AUTHOR=Ditria Ellen M. , Lopez-Marcano Sebastian , Sievers Michael , Jinks Eric L. , Brown Christopher J. , Connolly Rod M. TITLE=Automating the Analysis of Fish Abundance Using Object Detection: Optimizing Animal Ecology With Deep Learning JOURNAL=Frontiers in Marine Science VOLUME=7 YEAR=2020 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2020.00429 DOI=10.3389/fmars.2020.00429 ISSN=2296-7745 ABSTRACT=
Aquatic ecologists routinely count animals to provide critical information for conservation and management. Increased accessibility to underwater recording equipment such as action cameras and unmanned underwater devices has allowed footage to be captured efficiently and safely, without the logistical difficulties manual data collection often presents. It has, however, led to immense volumes of data being collected that require manual processing and thus significant time, labor, and money. The use of deep learning to automate image processing has substantial benefits but has rarely been adopted within the field of aquatic ecology. To test its efficacy and utility, we compared the accuracy and speed of deep learning techniques against human counterparts for quantifying fish abundance in underwater images and video footage. We collected footage of fish assemblages in seagrass meadows in Queensland, Australia. We produced three models using an object detection framework to detect the target species, an ecologically important fish, luderick (