinking of particulate organic carbon (POC) out of
the surface ocean is a major component of the ocean’s biological
pump (Falkowski et al., 2000; Ducklow et al., 2001; Boyd et al.,
2019). Net primary production (NPP) is converted into sinking
POC as fixed carbon is processed through the marine food web.
Intact phytoplankton cells can sink directly out of the euphotic
zone, but most POC export occurs as phytoplankton aggregates
(Burd and Jackson, 2009) and zooplankton fecal pellets (Steinberg
and Landry, 2017; Boyd et al., 2019). In all, it is largely food web
processes (and gravity) that act to transport POC from the surface
ocean into the interior. This downward transport of carbon out
of the euphotic zone (termed POC export) strongly influences
global nutrient and oxygen distributions (DeVries and Weber,
2017), atmospheric CO2 concentrations (Sarmiento et al., 1998),
and deep-sea metabolism (Del Giorgio and Duarte, 2002; Giering
et al., 2014).

Modeling marine food webs on global scales remains a
challenge because ecological processes are temporally and
spatially variable. Data quantifying food web processes are scarce
and model parameterizations are simplified representations of
the functioning of biological populations and communities
(Nicholson et al., 2018; Talmy et al., 2019). Although there are
studies that aim to predict either the bulk sinking POC flux or the
various pathways for POC flux from satellite data (Siegel et al.,
2014; Archibald et al., 2019), less work addresses how different
passive sinking pathways function together. It is important to
test different parametrizations of covarying food web processes
within mechanistic models of passive carbon export so that
(1) the relative magnitude of different export pathways can be
assessed, and (2) the variability arising from assumptions about
food-web processes can be quantified globally.

The aims of this study are to investigate the sensitivity of
modeled POC export to variations in model architecture and
model parameters, to identify the most important processes
controlling POC export in models, and to discuss the limitations
of mechanistic models of POC export and how these models
can be improved. To this end, we adapt a simple food-web
model of passive sinking carbon flux that models POC export
from both large phytoplankton aggregates and zooplankton
fecal pellets (Siegel et al., 2014; hereafter S14). We modify
the model to include several additional mechanisms affecting
POC export, including the aggregation of small and large
phytoplankton, the effects of size and temperature on non-
grazing phytoplankton mortality, and the effects of temperature
on zooplankton respiration and fecal pellet production. We
optimize the parameters of each model configuration using a
dataset of climatological POC export field observations (Bisson
et al., 2018; hereafter B18). We find that fecal flux by small
zooplankton is the dominant mechanism for sinking flux on
global scales across all models, and all models are most sensitive
to parameterizations of sinking fecal pellet fluxes and of non-
grazing phytoplankton mortality. The variability in different flux
pathways coupled with large parameter sensitivities for processes
controlling POC export underscores the need to validate

mechanistic export models with ecological data in addition to
POC flux data. We close by providing recommendations for the
collection of field data needed to improve global mechanistic
models of POC export.

METHODS AND DATA

We develop six diagnostic model configurations that differ
in their assumptions about food-web functioning to examine
the importance of different food web processes to predictions
of global POC export fluxes. In the following, we describe
the baseline model construction (section “Baseline food web
model”), the new processes to be modeled (section “Overview
of model configurations”), the specific details of each of the six
models (section “Specific model configuration descriptions”), the
optimization scheme (section “Model optimizations”) used to
generate parameter values and their uncertainties (sections “POC
export parameter sensitivities”), model input data (section “Input
data”), and model test dataset (section “Model test dataset”). See
Table 1 for descriptions of the model parameters.

Baseline Food Web Model
The baseline model (S14; full details are available in Siegel et al.,
2014) routes NPP through a two-size food-web model estimating
the total POC flux (TOTEZ, mg C m−2 d−1) at the base of the
euphotic zone (Zeu), which is determined as the sum of modeled
fecal export (FECEZ) and sinking algal export (ALGEZ), or

TOTEZ = ALGEZ + FECEZ. (1)

The fecal POC flux (FECEZ) is calculated by multiplying
herbivory rate for each size class by fixed size-specific fecal flux
fractions (fecl, fecs) that quantify the fraction of ingested carbon
that becomes fecal flux (Table 1).

FECEZ = [(fecl × Gl)+ (fecs × GS)] × Zeu. (2)

Herbivory rates (Gl, GS) are determined through mass balance
using satellite observations of phytoplankton biomass (P, dP/dt)
for each size class and net primary production (NPP,
mg C m−2 d−1), an assumed mortality rate which includes
death by viruses and cell lysis (collectively mph), modeled algal
fluxes (ALGsEZ, ALGlEZ), and detrainment below the mixed
layer ( Ps
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dZml
dt H

(
dZml

dt

)
, Eqs 3a, b).

dPs

dt
=

NPPs

Zeu
− GS − mphs × PS −

ALGsEZ

Zeu

−
Ps

Zml

dZml

dt
H
(

dZml

dt

)
. (3a)

dPl

dt
=

NPPl

Zeu
− Gl − mphl × Pl −

ALGlEZ

Zeu

−
Pl

Zml

dZml

dt
H
(

dZml

dt

)
. (3b)

Frontiers in Marine Science | www.frontiersin.org 2 July 2020 | Volume 7 | Article 505

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00505 July 6, 2020 Time: 20:39 # 3

Bisson et al. Diagnosing Mechanisms of Carbon Export

TABLE 1 | Data product and parameter names, descriptions, and references used in the model configurations.

Term Description (units) Prior value Fixed or optimized? References

TOTEZ Total POC flux (mg C m−2 d−1) – Optimized Siegel et al., 2014

ALGEZ Total algal & aggregate flux (mg C m−2 d−1) – Optimized Siegel et al., 2014

FECEZ Total fecal flux (mg C m−2 d−1) – Optimized Siegel et al., 2014

Zeu Euphotic zone depth (m) – Fixed Morel et al., 2007

fecl Fraction of grazed large phytoplankton becoming fecal flux (unitless) 0.3 Optimized Siegel et al., 2014

Gl Grazing rate on large phytoplankton (mg C m−3 d−1) – (Analytically determined) Siegel et al., 2014

GS Grazing rate on large phytoplankton (mg C m−3 d−1) – (Analytically determined) Siegel et al., 2014

fecs Fraction of grazed small phytoplankton becoming fecal flux (unitless) 0.1 Optimized Siegel et al., 2014

falg Fraction of NPP from large phytoplankton sinking as cells (unitless) 0.1 Optimized Siegel et al., 2014

NPPs,l Net Primary Production by large and small phytoplankton (mg C m−2 d−1) – Fixed Silsbe et al., 2016

PS,l Phytoplankton carbon, large and small (mg C m−3) – Fixed Graff et al., 2015

Zml Mixed Layer Depth (m) – Fixed de Boyer Montégut et al.,
2004

aggs Coefficient for aggregation between small phytoplankton (m4 d−1 mg−1 C) – Optimized Burd and Jackson, 2009

aggl Coefficient for aggregation between large and small phytoplankton (m4 d−1 mg−1 C) – Optimized Burd and Jackson, 2009

Wsink Sinking speed for intact large cells (m d−1) 1.0 Fixed Smayda, 1970

mphT Coefficient for temperature dependent mortality (d−1) – Optimized Chen and Liu, 2010

fecT Coefficient for temperature dependent fecal flux fraction (unitless) – Optimized Steinberg and Landry,
2017

The last terms in Eqs 3a, b represent the reduction in
phytoplankton carbon due to detrainment where Zml is the mixed
layer and H(x) = 1 if x > 0 and 0 otherwise. When Zml deepens the
grazing rate is decreased due to a more dilute prey environment,
ultimately leading to decreased flux.

In S14, the algal POC flux (ALGEZ) is modeled as a fixed
fraction (falg = 0.1) of the NPP rate for large phytoplankton, or

ALGEZ = falg × NPPl. (4a)

Overview of Model Configurations
Here, we alter the S14 model by evaluating the importance of
four additional processes, namely aggregation of phytoplankton,
the effects of both size and temperature on phytoplankton
mortality, and the influence of temperature on zooplankton
fecal flux, which adds seven new parameters to the model
(Wsink, aggl, aggs,mphs, mphl, mphT, fecT) described below.
There are mechanistic reasons to consider both temperature and
size in formulations for carbon flux. Temperature affects animal
metabolism and growth rate (Cael and Follows, 2016 and refs
therein), and phytoplankton size is related to the number of
trophic levels in the ecosystem, which affects grazing efficiency
and the efficiency of the microbial loop (Michaels and Silver,
1988; Jackson and Burd, 1998).

The total algal flux ( ALGEZ) is modeled as the sum of the large
(micro, 20–50 µm) and small (pico and nano, 0.5–20 µm) algal
sinking fluxes:

ALGEZ = ALGsEZ + ALGlEZ. (4b)

The small algal sinking flux (ALGsEZ) is modeled as
proportional to the square of the small phytoplankton carbon

concentration. This follows the idea that aggregation scales with
cell concentration (Burd and Jackson, 2009), or

ALGsEZ = aggs
(
P2

s
)
. (4c)

The large algal sinking flux (ALGlEZ) is modeled as the sum
of directly-sinking large phytoplankton cells, plus an additional
term to account for aggregation of large phytoplankton with both
large and small phytoplankton, or

ALGlEZ = Wsink × Pl + aggl
(
P2

l + Pl × Ps
)
. (4d)

Large phytoplankton are assumed to sink (Wsink, m d−1) at
a fixed rate of 1 m d−1 [following observations of single cell
sinking in Smayda (1970)]. We assume that the sinking flux of
individual small phytoplankton is negligible. The two aggregation
coefficients (aggl and aggs) are allowed to vary for the different
size classes to account for differences in the surface area and
sinking speed of large and small aggregates. Ideally every flux
class would be modeled with a sinking speed but because our
focus is on the export from the surface ocean, we choose to
calculate general fluxes at the base of the euphotic layer and
assume minimal transit distance for aggregate and fecal fluxes.

Temperature dependent mortality is modeled using a Q10 of 2
with a reference temperature T0 of 20 degrees C, following Chen
and Liu (2010).

mphl,s = mphT × Q
(T−T0)

T0
10 . (5)

The value of the constant mphT (d−1) is not specified a priori, but
is determined by a parameter optimization procedure (section
“Model optimizations”). This formulation increases non-grazing
mortality rates for warmer waters (e.g., the subtropics) compared
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to cooler waters in the high latitudes or along areas of upwelling.
Under the temperature dependent mortality scheme, mphl =

mphs using Eq. 5. We also test a configuration of the model in
which mph is size-dependent but not temperature-dependent. In
the size-dependent mortality model, mphl and mphs are different
in order to account for the documented dependency of viral
activity on phytoplankton size (e.g., Fuhrman, 1999).

Finally, fecal flux (FECEZ) is calculated by applying either size-
specific or temperature-dependent fecal fractions to grazing rates.
In S14, fecs is 10% and fecl is 30% to account for the fact that fewer
trophic steps are involved in the transfer of larger phytoplankton
to zooplankton, increasing the efficiency with which that food is
processed. On the other hand, when prey is large compared to
the predator, some biomass is thought to be lost through sloppy
feeding (Lampert, 1978; Møller and Nielsen, 2001), which would
reduce the POC available for export. Following optimization
results in B18, we expect that fecl will exceed fecs. As in S14, total
fecal flux is the sum of small and large fecal flux, or

FECEZ = [(fecl × Gl)+ (fecs × GS)] × Zeu. (6a)

Here we also model the influence of temperature on fecal
flux via its impact on zooplankton metabolism. Roughly half of
ingested carbon is respired by zooplankton, and there are even
higher weight-specific respiration rates for zooplankton in the
tropics and subtropics compared to colder polar regions (see
Ikeda, 2014 and review by Steinberg and Landry, 2017). The
documented effect of temperature on zooplankton respiration
rates implies higher carbon loss in higher temperatures. To
account for this carbon loss, we model the fecal flux fraction as
an inverse function of sea surface temperature (T), or

fecs,l = fecT × Q
−(T−T0)

T0
10 . (6b)

The exponent in Eq. 6b is negative to account for decreasing
fecal pellet production (i.e., increased respiration) as temperature
increases. Under this formulation fecs = fecl and both fecs and fecl
vary with sea surface temperature. T0 = 20◦C and a Q10 value of
2 is used, following Ikeda (2014).

Specific Model Configuration
Descriptions
From the components described above, we build and evaluate
6 different model configurations (in order of increasing
complexity):

1. “One Size”: This model configuration has only one
phytoplankton size class and three parameters: mph, fec, and agg.
ALGEZ is modeled as the square of total phytoplankton carbon
concentration and an aggregation parameter: agg

(
P2). The

herbivory calculation uses a single equation for phytoplankton
mass balance, or

dP
dt
=

NPP
Zeu
− G − mph × P −

ALGsEZ

Zeu

−
P

Zml

dZml

dt
H
(

dZml

dt

)
. (7)

The expected value for the fecal flux fraction is 20%.
2. “S14”: This model is the original food-web model of Siegel

et al. (2014), which uses four parameters: mph, fecs, fecl, and falg .
The algal parameter (falg) is the fraction of NPP performed by
large phytoplankton that becomes sinking POC. This model was
optimized in B18 with the same POC flux data compilation that
we use in the present study.

3. “Aggregation”: This model configuration is different from
S14 because it calculates ALGEZ for both large and small plankton
using our aggregation formulation (see Eqs 4a–c) rather than
assuming a fixed algal sinking fraction of NPPL . In total, this
model requires five parameters and assumes that mphs = mphl .

4. “Aggregation + Temperature Dependent Mortality”: This
model configuration builds off the “Aggregation” model by
introducing a temperature dependent mortality term (mphT , see
Eq. 5) in place of the size-dependent mortality terms mphs and
mphl, totaling five parameters.

5. “Aggregation + Temperature Dependent Fecal Flux”: This
model configuration builds off the “Aggregation” model by
prescribing a temperature dependent fecal flux (fecT , see Eq. 6b)
rather than size dependent fecal terms (fecs, fecl), totaling
five parameters.

6. “Aggregation + Size Mortality”: This model configuration
builds off “Aggregation” and uses six parameters in total: the two
ALGEZ free parameters based on size, the two FECEZ parameters
based on size, as well as mphs and mphl .

Model Optimizations
We optimize the free parameters (aggs, aggl, mphs, mphl,
mphT, fecs, fecl, fecT , and falg) of the 6 models listed above
with the goals of finding parameter values that minimize the
model/data misfit while retaining reasonable fidelity to prior
expectations of parameter values. The procedure follows that
used by B18 and will be briefly described here. The fitting metric
is the log posterior function, which combines the model-data
misfit for POC flux (the log likelihood) with penalties for
parameter deviations from what is expected based on previous
understanding (the log prior).

The log posterior is the sum of the log likelihood and the log
prior:

log posterior = log likelihood + log prior. (8)

The model-data mismatch is minimized when the log likelihood
is maximized:

log likelihood = −
∑N

i=1
[
log(POC fluxmod/POC fluxobs)

]2

N
. (9)

Modeled and observed POC flux (POC fluxmod, POC fluxobs,
respectively) are log transformed because the observed POC
fluxes follow a lognormal distribution. N = 14 is the total number
of POC flux observations in the dataset of B18, which was
constructed by averaging 165 independent POC flux observations
onto a regular 1-degree grid with monthly resolution (see B18
for full details). The log prior is formulated as in B18 but is
normalized by the total number of parameters in each model (np)
so that any one model is not disproportionately penalized for
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additional parameters. The log prior quantifies the departure of
an optimized parameter from its expected value,

log prior = −
∑k=np

k=1
(
log(parametern)− log( expectedn)

)4

np
.

(10)

With this formulation, the magnitude of the log posterior is
dominated by the log-likelihood, rather than the log-prior. The
parameters are log transformed as in B18 to force parameter
values to be positive, and to apply large penalties to large
deviations from the expected value.

All model configurations are optimized using a
“Climatological Dataset” of POC export (section “Input
data”) using slice sampling (a type of Markov chain Monte
Carlo algorithm) as described in B18. Briefly, for each model
configuration we draw random initial parameter values
(x0,k) equal to the number of parameters (k) in each model
experiment from a uniform distribution within (0,1]. The
posterior function is calculated, and the parameter values
are iteratively updated using the slice sampling algorithm
(Neal, 2003). This is repeated until we have a “chain” of 2000
samples for each parameter (Neal, 2003). We run 4 chains
independently and sampling is stopped once the four chains
converge to the same probability density function [quantified
by a “Potential Scale Reduction Factor” near 1 (Brooks and
Gelman, 1998)]. The first 50% of the samples are discarded
as part of the “burn-in” phase and the remaining parameter
values are included in the sample. The reported parameter
uncertainties represent half the interquartile range of the
sampled parameters. Reported POC flux uncertainties are half
the interquartile range of POC fluxes generated using all of the
sampled parameters. The model results are also scored using the
Pearson correlation coefficient (r) and the Root Mean Square
Difference (RMSD) to give a more comprehensive understanding
of the model performance.

POC Export Parameter Sensitivities
To understand how each parameter affects the modeled POC
export, we calculate the sensitivity of POC export to each
parameter in each model configuration (section “Overview of
model configurations”). The POC export sensitivity to parameter
k is calculated using a centered finite difference perturbation (DP)
to parameter k while all other parameters are fixed. We choose
DP to be half the interquartile range for the parameter values
generated from slice sampling and we calculate the centered
difference as 1/2(POCp + DP–POCp) + 1/2(POCp–POCp−DP).
Here POCp is the flux for a particular parameter set (p) and
POCp + DP is the flux after parameters are altered by adding
(p + DP) or subtracting (p–DP) a difference perturbation (DP).

To quantify the sensitivity of global POC export to parameter
choice, we draw 1000 optimized parameter samples for a given
model so that the covariances among the optimized parameters
are considered. We then compute the modeled POC export
using the 1000 different parameter values and report half the
interquartile range as the POC export uncertainty (as shown in
Figure 2D).

Input Data
The models take as input monthly mean observations from
the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) satellite
ocean color mission from September 1997–December 2008, as is
done in S14 and B18 (Supplementary Figure 1). In this study we
use the Carbon, Absorption and Fluorescence Euphotic-resolving
(CAFE) NPP satellite data product (Silsbe et al., 2016) because it
showed the best performance across all of the datasets analyzed
in B18 and because it showed best performance with in situ
NPP measurements compared to other NPP models. The choice
of NPP product will affect parameter values to an extent, but
the variations in parameter values introduced by different NPP
products are small compared to parameter uncertainties (see
Figure 4 in B18).

In addition to NPP (mg C m−2 d−1), the model also
takes as input the phytoplankton size distribution (Kostadinov
et al., 2010), the euphotic zone depth [m, derived from
satellite chl concentrations using equations in Morel et al.
(2007)], phytoplankton carbon [P, mg C m−3, derived from
satellite derived particulate backscatter (443 nm, m−1) using
the relationship in Graff et al., 2015], and mixed layer
depth (m, provided by the MLD_DT02 climatology, de Boyer
Montégut et al., 2004). Sea surface temperatures to calculate
temperature-dependent mortality and fecal flux terms are taken
from the annual average World Ocean Atlas 2013 maps
(Locarnini et al., 2010).

We organize the data as follows: all data inputs are
gridded onto a 1-degree latitude/longitude grid and averaged
for each climatological month (Supplementary Figure 1). As
in S14, we require a minimum of 8 months a year of
observations, which effectively excludes regions poleward of
∼65o latitude from analysis.

Model Test Dataset
For POC flux observations, we use the B18 “Climatological
Dataset” of POC export. The B18 “Climatological Data” includes
165 total observations of POC flux at the Zeu depth from the
234Th technique at 14 different sites, with an average flux of
69 mg C m2 d−1. The dataset is spatially biased toward the
Northern Hemisphere and does not include fluxes in the high
latitudes or the Indian Ocean (Supplementary Figure 2), but is
used for optimization because each grid cell contains multiple
observations of POC export, such that the average POC export
within each grid cell is a 1-degree, monthly average. In this
way, the data and model outputs are evaluated at the same
spatiotemporal resolution and depth.

RESULTS

Estimated Parameter Values for All
Models
Optimized parameter values for the suite of six model
configurations are shown in Figure 1. We expect that some
parameter values will vary from the B18 values because when new
parameters are added, additional degrees of freedom are added as
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FIGURE 1 | Parameter values and their uncertainties for the five model configurations and the base model, S14. Expected parameter values are given by a dashed
line when appropriate (see Table 1 for references). Error bars represent half the interquartile range retrieve set of optimized parameter values: (A) aggs, (B), aggl , (C)
fecs, (D) fecl , (E) mphs, and (F) mphl . The falg term is from the S14 model and is a different parameterization than either aggs or aggl . The falg term represents the
fraction of NPP that becomes sinking algal flux. For models involving a temperature dependency (“Aggregation + Temp. Mortality” and “Aggregation + Temp. Fecal,”
the parameter value represents the coefficient in the Q10 formulae (see Eqs 5, 6b). For models when size is not included for a parameter we show the parameter
value in the large fraction (e.g., for “One Size,” the overall fecal flux fraction is shown in the fecl panel.).

well. This is evident when comparing “S14” to the more complex
model configurations because these model configurations are
identically formulated apart from their aggregation, fecal flux, or
mortality parameterizations. The optimized parameter values for
the “S14” and “Aggregation” models are very similar, but both
of these are substantially different from the “One Size” model
(compare the first through third bars for mphs, mphl, fecs, fecl).
When differential mortality based on size is added to the
“Aggregation” model (i.e., the “Aggregation + Size Mortality”
model) the mortality rate for large phytoplankton nearly doubles.

There are slight departures in the parameter values from
their expected values (if applicable), given by dashed lines in
Figure 1. Most model configurations predict a reduced rate of
small and large phytoplankton mortality from prior values and
a slightly reduced fecal flux fraction for large prey. While there
were no expected values for the two aggregation terms, there
are variations in both the magnitude and the range of aggs and
aggl, and aggs is always less than aggl. Thus, the aggregation

model configurations predict that more large cells will sink as
aggregates compared to small cells, given equivalent biomass in
both phytoplankton size classes.

Model Skill, Sensitivities, and Global
Statistics
Results from the model optimizations are shown in Figure 2.
Model skill is evaluated on the basis of the log likelihood,
the correlation coefficient, and the RMSD. The log likelihood
increases with increasing degrees of freedom, as expected.
However, the increase in model degrees of freedom does not
correspond to improvement in other performance metrics.
The correlation coefficient is reduced in the case of the
“Aggregation + Size Mortality” compared to the “Aggregation”
model, and the RMSDs are higher for the “Aggregation + Size
Mortality” and “Aggregation + Temperature Mortality” model
configurations. The “One Size” model performs the worst: it
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has the lowest correlation coefficient, the highest RMSD, and
the largest log posterior absolute value. Because of the poor
performance for the “One Size” model, we focus the bulk of our
results and discussion on the other models. We include the “One
Size” model in the figures to highlight the importance of resolving
different phytoplankton size classes for predicting POC export.
Apart from the “One Size” model, there is not a substantial
difference in performance across the model configurations, as
measured by the model-data misfit for POC export. There is also
little change in the globally integrated POC export for all the
model configurations, which ranges from 6.1 ± 1.3 Pg C year−1

in the “One Size” model to 7.2 ± 0.5 Pg C year−1 in the
“Aggregation” model. All models predict similar global POC
export values because the parameters of all models are optimized
with the same POC flux dataset.

Although the magnitude of POC export is similar across
all models (Figures 2D, 3A), the fractional contribution of the
different POC export mechanisms to the total export varies
substantially (Figures 2F,H, 3B,C). Discarding the unrealistic
“One Size” model, the algal ratio (the fraction of total POC
export due to sinking phytoplankton cells and aggregates) varies
between 21% in the “Aggregation” model and 39% in the
“Aggregation + Temperature Mortality” model (Figure 3C).
The fraction of small fecal flux to total POC flux is the most
consistent across model configuration, varying from 48% in
the “Aggregation + Temperature Mortality” model to 61%

in the “Aggregation” model (Figures 3B,C). The fraction
of large fecal flux to total POC flux varies from 6% in
the “Aggregation + Size Mortality” model to 17% in the
“Aggregation” model. In all model configurations, the small fecal
flux is the dominant pathway for total POC flux, especially
in the gyres where it contributes to >75% of the total POC
export (Figure 3C). The globally-integrated rate of POC export
via small fecal flux ranges from 3.2 Pg C year−1 in the
“Aggregation + Temp Mortality” model to 4.4 Pg C year−1 in the
“Aggregation” model. The implications of this are discussed in
section “Discussion.”

Spatial and Temporal Variability of POC
Export Pathways
The model results can be used to assess the magnitude, spatial
variability, and timing of particular mechanisms to the total
POC export. Regions with different magnitudes of total POC
export (i.e., oligotrophic vs. high latitude regions) differ in
both the magnitude and timing of the various POC export
pathways throughout the annual cycle (Figure 4). The peak
timing of aggregation and sinking flux occurs in June for the
North Atlantic, August for Station P in the North Pacific,
and there is no substantial change in aggregation and sinking
flux for Station Aloha. Throughout the year in the North
Atlantic, the large fecal flux exceeds or matches that of small

FIGURE 2 | Basic statistics for the six models in order of increasing number of parameters (from 3 in the case of “One Size,” to 6 in the case of “Aggregation + Size
Mortality”). The correlation coefficient (A) is given by Pearson’s r, RMSD (B) is the root mean squared difference, and the log likelihood (C) is described in equation 9.
The error bars on integrated model flux (D) values represent half the interquartile range from POC flux simulations. The EZ-ratio (E) is the flux at the base of the
euphotic zone divided by NPP. The algal ratio (F) is the fraction of total export contributed by direct algal sinking and aggregation. The small fecal (G) and large fecal
(H) flux ratios are the fraction of fecal flux to total export for small and large zooplankton, respectively. Note that the y axis limits vary for different parameters.
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FIGURE 3 | (A) Annually averaged total POC export (mg C m−2 d−1). (B) Annually averaged contribution of small fecal flux to total POC export. (C) The fraction of
annual average small fecal flux, large fecal flux, and aggregation and sinking flux to total flux for the 5 five models that incorporate phytoplankton size into their
formulations.

fecal flux in most models; however, in the North Pacific the
small fecal flux exceeds the large fecal flux in most models
throughout most of the year, and small and large fecal fluxes
are negatively correlated (R ∼ -0.7 for all models). To first
order, the seasonal changes in flux are driven by seasonal
changes in NPP as well as the particle size distribution.
In general, the seasonal variability of the various export
pathways is similar across all models for any particular site,
but the magnitudes of different export pathways vary among
models (Figure 4).

The dominant POC export pathway on global scales is the
small fecal flux pathway, followed by the aggregation and large
fecal export pathways (Figure 3). Across all models, there
are consistent qualitative patterns in the sensitivities of POC
export to any one particular parameter, although the magnitude
of these sensitivities varies from model to model (Figure 5
and Supplementary Figures 3, 4). POC export in all models

is most sensitive to the fecs parameter, as illustrated for the
“Aggregation” model in Figure 5. After the fecs parameter,
the greatest sensitivity is to fecl, followed by mphl,s, aggl, and
aggs (Figure 5, on the basis of the median sensitivity). The
magnitude of sensitivity can be compared to annual mean
POC flux, which is 65 mg C m−2 d−1 for the “Aggregation”
model. A sensitivity value of 20 mg C m−2 d−1 corresponds to
30% of annually averaged flux. Although the global sensitivities
average between -3 and 8 mg POC m−2 d−1, they can
exceed 20 mg POC m−2 d−1 on annually averaged regional
scales, especially for fecs and fecl. The models are especially
sensitive to aggl, falg , and fecl along coasts and areas of
upwelling where there is a higher fraction of large phytoplankton.
The reverse is true for the fecs term, where increasing fecs
especially increases POC export in the tropics. For all models,
increasing aggl, falg , and fecs,l yields higher POC export, and
increasing mphs, mphl, and mphT yields lower POC export.
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FIGURE 4 | Seasonal variability of POC export for all models with two size classes for the North Atlantic (47N, 20W), Station Aloha (22N, 158W), and Station P (50N,
145W). Note the different y-axis scales for each location. The POC export by three different pathways (aggregation and sinking, small fecal flux, large fecal flux) is
shown, along with total POC export (in black). Icons next to the graphs are qualitative model representations, as used in Figure 3.

These parameter sensitivities highlight regions where additional
data will be especially useful. For example, the Equatorial
Pacific, the Southern Atlantic Ocean, and the Northern Indian
Ocean have high sensitivity to the fecs, and/or fecl terms.
Field observations of fecal flux fractions in these regions may
significantly improve these models.

DISCUSSION

Importance of Resolving Ecosystem Size
Structure
In this study we found that resolving two size classes of
phytoplankton substantially improved the ability of our model to
match observed POC export fluxes. These results are important
for guiding the development of future Earth system modeling
of the biological pump. The “One Size” model performed
poorly against observations of POC export (on the basis of

RMSDs and correlation coefficient) and its optimized parameter
values were unrealistic. The predicted fraction of algal sinking
to total flux is 60% for the “One Size” model, which is
an unrealistically high fraction on annual global scales (Burd
and Jackson, 2009). The algal fraction in the other model
configurations is between 20–40%, which is more reasonable.
The “One Size” model is also more sensitive to parameter
changes compared with the other model configurations, and
has the largest uncertainty of integrated POC export of all
models (Figure 2). These findings, together with the poor model-
observations misfits for the “One Size” model, underscore the
importance of resolving at least two phytoplankton size classes
in a food web POC export model.

In contrast, adding explicit mechanisms beyond those already
implemented in the “S14” model results in only incremental
improvement (compare performance metrics in Figure 2). The
taper in performance with added processes beyond those related
to phytoplankton size demonstrates limitations in our model,
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FIGURE 5 | Global maps showing sensitivity of POC export (in units (mg C m−2 d−1) to parameters in the “Aggregation” model. The values are given by a centered
difference, or 1/2(POCp + DP–POCp)+ 1/2(POCp–POCp−DP ), where DP is half the interquartile range for a given parameter from the set of parameters retrieved by
the slice sampling algorithm. The median sensitivity (left) and its interquartile range (right) are bracketed.

since increasing model complexity only results in marginal
improvements to model performance. The slight difference in
performance among the models herein obscures our ability
to judge any given model configuration solely on the basis
of its ability to match observations of POC export. The
models do, however, vary in the predicted mechanisms of
POC export (see Figures 4, 5). Measurements that quantify
both the magnitude and mechanism of POC export would
help to better distinguish between the models presented here,

and help to improve mechanistic POC export models (see
section “Conclusion”).

Importance of Small Phytoplankton and
Zooplankton to Global Export Fluxes
In this study we optimized parametrizations for mechanistic
processes contributing to POC flux. We found that the
dominant passive POC export pathway on global scales is
from small zooplankton fecal flux, and that the annually
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FIGURE 6 | Annually averaged POC export in the “Aggregation” model by direct sinking of (A) large phytoplankton cells, (B) large phytoplankton aggregates, and
(C) small phytoplankton aggregates. The bracketed values shown in each map are the 25th, 50th, and 75th quantiles for flux (mg C m−2 d−1), respectively. (D) The
ratio of small phytoplankton aggregates to the total aggregate export. The bracketed numbers represent the 25th, 50th, and 75th quantiles for this ratio.

averaged model sensitivity to fecs term is ∼9 mg C m−2 d−1

(∼15% of annual POC export) in the “Aggregation” model
(Figure 5). For the aggregate flux pathway, large aggregates
are more important globally than smaller aggregates (compare
Figures 6B,C). However, small phytoplankton aggregates
provide a steady background flux of ∼ 2 mg POC m−2 d−1

globally (Figure 6C). Our study finds enhanced aggregation
by small cells in the oligotrophic gyres compared to
other areas, which supports work (Chow et al., 2015 and
refs therein) demonstrating that small cells can become
sticky and aggregate when under nutrient stress. In the
subtropical gyres where small phytoplankton dominate,
small aggregates constitute >75% of the total aggregate
flux (Figure 6D), although the bulk of the export in these
regions is from small zooplankton fecal pellets. Large
aggregates dominate in high-productivity regions such as
the coastal, upwelling, and seasonal bloom regions. Direct
sinking of intact phytoplankton cells accounts for a much
smaller fraction of total POC export than either large or small
aggregates (Figure 6A).

POC export derived from small phytoplankton (via small
algal aggregates or fecal pellets produced by zooplankton that
feed on small phytoplankton) dominates global POC flux in
our models. This is primarily because small phytoplankton are
much more common than large phytoplankton in most of the

ocean, but we should also note that our model configurations
predict POC export based on climatological conditions and
will miss transient blooms that are often characterized by high
POC export derived from large phytoplankton. Several recent
studies have also examined the contribution of sinking small
phytoplankton export to total POC flux. For example, Durkin
et al. (2015) found that small cell export via small sinking
particles contributed up to 67% of total POC flux, and Lomas
and Moran (2011) found that pico- and nano- aggregates alone
contributed up to 40% of total POC flux, both in the Sargasso Sea.
Stukel et al. (2013) found that while Synechococcus contributed
roughly a quarter of NPP, it only accounted for ∼6% of total
POC flux in the Costa Rica upwelling dome, where the bulk
of the flux came from mesozooplankton fecal pellets. Baker
et al. (2017) found that POC concentrations of slowly sinking
particles were up to 75 times greater than fast sinking particles in
the deep Atlantic, and that slow sinking export fluxes generally
exceeded fast sinking export fluxes. These studies represent
snapshots in time compared to average values that we report
herein. Still, more work is needed to comprehensively assess
the role of small phytoplankton to total export on global scales
(Richardson, 2019).

In this study, when the small fecal flux is larger than
the large fecal flux, it is typically >50% of the total
flux. When the large fecal flux is larger than the small
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fecal flux, it is usually not the dominant flux pathway,
contributing between 20% and 40% of total flux on average
(depending on the model configuration used). Ultimately
our study findings are similar to what is found in previous
work: even when large zooplankton are present, small
phytoplankton (via aggregation or small sinking fecal pellets)
can contribute a large portion of total flux (Richardson, 2019
and refs therein).

For decades, large particles and aggregates have been
thought to contribute the majority of carbon flux, making
it difficult to reconcile the relatively low proportion (∼1%)
of primary production reaching a climatically-relevant depth
horizon (∼1000 m). Our finding that small particles are the
bulk of sinking carbon flux exiting the euphotic zone may help
close the gap between observations at depth and at the surface,
where many studies have focused on the contribution of large
cells to flux.

Modeled Herbivory Rates and
Comparison With Grazing Experiments
As noted above (Figure 3), the total POC export is similar
across all the different model configurations compared here.
This makes it difficult to constrain or distinguish between
these different mechanistic model configurations on the basis
of POC export alone. However, the model configurations can
be evaluated with observations other than POC export. For
example, the models also predict zooplankton herbivory rates,
which have been measured in experiments and for which global
syntheses are available (Calbet and Landry, 2004; Schmoker
et al., 2013). Figure 7 shows model-predicted herbivory rates on
small and large phytoplankton, which is analogous to grazing
by microzooplankton and mesozooplankton in our two-size
food web model. Previous work estimated global mean values
for the fraction of NPP consumed by microzooplankton to be
∼60–70% (Calbet and Landry, 2004; Schmoker et al., 2013;

FIGURE 7 | (A) Box and whisker plots of the annually averaged grazing rate of small zooplankton (Grzs) divided by total NPP for the five models that have two
phytoplankton size classes. The horizontal green shading indicates the range of global averages from previous studies (Schmoker et al., 2013 with a value of 0.62;
Calbet and Landry, 2004 with a value of 0.67) for comparison. We include microzooplankton data from a recent compilation by Sherman et al., 2016. (B) Box and
whisker plots of the annually averaged grazing rate of large zooplankton (Grzl ) divided by total NPP for the five models that have two phytoplankton size classes, and
for data digitized from Calbet (2001; their Figure 1A).
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Sherman et al., 2016). We compare our model configuration
results to the compilation of Sherman et al. (2016), which
provides phytoplankton growth and microzooplankton grazing
rates. For consistency with our model configurations, we
calculate the ratio of phytoplankton growth to microzooplankton
grazing and eliminate instances in this ratio where the grazing
fraction exceeds one or is negative. The mean fraction of
herbivory on small phytoplankton relative to total NPP in
our models is 53% for “S14,” 69% for “Aggregation,” 50%
for “Aggregation + Temperature Dependent Mortality,” 74%
for “Aggregation + Temperature Dependent Fecal Flux,” and
46% for “Aggregation + Size Mortality” (see Figure 7, and
note the median values are displayed). This fraction is largest
in the “Aggregation + Temperature Dependent Fecal Flux”
model because its aggs parameter is smaller than aggs for
all other model configurations, so nearly all of the small
phytoplankton NPP is available to be consumed because it
does not become sinking aggregates. The “Aggregation” model
performs closest to what is expected from microzooplankton
grazing experimental results although it overestimates the
proportion of grazing. All model configurations exhibit a
smaller interquartile range than in the Sherman et al., 2016
grazing compilation. This difference is likely because the model
predictions are averaged over larger spatial scales and longer time
scales than the experiments.

Predicted grazing rates on large phytoplankton from the
present model configurations can be compared to experimental
mesozooplankton grazing data (Calbet, 2001, Figure 7B,
digitized via < https://automeris.io/WebPlotDigitizer/ > with
uncertainty < 5%). The experimental grazing rates were
determined by gut pigment content and clearance rates from
incubations. No direct matchups are available so we evaluate
them on the basis of their frequency distribution functions,
illustrated with box and whiskers plots. For consistency with
our model configurations, we eliminate the few instances in
the experimental data set where the grazing fraction exceeds
one. The laboratory experiments show a higher fraction of
production grazed by mesozooplankton than any of the models:
the median of the Calbet (2001) data is 10%, compared
to the median of the “S14” model (4%), the “Aggregation”
model (7%), the “Aggregation + Temperature Dependent
Mortality” model (5%), the “Aggregation + Temperature
Dependent Fecal Flux” model (6%), and the “Aggregation + Size
Mortality” model (2%). As is true for the small zooplankton
grazing rates, the “Aggregation” model comes closest to
the experimental data. In the case of both small and
large grazing data there is insufficient data available to
address the degree to which the models represent average
grazing conditions in nature. Ideally there would be grazing
data representing a “monthly average” for locations on a
1× 1 degree grid.

CONCLUSION

In this study we extended the S14 satellite-based food web and
carbon export model to include additional processes that are

thought to influence POC export. We do not endorse any one
model configuration presented herein as the “best,” because all
model configurations were able to provide similar fits to observed
POC export fluxes, after optimization of uncertain parameters.
This highlights the limitations of using POC flux observations
to guide the development of mechanistic models of POC export,
and suggests that additional data are needed to choose the best
configuration for these models. Aside from this limitation, several
important points emerge from our analysis:

1. Including two phytoplankton size classes (rather than one)
significantly improved model performance. In contrast,
adding a mechanistic representation of aggregation, or
including temperature-dependent grazing or mortality, did
little to improve model performance.

2. Across all model configurations on global scales, the sinking
fecal pellets of small zooplankton are the largest contributor
to globally-integrated POC export.

3. All of the model configurations predict that the North Pacific
experiences peak export in August, whereas the North Atlantic
experiences peak export in June. All the different model
configurations also predict that phytoplankton aggregates are
the dominant carbon export pathway in these regions. The
magnitude of the small zooplankton fecal flux is similar for
both regions, but the relative contribution of this pathway is
larger in the North Pacific than in the North Atlantic.

What data are needed to improve mechanistic models
of carbon export such as the ones presented here? Ideally,
total POC export would be measured simultaneously with
measurements of the fraction of fecal pellets and phytoplankton
aggregates contributing to export, in order to provide better
constraints on the contribution of these flux pathways (and
others) to POC export on regional to global scales. Also,
ecosystem measurements such as rates of zooplankton grazing
and phytoplankton aggregation would be useful for model
evaluation and selection (e.g., Sherman et al., 2016; Le Moigne,
2019), especially if there are sufficient measurements available
to average over a 1-degree monthly grid. In order to properly
characterize sinking speed and remineralization rates for these
flux pathways as they transit through the surface ocean into
the deep, it is necessary to resolve particle composition. The
EXPORTS program (United States; Siegel et al., 2016) and
similar field campaigns [including FLUXES (Spain), COMICS
(United Kingdom), GOCART (United Kingdom), CUSTARD
(United Kingdom), Ocean Twilight Zone (United States),
PICCOLO (United Kingdom), and more] will provide a diversity
of measurements that may enable these comparisons on a
regional scales, especially via data sharing efforts such as
JETZON1. Although not explicitly addressed in this paper, the
ongoing development of mechanistic models driven by satellite
products will benefit from data enabling characterization of
surface phytoplankton communities beyond bulk assessments of
phytoplankton carbon (see Kramer and Siegel, 2019) because
different phytoplankton types are likely to have different potential

1www.jetzon.org
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for export via the aggregate and fecal flux pathways as modeled
here. Advancements in satellite algorithms (particularly for
bbp because it quantifies NPP, phytoplankton carbon, and
phytoplankton size, e.g., Loisel et al., 2018; Bisson et al., 2019)
will also improve model fidelity by providing more accurate input
data with reduced uncertainty.

DATA AVAILABILITY STATEMENT

The datasets analyzed for this study are publicly provided by
the NASA Ocean Biology Progressing Group (https://oceancolor.
gsfc.nasa.gov). The carbon flux data are available at https://doi.
org/10.1029/2018GB005934.

AUTHOR CONTRIBUTIONS

KB, DS, and TD conceived this study. KB performed the analyses
and made the figures. KB led the writing with input from DS
and TD. All authors contributed to the article and approved the
submitted version.

FUNDING

Support for this work came from the National Aeronautics and
Space Administration (NASA) to DS as part of the EXport
Processes in the Ocean from RemoTe Sensing (EXPORTS, grants
80NSSC17K0692 and NNX16AR49G). TD acknowledges support
from NASA grant NNXAI22G.

ACKNOWLEDGMENTS

Thank you to Sasha Kramer, Craig Carlson, and Mark Brzezinski
for helpful discussions, and to the OCB program for travel

funding to the BIARITTZ conference. We are grateful for the
reviewers comments that enhanced this work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2020.00505/full#supplementary-material

FIGURE S1 | Annual climatologies for selected satellite data inputs into the model.
Phytoplankton carbon is in mg m−3 and approximated using particulate
backscatter at 443 nm (m−1) using the relationship in Graff et al., 2015.

FIGURE S2 | The distribution of the data values is shown along with the data
locations for the 14 sites used in this study.

FIGURE S3 | Global annually averaged maps showing model sensitivity in POC
flux to changes in parameter value (DP, given by half the interquartile range) from
the optimized parameter value (p). The values are given by a centered difference,
or 1/2(POCp + DP–POCp) + 1/2(POCp–POCp−DP ). In the case of
“Aggregation + Temp Mortality,” and “Aggregation + Temp Fecal” the mph values
reported are for the coefficients in the Q10 formulae. The median centered
difference POC flux (left) and its interquartile range (right) are bracketed. The red
text is to emphasize that the S14 values are for falg and not
aggs or aggl .

FIGURE S4 | Global annually averaged maps showing model sensitivity in POC
flux to changes in parameter value (DP, given by half the interquartile range) from
the optimized parameter value (p). The values are given by a centered difference,
or 1/2(POCp + DP–POCp) + 1/2(POCp–POCp−DP ). In the case of
“Aggregation + Temp Mortality,” and “Aggregation + Temp Fecal” the mph values
reported are for the coefficients in the Q10 formulae. The median centered
difference POC flux (left) and its interquartile range (right) are bracketed. The
values and maps for mphs and mphl are the same for the first four panels because
those only use one mortality parameter instead of two (in the case of the
Agg + Size Mortality model).

FIGURE S5 | Global annually averaged maps showing herbivory rates
(mg C m−3 d−1) on small and large phytoplankton for the model
configurations described here.
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