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With the increased uncertainty introduced through climate change and fishing pressure,
having accurate estimates of fish biomass is essential for global ecosystem and
economic health. Acoustic surveys are an efficient way to determine population size for
pelagic species in the Northeast Atlantic (NEA), but acoustic population estimates still
contain uncertainty and are difficult for some species. For example, Atlantic mackerel
(Scomber scombrus) is one of the most valuable fisheries in the NEA and is not
monitored acoustically, as mackerel lack the swim bladder that provides the strongest
acoustic echo (target strength) at common assessment frequencies. For all pelagic
species, and especially for mackerel, behavior is a source of variation in acoustic
measurements and therefore in population estimates. Behavior is mediated by both
extrinsic and intrinsic factors, such as the environment and the life history of the
fish. In turn, behavior affects the density of the shoal and the tilt angle of the fish
relative to the survey vessel, affecting their target strength, which affects the biomass
estimate. Some fish may also undergo an anti-predator response to survey vessels,
changing their behavior in response to the survey. Understanding these behaviors and
incorporating them into acoustic stock assessment methods can improve the accuracy
of population estimates. Individual-based models (IBM) of fish shoals provide a pathway
for incorporating behavior into acoustic methods. IBMs have been used extensively
to build theoretical models of fish shoals, but few have been successfully tested in
lab or field conditions. As computational power and monitoring technology improve,
modeling the collective behavior of pelagic fishes will be possible. Novel, interdisciplinary
approaches to data collection and analysis will help translate theoretical IBMs to the
fisheries science domain. Beyond acoustic stock assessments, this approach can be
used to investigate knowledge gaps in the effects of fisheries-induced evolution and
the potential for range shifts under climate change. Further work to synthesize existing
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models and incorporate field data will help determine how environmental, ecological,
physiological, and anthropogenic factors, often affecting both behavior and acoustic
surveying, are interconnected. Moving from theoretical models to practical applications
will be a valuable tool in tackling the uncertainty that accompanies further fisheries
exploitation and warming oceans.

Keywords: Atlantic mackerel, pelagic fisheries, fish shoaling, fisheries acoustics, individual-based models (IBM),
collective behavior

INTRODUCTION

As fishing pressure and climate change intensify, so does the
need for well-informed and standardized fisheries management.
Ineffective management could lead to ecosystem collapse and
widespread food shortages (Scheffer et al., 2005; Srinivasan
et al., 2010). Effective management, in addition to well-
crafted legislation and incentives, must be based on the most
accurate possible estimation of fisheries stock size (Burgess
et al., 2017; Zimmermann and Werner, 2019). In the Northeast
Atlantic (NEA), small pelagic fishes, such as Atlantic mackerel
(Scomber scombrus), Atlantic herring (Clupea harengus), blue
whiting (Micromesistius poutassou), horse mackerel (Trachurus
trachurus), and capelin (Mallotus villosus) are high-value catches,
representing 37% of global fisheries landings (Alder et al.,
2008). Fished for both human consumption and animal feed,
their large shoals mean low effort for commercial fisheries
(Biseau, 1998). They are also essential to the pelagic and benthic
ecosystems, transferring energy from low-trophic plankton to
predators such as larger fish, seabirds, and marine mammals
(Essington et al., 2015).

The population size for the majority of these species is
assessed with acoustic surveys, an efficient and effective method
for estimating stock size, especially when combined with trawls
to determine the finer-scale population dynamics such as age
and condition (Massé, 1996; Georgakarakos et al., 2011). All
acoustic stock estimates are, however, an estimate, and while
huge advances in technology and fisheries science have reduced
the bias inherent in the method, there are limits to how
much information can be gleaned from an acoustic survey.
The behavior of fish, and how that affects the density recorded
by the echosounder, can complicate the final biomass estimate
(Fréon et al., 1993).

Behavior affects all assessments for gregarious fishes and
models of shoaling behavior can be adapted to any of
these species. Including behavior is especially important for
developing an acoustic protocol for monitoring Atlantic
mackerel, which form large shoals and lack the swim bladder
that provides the strongest acoustic echo at the commonly-used
frequencies (Simmonds and MacLennan, 2005; Korneliussen,
2010). Mackerel is one of the most valuable, and most
controversial, pelagic fisheries species. Mackerel distributions
are largely mediated by temperature. Therefore, their range
may expand poleward and into deeper waters with increasing
temperatures (Dulvy et al., 2008; Hughes et al., 2015; van der
Kooij et al., 2016; Ólafsdóttir et al., 2019). The shift in mackerel
distributions precipitated a dispute over the total allowable catch

(TAC) for the NEA, a region shared by the European Union,
Norway, Iceland, and the Faroe Islands (Hughes et al., 2015;
Jensen, 2015; Spijkers and Boonstra, 2017). These disputes were
worsened by decreases in other fish catches, such as blue whiting
(Jensen, 2015). With climate change, the ranges of pelagic fishes
may shift (Pecl et al., 2014), potentially creating conflict (Spijkers
and Boonstra, 2017) and economic impacts (Hughes et al., 2015).

Reducing the uncertainty in mackerel stock assessments will
require extensive and standardized evaluation of their spatial
distributions, population size, and behavior. The estimates of
NEA population size are based on surveys of mackerel egg
biomass, catch-at-age data, and tagging and recapture, all of
which are subject to biases and error (Tenningen et al., 2011).
For example, a 2005 International Council for Exploration of the
Seas (ICES) report on acoustic and aerial surveys for mackerel in
the North Sea produced an abundance estimate that was lower
than the fishery catch (ICES, 2005; Scoulding et al., 2017). Until
2014, there was no standardized quantitative assessment criteria
between the agencies assessing the NEA stock, contributing to
uncertainty in the calculation of the total stock biomass (ICES,
2014). Because of this uncertainty, ICES, who reviewed the NEA
mackerel stock, recommended a 20% reduction in catch levels as
a “precautionary buffer” (ICES, 2014).

Improvements in acoustic techniques and novel approaches
incorporating individual behavior, however, are providing a
pathway to monitoring mackerel acoustically (Scoulding et al.,
2017), reducing the possibility that the stock will be overfished
before monitoring catches up with the current state of the
population. While there are many avenues for improving acoustic
monitoring, one possibility is to use models of collective fish
behavior to inform density estimates. While this is a theoretical
approach, it provides ample opportunities for research that
bridges theory and practice and brings the broad bodies of
work in ethology and acoustics to bear on a new problem. This
approach could inform all species management processes, with
the most impact for species like mackerel.

FISHERIES ACOUSTICS AND BEHAVIOR

Acoustic Survey Techniques
Acoustic surveys serve as the basis for population estimates
and stock assessments for many species, informing effective
fisheries management. The population size of gregarious fishes
is difficult to estimate because of their large geographic ranges
and dense shoals. Before 1960, fish abundance estimates relied
on catch per unit effort (CPUE) data collected from commercial
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FIGURE 1 | Acoustic stock assessment workflow, from data collection with
an echosounder and ground-truthing with trawl data to data processing and
report generation.

fisheries, which was biased by the constant improvements in
commercial fishery technology and the lack of an accurate
relationship between CPUE and stock size (Gunderson, 1993).
In the 1970s, catch-at-age and cohort analyses based on scientific
trawl data became more popular, initiating the move to fisheries-
independent assessments. These methods were more accurate,
but were subject to bias from erroneous age estimates and the
mortality coefficients used in the analysis (Gunderson, 1993).
There is still uncertainty in fisheries-independent assessments,
however, and they are entirely dependent on the data collected
during scientific surveys (Mesnil et al., 2009).

Acoustic surveys, conducted along transect lines, are an
expedient option for estimating populations, as they can cover
large areas in short timeframes and estimate density with
low effort (Figure 1). They also provide information on
species absence, highlighting distribution changes and migration
patterns (Georgakarakos et al., 2011). Acoustic surveys are
carried out with echosounders, which consist of a transmitter
that produces a burst of energy at a particular frequency, passed
through a transducer that converts this energy to acoustic energy
(sound). This acoustic pulse is emitted in a focused beam that can
propagate through water (Simmonds and MacLennan, 2005).

Modern fisheries survey vessels are equipped with
echosounders that run on one or multiple frequencies
(commonly from 18 to 333 kHz) and are used for estimating fish
biomass and distribution, along with zooplankton populations,
oceanographic processes, and other applications (Demer et al.,
2017). The data from the echosounder are processed with
software that infers the species present and the approximate
biomass from shoal shape, location, and behavior (Reid and
Simmonds, 1993; Scalabrin, 1996). Species identification is
based on descriptive factors for each species, determined
by their acoustic resonance on various frequencies (target
strength) in various orientations and conditions, determined
experimentally (Nakken and Olsen, 1977; Simmonds and
MacLennan, 2005; Korneliussen, 2018). The echosounder
software uses algorithms based on predictive neural networks
and Bayesian networks to identify species (Georgakarakos et al.,
2011). These identifications are ground-truthed by fishing a
target shoal and recording species present and relative and total
biomass (Georgakarakos et al., 2011). The trawls also provide

data on the size, sex, life stage, and condition of the fish. The
accuracy of these algorithms determines the accuracy of the
density estimates. Simulated backscatter from virtual shoals
indicates how bias in estimates of shoal properties can vary with
an interaction of detection range and shoal density (Trygonis
and Kapelonis, 2018). Hence, algorithms can be confounded by
shoaling behavior (Fréon et al., 1992; Scalabrin, 1996; Godø et al.,
2004; Hensor et al., 2005; Lopez et al., 2012) and physiological
differences between fish species (Blaxter and Batty, 1990; Misund,
1993; Misund and Beltestad, 1996; Scalabrin, 1996).

The essence of collective behavior is that the group is more
than just a collection of individuals and fisheries acoustics
perceive the behavior of the shoal as a whole, rather than
an aggregate of separate individual signals. Collective behavior
facilitates feeding, reproduction, and predator avoidance and
can vary between species and with environmental conditions
(Rieucau et al., 2014; Handegard et al., 2017). Shoals of fish,
defined as a group engaged in social behavior beyond resource
exploitation and following one direction, and schools of fish,
the same following one speed and approximately less than a
body length between individuals, are common in the open
ocean (Pitcher, 1983; Delcourt and Poncin, 2012; Rieucau et al.,
2014). These dense groups introduce variation and therefore
uncertainty into acoustic population estimates (Fréon et al.,
1993). The echosounder software performs a series of calculations
that are based on “single target detector” algorithms that sort
through the acoustic echoes of the group to filter out the
echoes from individuals (Georgakarakos et al., 2011). These
algorithms perform best in low-density, monospecific conditions.
Therefore, larger shoals, where the signal-to-noise ratio is lower,
can introduce bias where the algorithms can fail to reject multiple
echoes from the same individual (Georgakarakos et al., 2011).
Density varies both between shoals and within individual groups,
with holes and density nuclei shifting in time (Lopez et al.,
2012). While ground-truthing with trawls can confirm species
composition and provide other biological details, especially
important for multi-species shoals (Massé, 1996), overall density
is hard to verify, as much of the backscatter from fish depends
on their distance from and angle relative to the acoustic beam,
in addition to numbers (De Robertis and Handegard, 2013;
Trygonis and Kapelonis, 2018).

Incorporating Behavior Into Acoustic
Assessments
Though predation risk is often seen as the main driver
for fish aggregations, shoal dimensions and intra- and inter-
shoal density can depend on multiple other behavioral and
environmental factors. These include the geographical distances
traversed, motivation of the fish (seeking food or seeking safety),
reproductive stage, position within the water column, time of day,
oxygen levels and consumption, and water flow (Tables 1, 2). The
factors affecting individual behavior and hence shoal structure
can be considered as imposed on the shoal (extrinsic variables
like time of day) or originating from the biology of the fish
(e.g., feeding state). Incorporating these variables into surveys of
fish abundance is difficult because some of the same variables
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TABLE 1 | Extrinsic sources of variability in individual behavior that may affect the
overall shape and density of a shoal and therefore acoustic measurements, where
they are mentioned in the literature, and the specific effects of these
variables, if stated.

Category Variable Specific effect

Environmental Water flow Mediates maximum size of the shoal
(Fu, 2016)

Temperature Changes food distribution (Nonacs
et al., 1998)

(Tien et al., 2004)

Thermoclines (Rieucau et al., 2016)

Salinity Pycnoclines (Rieucau et al., 2016)

Time of day Light levels (Rieucau et al., 2014, 2016;
Quera et al., 2016; Lee et al., 2019)

Diel migration (Knudsen et al., 2009)

Substratum Changes food availability (Hensor et al.,
2005)

Conspicuousness of predators (Hensor
et al., 2005)

Currents (Tien et al., 2004)

Oxygen levels (Tien et al., 2004; Rieucau et al., 2014)

Depth Higher visibility and more coordination
closer to the surface (Nøttestad et al.,
2016a; Quera et al., 2016)

Ecological Predation
stress

Mediates maximum size of the shoal
(Fu, 2016)

Oblong shape with individuals
attempting to hide behind those in front
(Hemelrijk and Hildenbrandt, 2008)

Swimming speed (Nonacs et al., 1998)

Spacing – decreased nearest neighbor
distance (Tien et al., 2004)

Food
distribution

Mediates maximum size of the shoal
(Fu, 2016)

Anthropogenic Vessel
presence/noise

Predatory response (Fréon et al., 1993)

Swimming speed (Mitson and Knudsen,
2003; Godø et al., 2004; Lopez et al.,
2012; Bruintjes et al., 2016)

Vertical movement (Mitson and
Knudsen, 2003; Bruintjes et al., 2016)

that affect fish behavior also affect the acoustic surveying
process (Table 3).

Acoustic survey technology and analysis are continually
improved, but still include assumptions about behavior that
introduce bias into the abundance estimates. Target strength
calculations assume even distributions within shoals and often
only account for variation in the length of the fish (Hazen
and Horne, 2003). In reality, further variation introduced from
uneven densities within the shoal and biased recording of the
edge of a larger group can lead to incorrect abundance estimates
(Simmonds and MacLennan, 2005). Just as intra-shoal density
is not consistent, the body size and condition of fish within the
shoal may not be evenly distributed. The fish on the edge of a
shoal may differ physiologically and behaviorally in important
ways. Some fish have been shown to sort themselves by body size
(Pitcher et al., 1985) and individuals on the edge may be hungry

TABLE 2 | Intrinsic sources of variability in individual behavior that may affect the
overall shape and density of a shoal and therefore acoustic measurements, where
they are mentioned in the literature, and the specific effects of these
variables, if stated.

Category Variable Specific effect

Physiological Body size Intra-shoal position, largest individual
takes foremost position (Pitcher et al.,
1985)

Tilt angle Not found

Perceptive
ability

Sensing neighbors (Pitcher et al., 1985;
Herbert-Read, 2016).

Reproductive
stage

(Rieucau et al., 2014)

Condition Not found

Behavioral Feeding state
(hungry or
sated)

Intra-shoal position (Pitcher et al., 1985;
Nonacs et al., 1998)

Behavior the individual or group is
engaged in affects swimming speed
(Nonacs et al., 1998; Herbert-Read
et al., 2011)

Distance
traveled

(Rieucau et al., 2014)

Experience Leadership – maintaining heightened
environmental awareness, especially on
migration paths (Krause et al., 2000b;
Reebs, 2000)

Memory and forgetfulness (Quera et al.,
2016)

Leadership Direction of the shoal (Krause et al.,
2000b)

and seeking food, rather than seeking safety in the center of the
shoal (Rieucau et al., 2014).

In addition to boundary effects and physiological variation,
behavior affects the orientation of the fish relative to the
echosounder beam. This tilt angle of the fish affects the target
strength, as the orientation of the fish affects which tissues are
along the acoustic beam and different tissues have different target
strengths. Tilt angle is especially important for species without
swim bladders, where other tissues (i.e., the backbone) provide
the best acoustic echo (Hazen and Horne, 2003; Simmonds
and MacLennan, 2005). Experimental determinations of target
strength from scenarios where the fish are held in a fixed-
position or in fish cages cannot replicate the complex conditions
of the open ocean and large shoals. Therefore, tilt angle in situ
remains an important and elusive behavioral determinant of
acoustic abundance estimate accuracy (Reid and Simmonds,
1993; Fernandes et al., 2016).

Vessel Avoidance
Beyond more static environmental and behavioral factors, some
research suggests that fish perceive the survey vessel as a threat
and undergo avoidance behaviors, though improvements in the
acoustic profile of vessels has mitigated this issue. Fréon et al.
(1993) reported that the low-frequency noise from some vessels
causes avoidance behavior that can reduce shoal density by 40–
90% in some studies, but only weak or no reaction in others.
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TABLE 3 | Potential sources of variability in the acoustic survey process (beyond
standard calibration settings accounting for local conditions and
vessel/echosounder capacity), if found in the literature, and the specific
effect, if stated.

Category Source of variation Specific effect

Environmental Water flow Not found

Temperature Not found

Salinity Not found

Time of day Density and organization of the shoal
(Simmonds and MacLennan, 2005)

Tilt angle (Simmonds and
MacLennan, 2005)

Substratum Not found

Currents Not found

Oxygen levels Not found

Depth Compression of swim bladder
(Knudsen et al., 2009)

Measurements less accurate at the
surface and directly above the
seabed (Godø et al., 2004;
Simmonds and MacLennan, 2005;
Nøttestad et al., 2016a)

May affect tilt angle, especially with
changing light levels (Simmonds and
MacLennan, 2005)

Ecological Predation stress Not found

Food distribution Not found

Anthropogenic Vessel
presence/noise

Vessel avoidance (De Robertis and
Handegard, 2013)

Vessel avoidance (Simmonds and
MacLennan, 2005; Georgakarakos
et al., 2011)

Trawling Size and condition selection during
trawling (Slotte et al., 2007)

Physiological Body size Uncertainty in body size (Simmonds
and MacLennan, 2005;
Georgakarakos et al., 2011)

Tilt angle Angle of the fish to the vessel
presents different target strength
(Simmonds and MacLennan, 2005;
Georgakarakos et al., 2011; De
Robertis and Handegard, 2013;
Fernandes et al., 2016)

Perceptive ability Not found

Reproductive stage Not found

Condition Body condition and tissue density
changes target strength (Simmonds
and MacLennan, 2005)

Fish caught in trawls may be of lower
relative condition if healthier fish can
avoid the net (Slotte et al., 2007)

Behavioral Feeding state (hungry
or sated)

Not found

Distance traveled Timing of surveys around fish
migrations (Simmonds and
MacLennan, 2005; Georgakarakos
et al., 2011)

Experience Not found

Leadership Not found

There is continued evidence to both support and refute avoidance
behavior in various species and scenarios (Fernandes et al., 2000;
Mitson and Knudsen, 2003; Knudsen et al., 2009). High noise
can disrupt the social behaviors that fish rely on for survival and
reproduction and can affect individuals’ ability to coordinate their
movements by interrupting the transfer of information through
the lateral line, such as their neighbors’ position. Noise can also
affect other sensory inputs, such as vision and olfaction (Herbert-
Read et al., 2017). This communication interference, combined
with possible effects on stress, injury rate, feeding rate, predator
avoidance, and swimming behavior, can lead to lower catch rates,
especially when bottom trawling.

Fish may avoid the path of the vessel, horizontally or vertically,
changing their tilt angle relative to the acoustic beam (Mitson
and Knudsen, 2003; De Robertis and Handegard, 2013; Bruintjes
et al., 2016; Brehmer et al., 2019). Changes in tilt angle from
diving or surfacing to avoid the vessel affects the backscatter
of the shoal, causing the signal to change with the orientation
of the fish to the vessel, rather than a change in shoal density
or distribution (Fréon et al., 1993; De Robertis and Handegard,
2013). In addition, the expulsion of air from the swim bladder
when diving can affect the backscatter; in herring, a dive from 50
to 90 m results in an 11% reduction in target strength (Knudsen
et al., 2009; De Robertis and Handegard, 2013). Laterally, vessel
avoidance can also reduce the likelihood of a shoal being detected
by the echosounder, the magnitude of which depends on whether
the change in position happens before or after the fish have
been measured by the echosounder (De Robertis and Handegard,
2013). Trawl avoidance may also affect the biological sampling
during research cruises; Slotte et al. (2007) found that research
trawls contained smaller, more immature, and possibly “weaker”
fish than the catch from commercial trawlers. Therefore, the
biological data used to determine the shoal composition and
therefore population structure may also be biased by avoidance
behavior (Slotte et al., 2007).

The effect that vessel avoidance has on population estimates
depends on how stock assessments are used. While vessel
avoidance introduces bias into the stock assessment pipeline,
this only becomes an issue when the assessment is used as an
absolute representation of population, or if the inclusion of bias
varies between years (De Robertis and Handegard, 2013). The
magnitude of response also depends on the type of vessel and the
hydrographic conditions, such as time of day, physiological state,
and predation risk. The introduction of noise-reduced vessels
has lessened the impact of noise (Fernandes et al., 2000), though
vessel avoidance remains a source of bias (Georgakarakos et al.,
2011; De Robertis and Handegard, 2013).

Difficult Fish to Sample Acoustically –
Northeast Atlantic Mackerel
While swim bladders provide the strongest acoustic echo for most
fishes, Atlantic mackerel (Scomber scombrus) lack a swim bladder,
meaning that acoustically measuring their population size is
difficult at the most common acoustic frequency (i.e., 38 kHz;
Korneliussen, 2010). While the large shoals that mackerel form
mean they are easily found, determining density is difficult. The
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mackerel egg survey was the only source of fisheries-independent
data for the NEA mackerel stock for a long time, but changes in
the distribution of mackerel eggs and in the timing of spawning
affect the survey’s accuracy (Slotte et al., 2007; van der Kooij
et al., 2016). Acoustic or sonar monitoring is the preferred way to
carry out fisheries-independent surveying, so research has been
carried out in an effort to update and parameterize the existing
framework to work for mackerel.

Multifrequency acoustics can be used to identify mackerel,
combining frequencies ranging from 18 to 364 kHz. The
backbone provides the highest target strength at 200 kHz, instead
of the standard 38 kHz (Gorska et al., 2005; Korneliussen,
2010; Fernandes et al., 2016). Even with an expanded frequency
range, the target strength of mackerel is low and, therefore,
correct identification of species is even more important. For
example, the incorrect identification of herring as mackerel
at these frequencies would overestimate the abundance by 20
times (Fernandes et al., 2016). Additionally, while estimating the
correct tilt angle is important for all fish species, in mackerel,
it is essential for correctly estimating abundance (Hazen and
Horne, 2003; Fernandes et al., 2016). The difference in target
strength for mackerel with a tilt angle of 1◦ vs. 15◦can double
the abundance estimate (Scoulding et al., 2017). When expanded
over the survey area, this can have a considerable effect on
the total estimates of density, as in 2005, when the mackerel
abundance estimate for the North Sea was lower than the catch
for the fishery (ICES, 2005; Scoulding et al., 2017). For all pelagic
fishes, but especially mackerel, novel techniques to determine
how behavior affects density and orientation are essential to
improving stock assessment techniques and therefore estimates
of population size.

Along with multifrequency acoustic surveys, the algorithms
for differentiating mackerel from other species, such as
capelin and sandeel (Ammodytes marinus) have been successful
(Korneliussen et al., 2016). With these improvements, estimates
for the stock in Norway are determined acoustically while
fish are aggregating in the feeding grounds before migrating
south to spawn (Korneliussen and Ona, 2004; Slotte et al.,
2007). A method for the acoustic monitoring of mackerel has
not, however, been implemented across the NEA region. Issues
with vessel avoidance due to mackerel’s swimming speed may
introduce bias into the sample of mackerel in research trawls.
Slotte et al. (2007) suggest that mackerel exhibit size-dependent
trawl avoidance, as the age, length, and condition of mackerel
caught in the slower and smaller research trawls was significantly
lower than the fish caught during purse seining in the same
area. The acoustic surveys carried out in the Norwegian Sea
may also be possible because of the behavior of the mackerel,
grouped into schools, predominately in the top 40 m, whereas
their behavior changes and may be more difficult to measure
acoustically at other points in their migration (Godø et al.,
2004; van der Kooij et al., 2016). While some opportunistic
sampling has been successful in identifying mackerel, such as
the work conducted by van der Kooij et al. (2016) during the
North Sea International Bottom Trawl Survey, there is still no
overarching method. Developing a protocol will require extensive
work to determine how the behavior of mackerel varies across

their migration route and how these behaviors affect their
acoustic properties.

MODELING COLLECTIVE BEHAVIOR

Determining How Fish Move and Behave
With Individual-Based Models
Many commercial species are gregarious, forming aggregations to
serve a particular purpose, such as facilitating mating, increasing
foraging efficiency, or mitigating risk from predators (Rieucau
et al., 2014; Reuter et al., 2016). One method for improving
stock assessments is to decrease the assumptions made about the
behavior of individual fish within the shoal. Though predation
risk is often considered the main driver of aggregations, changes
in the dimensions and density of the school can depend on a
variety of factors (Table 1).

Developing a quantitative description of how individual fish
interact within a group is essential for understanding how
animals behave (Gautrais et al., 2012), yet there are few species
whose collective behavior has been effectively quantified and the
definitions of behaviors and modeling methods vary across the
literature. Modeling collective behavior depends on quantifying
the relationships between individuals, balancing biological reality
and theoretical simplicity. Quantification is generally based on
measuring the basic dimensions of the group and determining the
degree of cohesion. Measurements of cohesion can be the mean
distance to the center of the aggregation or the distance between
individuals (Delcourt and Poncin, 2012).

Incorporating behavior into models of fish density can be
achieved with individual-based models (IBMs)1, which model
the interactions of individual agents within an environment
with a simple set of rules. In addition to modeling collective
behavior, IBMs and particle models have been used to model fish
distributions with environmental factors, such as for mackerel
(Boyd et al., 2018) and capelin (Barbaro et al., 2009a,b). Before
IBMs, most movement ecology used “state-variable models,”
which do not incorporate location and assume that each
individual has equal influence on the others (Huston et al.,
1988). With IBMs, the interactions between individuals are local;
an individual is affected only by the other individuals and
the environment with which it comes in contact, facilitating
modeling of variance on the small scale (Huston et al., 1988).
IBMs also include individual variability and stochastic processes,
allowing the actions of individuals to build the behavior of the
group as a whole (Reuter et al., 2016).

An IBM consists of three aspects: (1) the individual agents,
including their attributes and behavior, (2) the relationships
between the agents: how they are connected and how they
interact, and (3) the environment (Macal and North, 2010).
The fundamental assumption of an IBM is that all individuals
are self-contained and uniquely identifiable. Older versions
of IBMs required the individuals to be identical, but newer
methods allow for heterogeneous individuals whose goals,

1Individual-based models are also called agent-based models and are related to
particle models.
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FIGURE 2 | Interaction rules that form the basis of a “Boids” model (Reynolds,
1987), often used in collective behavior IBMs. Rules are (A) attraction to mean
position of nearest neighbors; (B) avoidance of other individuals at close
proximity; (C) alignment with neighbors.

behaviors, and resource loads can vary (Huston et al., 1988;
Macal and North, 2010). Additionally, the individuals must
be autonomous: programmed behaviors must not curtail their
independent decision-making. Individuals also have a state that
can vary over time and that is subject to their environment
(Macal and North, 2010).

Fish shoal IBMs have generally been based on three
rules: attraction to, separation at a minimum distance from,
and alignment with neighbors to establish collective behavior
(Figure 2; Couzin et al., 2002; Tien et al., 2004; Hensor et al., 2005;
Hemelrijk and Hildenbrandt, 2008; Quera et al., 2016). These
models are based on the Boids model, developed by Reynolds
(1987), which follows this three parameter framework. While
these models create a theoretical, cohesive shoal, they include
huge assumptions, such as constant speed, large perception
ranges, and small school sizes (Couzin et al., 2002; Hemelrijk and
Hildenbrandt, 2008).

Improvements to this basic model have included changing
the rules to be based on cohesion, separation, and alignment
zones instead of set limits (Tien et al., 2004; Hemelrijk and
Hildenbrandt, 2008), and incorporating a blind zone behind each
“fish” to represent the sensory capabilities of vision and the lateral
line (Hemelrijk and Hildenbrandt, 2008; Rountree and Sedberry,
2009). These models can be expanded to include different
behavioral states, such as food-seeking or safety-seeking (Pitcher
et al., 1985; Nonacs et al., 1998; Krause et al., 2000a,b; Reebs,
2000), presence of a threat (Tien et al., 2004), leadership (Huth
and Wissel, 1992; Krause et al., 2000b), methods for information
transfer through the shoal (Ward et al., 2011; Rieucau et al., 2016),
and environmental conditions such as thermoclines, pycnoclines,
and light levels (Fu, 2016; Rieucau et al., 2016). While the specific
effects of these variables on collective behavior in situ are not
fully-understood, IBMs are a useful tool for modeling shoaling
behavior, even with spatial heterogeneity (Reuter et al., 2016).

Validating IBMs for Fish Behavior
Many shoaling IBMs are purely theoretical, and while there
have been a number of studies of collective behavior under lab

and controlled field conditions, such as aquaculture pens, few
studies have attempted to validate their models using open field
data. These in situ studies are necessary to fully understand
collective behavior, but moving from theoretical models to a
replication of real-world systems is difficult to undertake (Krause
et al., 2000a; Lopez et al., 2012). First, while humans are adept
at distinguishing collective patterns in both simulated and real
video, machines are not always as accurate (Butail et al., 2013).
Additionally, most research has focused on a single species,
outside of its ecological context. That context can be important;
for example, species from high-predation habitats have been
shown to form larger, tighter groups, evidence that predation
pressure may shape collective behavior (Ioannou, 2017). There
is ample evidence that factors such as predation affect group
dynamics, but it remains unclear how these behaviors emerge
from the group’s decision-making process. For example, Ioannou
(2017) modeled killifish behavior in the lab and the field and
found that their shoaling model could not handle the thousands
individuals in naturally-occurring shoals, let alone explain their
behavior. Ioannou (2017) also found that the substratum likely
had an effect on the fishes’ behavior because the type of substrata
was tied to food availability and the visibility of predators. The
number of extraneous biotic and abiotic factors in the field made
predicting movement difficult (Hensor et al., 2005).

Many emergent group behaviors can be understood and
modeled without a thorough understanding of the underlying
rules. However, comprehension of the rules governing individual
interactions is important for understanding the evolution of
social behaviors and the conditions that affect them (Mann,
2011). It is well-accepted that complex group behaviors derive
from simple rules, but the details of the interactions, i.e., whether
there is a leader or the number of neighbors an individual
interacts with, are unknown for most groups (Lukeman et al.,
2010; Herbert-Read et al., 2011). It is not enough to simulate
collective behavior; any model needs to be compared to real
behavior (Lukeman et al., 2010). Inferring interaction rules from
data is often done by correlating measurable aspects of individual
behavior and interactions with neighbors (Mann et al., 2013).

One of the complications with comparing a theoretical model
to empirical data is that the theoretical models rarely incorporate
the environment and also rarely represent the entirety of a
fish shoal. Many others focus on either individual behaviors,
such as speed and direction changes, or collective phenomena,
rather than both. Various studies have determined quality-of-
fit and model parameters through Bayesian statistics (Mann,
2011; Lopez et al., 2012; Mann et al., 2013; van der Vaart et al.,
2015). This method requires the central assumption that fine-
scale behavior leads to group behavior and therefore one can be
used to test the other. Different individual rules can result in
the same collective behavior, deemed IBMs’ “Achilles heel” by
Eriksson et al. (2010), and therefore small-scale dynamics can
be more useful in determining interaction rules (Mann, 2011).
Bayesian paradigms are best-suited to deal with the uncertainty
inherent to IBMs because Bayesian inference uses a probability
distribution to determine the model parameters, rather than
absolute values (Mann, 2011). Additionally, Bayesian methods
allow researchers to examine many competing hypotheses,
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while avoiding over-fitting (Mann et al., 2013). Other methods
for assessing theoretical models are through artificial neural
networks, which were used by Herbert-Read et al. (2011) to tease
out the influence of social cues vs. environmental topography
on individual movement. The authors found that while their
model may have represented the experimental data effectively,
it would not necessarily accurately depict group behavior under
all circumstances, a point also made by Katz et al. (2011) when
looking at the effect of predator detection on collective behavior.
Katz et al. (2011) found that while the model could reproduce the
patterns observed, the response in the lab is likely less dynamic
than in the real system.

Balancing Complexity and Parsimony in
Collective Behavior Models
Replicating an open ocean scenario requires the incorporation
of both behavioral and environmental variables, but there is a
balance between the most “accurate” model and an effective one.
While leadership (Huth and Wissel, 1992; Krause et al., 2000b;
Lopez et al., 2012) and memory (Huth and Wissel, 1992; Couzin
et al., 2002; Lopez et al., 2012; Biro et al., 2016) are important
aspects of collective behavior and determining decision-making
pathways, does their inclusion in a collective behavior model have
an impact on the practical applications for collective behavior
models, i.e., in the acoustic monitoring of fish shoals? Lopez
et al. (2012) state that while IBMs have had some experimental
success in linking individual behaviors to school-wide properties,
they are unlikely to accurately reproduce experimental data
because they fail to produce experimental speed distributions.
The applicability of models based on experimental conditions
may also depend on the size of the shoal. For example, Huth
and Wissel (1994) successfully reproduced the basic structure of
a fish school for 20 and 100 fish, concluding that the same model
would be applicable to schools of 1000 or more. Is that a valid
assumption?

Additionally, there are biological and environmental factors
to consider when comparing models to data in and ex situ.
On a fundamental level, not all fish have the same sensory
capabilities, and there are effects of time of day, water dynamics,
prey availability, predation risk, etc. in the open ocean. Random
variation as a stand-in for some of these variables can be included
in the model, as in Huth and Wissel (1994), but this approach may
introduce further bias. With the inherent complexity, the “best”
model answers the question asked; as we know, while all models
may be wrong, some are useful (Wasserstein, 2010).

An important area for research would be to reduce the
complexity of the variables listed in Tables 1, 2. It should be
possible for several research programs to replicate the response
of shoals to extrinsic and intrinsic factors. It is plausible that
the mechanisms that affect shoal characteristics have aspects in
common across environmental and biological drivers. Further
research would be to reduce the apparent complexity to a
limited number of empirically justified processes. For example,
the responses to temperature, flow and salinity could all be
special cases of a response based on (for example) leadership.
An individual-based framework, linked to field data, has the

potential to make these types of syntheses, moving toward
an understanding of what extrinsic and intrinsic processes
affect acoustic data collection. For example, Trygonis and
Kapelonis (2018) use a static, spatially random representation of
shoal density, but recognize that dynamic, realistic descriptions
of the internal structure of shoals are needed to refine
signal algorithms.

Implications of Behavior for Acoustics –
Atlantic Mackerel
For mackerel, the in situ conditions that affect collective
behavior include their ontogeny, foraging ecology, and reaction
to predators. Mackerel are gregarious forage fish, at high risk
for predation (Nonacs et al., 1998), and environmental factors
govern the route of foraging and spawning migrations, as
well as the dynamics of the shoal. Foraging mackerel are
usually found close to the surface, with their geographical and
vertical movements mediated by temperature (Hughes et al.,
2015; Nøttestad et al., 2016a). Nøttestad et al. (2016a) found
all mackerel schools in water above 6◦C, with the majority
found between 7 and 11◦C, a temperature tolerance lower
than the 8◦C found in previous studies. Mackerel stay above
the thermocline where warmer, stabilized water masses trap
nutrients, phytoplankton, and zooplankton. The higher light
levels may also help them detect prey and the warmer waters
may facilitate efficient swimming (Nøttestad et al., 2016a).
As mackerel are temperature-sensitive, their distributions have
shifted with climate change, following increased thermally-
acceptable habitat, but the relationship between mackerel and
temperature is not straight-forward. The fisheries catch has also
become more dispersed, moving further offshore to areas of
deeper water (Hughes et al., 2015). Temperature and plankton
concentrations affect swimming speed as well, with areas with
high plankton concentrations and low temperatures found to be
home to the largest fish, swimming the slowest (Nøttestad et al.,
2016a). Mackerel migratory behavior has also been shown to
be affected by currents; rheotaxis is likely due to the influence
on the lateral line and changes in the inertia of the shoal
(Godø et al., 2004).

Another consideration for field studies of mackerel behavior
is their predator avoidance strategy, if the shoal senses the survey
vessel or trawler as a threat. One fisher stated that after trawlers
had passed through an area, the mackerel were “all flighty,”
that “they lie on the bottom to feed instead of swimming in
midwater,” making them harder to fish (Purvis, 2002). Within the
literature, however, there is conflicting evidence about whether
mackerel respond to vessels as predators, as with most fisheries
species (Fréon et al., 1993; Fernandes et al., 2000; Slotte et al.,
2007). Nøttestad et al. (2016b) found no change in mackerel
acoustic readings before and after trawling, but Godø et al. (2004)
had previously found that vessels may affect their behavior and
suggest reducing vessel speed when surveying. Mackerel may also
respond to the net while trawling, with some evidence that they
dive to avoid it, mixing with herring near the seabed (Fernandes
et al., 2000; Slotte et al., 2007). With their weak target strength,
correct identification of a mackerel shoal is essential, and this
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mixing could have major effects on the total biomass estimate.
Further investigations into their behavior are necessary.

POSSIBLE FUTURE RESEARCH

Parameterizing IBMs for Acoustic
Research
Much of the work on modeling collective behavior has been
theoretical, but the insights from these models, when validated
with empirical data, demonstrate that they are a useful tool for
determining overall shoal characteristics such as density and
orientation and how these characteristics change depending on
conditions. No studies, however, have attempted to apply these
models to acoustic surveys or to how the collective behavior of
pelagic fish may change along their migration path. This is a rich
avenue for research, as behavior is a major source of variation
in acoustic stock assessments (Table 3). Properly parameterized
and applied, IBMs could be used to reduce sources of bias such
as uncertainty in tilt angle and density variations, especially for
mackerel and other gregarious species. IBMs may also provide
more information on whether behavior changes in response to
the survey vessel, or between acoustic sampling and trawling, by
providing statistical descriptors of shoal shape that can be related
to individual behaviors such as nearest neighbor distance and
polarization (Huth and Wissel, 1992; Gautrais et al., 2012).

IBMs provide a framework for testing environmental and
behavioral factors that would be near impossible to replicate
in situ. As the fundamental rules governing collective behavior are
well-understood, there is scope to test both intrinsic and extrinsic
effects on shoals to determine what changes to the environment
or to the animals may affect shoal shape (Tables 1, 2) and acoustic
surveys (Table 3) and whether these effects are independent or
linked. A clear taxonomy of these factors may not be possible,
but focusing on the connections between individual behavior
and acoustic surveying will help build hypotheses that can
be tested with theoretical models and limited data collection.
There is a wealth of empirical data to be collected on whether
the same conditions, such as bathymetry and oceanography,
change behavior to a degree that is reflected in acoustic surveys
(Tables 1, 3). Similarly, experimental work is needed to test
if behavioral conditions such as leadership and the differences
between foraging and evasive behaviors affect shoal shape in
acoustic surveys, even at a small scale (Tables 2, 3). IBMs
have been used successfully to model the spatial and temporal
variation in mackerel populations (Boyd et al., 2018). This
research could be expanded further by incorporating behavioral
changes across migration, i.e., between foraging, spawning, and
traveling between grounds, to predict the approximate vertical
position and density of shoals along the migratory path.

Improvements in Technology for Testing Theoretical
Models
The practical side of testing theoretical models is also
increasingly feasible, as monitoring, tracking, and computing
resources improve and become more accessible. Investigating the
individual behavior of fish in the open ocean and efficient and

accurate analysis of the data collected requires novel uses of and
advancements in these technologies. Technology for monitoring
and assessing pelagic fish in the field ranges from consumer-
level cameras to 3-D sonar and does not need to be highly
technical to be effective. Fernandes et al. (2016) used small video
cameras to determine the tilt angle of mackerel during surveys.
The small cameras did not disturb the mackerel and the fish were
shallow enough to be clearly visible on video. More advanced
technologies are also being used, such as multibeam sonar, used
by Tenningen et al. (2015) to determine the backscatter and
density of herring and mackerel during purse-seine capture to
determine how they responded to the net.

Further improvements in data collection include three-
dimensional video equipment and analysis techniques and
automated tracking technology (Butail et al., 2013; Nath et al.,
2019) for individuals in video. The vanguard of collective
behavior research are using approaches seemingly out of science
fiction, such as creating photorealistic virtual environments
for zebrafish (Danio rerio) to test leadership and social
interactions (Stowers et al., 2017). Additionally, cloud computing
is increasingly accessible for individuals and institutions, allowing
for more robust models and further parameterization and
testing (Michener and Jones, 2012). With these technological
improvements come myriad opportunities to turn theoretical
models into practical tools for fisheries assessment.

Applying Behavioral Modeling to Other
Important Questions
IBMs may also be useful in approaching more complex
and theoretical questions about how behavior affects fisheries
science, such as whether fish behavior has evolved with fishing
pressure. There is evidence to suggest that humans have exerted
considerable selective pressure on fisheries species through
direct intervention, such as the escape of selectively-bred fishes
from aquaculture (Hutchings and Kuparinen, 2020). While the
evidence for indirect intervention through fishing is less clear,
the theoretical basis for genetic change under “predator” and
prey interactions is clearer (Hutchings and Kuparinen, 2020). For
example, shoals facilitate information transfer and Macdonald
et al. (2018) found that the age of individual herring in a shoal
can affect the migration path and organization of the shoal.
Further, Hollins et al. (2019) found that the vulnerability of
minnows to trawling depended on anaerobic capacity when the
fish were swimming with familiar conspecifics, but there was no
effect in an unfamiliar shoal. These studies suggest that collective
behavior and experience has an additional effect on both spatial
distribution and fisheries capture. While collective memory and
information transfer have been questions explored in theoretical
modeling studies (Couzin et al., 2002; Giardina, 2008; Lopez
et al., 2012; Ioannou, 2017), the applications to fisheries and stock
assessments have not been clearly laid out.

Another important avenue for behavioral research is the effect
of climate change on shoaling. Environmental conditions such
as temperature, water flow and currents, salinity, and oxygen
levels can affect shoaling behavior (Table 1; Nonacs et al., 1998;
Tien et al., 2004; Rieucau et al., 2014, 2016) and the influence
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of these factors is likely to vary under climate change. While
shifts in the spatial distribution of important fisheries species,
such as mackerel, has been investigated (Hughes et al., 2015;
Boyd et al., 2018; Ólafsdóttir et al., 2019), there has not been
an overall synthesis of how climate change may affect behavior
and, in turn, how those behavioral changes will affect larger-scale
spatial distributions.

CONCLUSION

The body of theoretical modeling works spans over four decades
and many disciplines, including mathematics, physics, medicine,
ecology, and cognitive science. From models of pathogen
transmission across aquaculture sites (Alaliyat et al., 2019), to
testing theories of democratic consensus with fish shoals (Couzin
et al., 2011), collective behavior modeling has been hugely useful.
Simple theoretical concepts have been effectively applied to
complex, real-world problems. The same approach is possible for
fish behavior in stock assessments. Making predictions on how
extrinsic conditions affect shoal shape and density will require
further synthesis of existing models and deliberate inclusion of
variables that affect acoustic monitoring, as many of the factors
affecting behavior are likely interdependent. This research can

improve our knowledge of and therefore capacity to manage the
commercially-valuable pelagic species in the Northeast Atlantic,
especially for mackerel. With climate change and increasing
global demands for fish, improvements to fisheries assessment are
imperative if we want to ensure a stable and productive future for
our oceans.
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