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Tracing of biogeochemical pathways using molecular approaches has advanced our
basic understanding of the carbon cycle and life’s legacy in the sedimentary record. To
this end, compound-specific radiocarbon analysis has been instrumental in shedding
light on the turnover, age, and sources of a range of biomarkers embedded within
complex environmental matrices. However, despite their foundational importance for
life and their omnipresence throughout geologic space and time, the biogeochemical
cycling of amino acids remains largely unexplored. Here, we discuss the potential of
using amino acid-specific radiocarbon to deepen our knowledge of the biogeochemistry
of food webs and sedimentary organic carbon.
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INTRODUCTION

The “building blocks of life” constitute a common foundation which all life on Earth shares and
depends on (Miller and Urey, 1959; Kitadai and Maruyama, 2018) and amino acids are one of
the largest pools of characterizable organic matter found in sedimentary environments (Trask,
1936; Degens, 1970; Lee et al., 1983; Wakeham et al., 1997; Hedges et al., 2001). In contrast
to other biomarkers where source specificity is a key attribute for understanding sedimentary
and biogeochemical cycling pathways [e.g., lignin from the terrestrial biosphere (Hedges and
Parker, 1976), lipids from the marine biosphere (Volkman et al., 1980)], amino acids are arguably
among the least specific “biomarkers” as the molecules themselves are omnipresent in all life
forms and occur across most of geologic space and time (Abelson, 1954; Erdman et al., 1956;
Degens and Bajor, 1960; Hare, 1969). Embracing this property of environmental omnipresence,
previous workers, as summarized by Kvenvolden (1975), have provided insights on the utility
of amino acids (and their degradation products) as molecular clocks, (paleo)thermometers, and
diagenesis proxies. Since then, appreciable progress on compound-specific isotope measurements
has been made. Here, we share our perspectives on how amino acid-specific radiocarbon
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content can theoretically provide insights into a variety of
biogeochemical studies.

BIOGEOCHEMISTRY OF AMINO ACIDS
IN FOOD WEBS

Although amino acids are part of the living fabric of all
organisms, not all amino acids can be synthesized by all
organisms leading to facultative or mandatory dietary acquisition
of certain amino acids. This circumstance leads to different
pathways of carbon and nitrogen propagating through the
food web up to higher trophic positions. 114C is successfully
used to trace carbon pathways in bulk biomass (Williams
et al., 1987; Ishikawa et al., 2013), a point we will get back
to later. Analytical developments first opened stable carbon
and nitrogen isotopic compositions of amino acids (δ13C and
δ15N, respectively) to exploration and our current state of
knowledge rests on what these isotopes have revealed. The
isotopic composition of amino acids within organisms reflect
the isotopic composition of carbon and nitrogen sources in
the food web with superimposed effects of metabolic processes
(Hare et al., 1991; Carstens et al., 2013). “Trophic” amino acids
fractionate heavily against 15N due to preferential deamination
or transamination during metabolism, enriching the 15N in the
remaining trophic amino acids (Macko et al., 1986; Goto et al.,
2018). In contrast, “source” amino acids show no or a lesser extent
of 15N fractionation, because their amino group is preserved
during metabolism (Chikaraishi et al., 2009). This allows amino
acid nitrogen isotopic compositions to be used as excellent
proxies for determination of trophic position of organisms in
recent and paleo studies (Ohkouchi et al., 2017) and provides
useful information for identifying ecological niches of organisms
in food webs (Ishikawa, 2018). The “trophic” and “source”
categories are controlled by catabolism of amino acids, such as
deamination (Chikaraishi et al., 2015), whereas the “essential”
and “non-essential” categories are controlled by anabolism such
as biosynthesis (McMahon et al., 2010). Metabolic energy is
produced in the former and consumed in the latter (Bender,
2012). In autotrophs, the δ13C profile of “essential” amino acids
are influenced by biosynthetic processes specific to phylogeny
because diverse precursors, intermediates, and reactions produce
a different pattern of 13C fractionation among amino acids
(Larsen et al., 2009). Using normalized δ13C of several essential
amino acids, Larsen et al. (2009) found that plants, fungi, and
bacteria can be discriminated from each other in multivariate
space. Higher organisms such as vertebrates are unable to
biosynthesize essential amino acids, which are exclusively derived
from their diets. This is reflected in the findings of McMahon
et al. (2010) which show that δ13C of essential amino acids in
fish are consistent with those of their diet, whereas δ13C of
non-essential amino acids deviate, suggesting that non-essential
amino acids are at least partly biosynthesized by higher organisms
using different compound and carbon skeleton precursors, which
can be exploited to trace dietary sources at higher trophic
positions such as for zooplankton and fish (Larsen et al., 2013;
McMahon et al., 2016). Therefore, the stable carbon isotopic

compositions of amino acids, especially of essential amino acids,
are used as a fingerprint of primary producers. Stable carbon
and nitrogen isotopic investigations of amino acids in organisms
have currently led literature to two contrasting dichotomies,
i.e., “trophic” vs. “source” and “essential” vs. “non-essential”
(Figure 1). While there are wide overlaps between the source and
essential categories and for trophic and non-essential categories, a
few amino acids behave out of line. Additionally, the carbon pools
from which the carbon atoms of the amino acids stem remain
loosely constrained. Catalyzed by recent advances in accelerator
mass spectrometry enabling the routine analysis of small-scale
radiocarbon measurements (McIntyre et al., 2017), methods have
been developed to investigate amino acid-specific radiocarbon
in soft tissue of organisms opening a new frontier in research
possibilities (Ishikawa et al., 2018).

In this context, natural abundance 114C appears a promising
tool to help disentangle complex amino acid metabolic pathways
and offer new leads in resolving the differences between these
competing dichotomies (Figure 1). Unlike δ15N and δ13C,
isotopic fractionation for 114C is internally canceled out by
definition (Stuiver and Polach, 1977). Therefore, metabolic effects
should be canceled out with 114C and its value should reflect
that of their carbon origin(s), such as dissolved inorganic
carbon (Broecker and Walton, 1959; Guillemette et al., 2017)
or organic materials (Petsch et al., 2001). Most amino acids in
the biosphere can be expected to bear a “modern” signature
(Wang et al., 1996, 1998; Hwang et al., 2005). However, carbon
originating from the atmosphere, dissolved inorganic and organic
carbon, surface sediments, methane, and kerogen (often) show
contrasting radiocarbon fingerprints. If an ecosystem intersects
two or more of these domains, the radiocarbon gradient should
be exploitable. To date, efforts have focused on radiocarbon
dating of amino acids (particularly hydroxyproline) found in
bone collagen for archeological applications (McCullagh et al.,
2010). For the “building blocks of life,” there is nearly no data
on amino acid radiocarbon in flora and fauna and there is

FIGURE 1 | Conceptual division for categorizing amino acids in the context of
food web studies. The 114C signature of amino acids has potential to
integrate δ13C and δ15N.
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clearly incentive to shed light on this area of basic research
(c.f. Bour et al., 2016).

BIOGEOCHEMISTRY OF SEDIMENTARY
AMINO ACIDS

The importance of organic matter-mineral interactions in soils
began to emerge in the mid-20th Century (Beutelspacher,
1955) and their importance for the stabilization of organic
matter in marine sediments became recognized in the 1990s
(Keil et al., 1994b; Mayer, 1994; Kennedy et al., 2002). These
processes influence contrasting degrees of loss-and-replacement
of terrestrial with marine organic matter along land-ocean
transitions (Keil et al., 1997; Blattmann et al., 2018, 2019).

Nitrogenous compounds are classically considered
biogeochemically labile and therefore are efficiently
remineralized (Vernadsky, 1930). In the case of amino acids,
their sustained existence is unlikely due to their intrinsic lability
(Kirchman, 1990; Pantoja and Lee, 2003) leaving stabilization
by mineral surfaces as the likeliest explanation (Keil et al.,
1994a; Hedges et al., 2001). The modes of interactions between
organic matter and minerals include ligand exchange, ion
exchange, cation bridging, van der Waals forces, hydrogen
bonding, hydrophobic interactions, and combinations thereof
(Beutelspacher, 1955; Keil and Mayer, 2014). The stabilization
of amino acids and their polymers have been hypothesized and
identified as important in the formation of recalcitrant organic
nitrogen (e.g. Müller, 1977; Henrichs and Sugai, 1993; Keil
et al., 1994a; Hedges et al., 2001; Estes et al., 2019). Different
amino acids and structurally related compounds exhibit very
different sorption affinities for phyllosilicate mineral surfaces
(Hedges, 1978; Hedges and Hare, 1987). Sorption experiments
have demonstrated the strong participation of basic amino acids
by way of electrostatic interactions in forming phyllosilicate-
amino acid/protein complexes (Ensminger and Gieseking, 1941;
Hedges, 1978; Hedges and Hare, 1987; Cowie and Hedges, 1992).
This effect appears mirrored in nature with the high abundance
of basic amino acids found in continental margin sediments
(Keil et al., 1998). Amino acids and proteins associated with
phyllosilicates and natural sediments have revealed sometimes
erratic and irreversible desorption behavior (Henrichs and
Sugai, 1993; Wang and Lee, 1993; Montluçon and Lee, 2001;
Ding and Henrichs, 2002), which may ultimately influence their
bioavailability (Pinck and Allison, 1951). Amino acids are likely
more representative of bulk sedimentary organic matter than
most other compounds, yet their ubiquity limits their value in
quantitatively assessing contributions from sedimentary organic
matter sources. On a molecular level, sedimentary amino acids
are subject to differential microbial processing and loss-and-
replacement of terrestrial with marine amino acids as revealed
by stable carbon isotopes (Keil and Fogel, 2001) and therefore
source apportionments recorded by individual amino acids are
overlain by a variety of effects.

Amino acids stabilized by mineral surfaces are expected
to exhibit very slow turnover rates and or would resist
loss-and-replacement during land-ocean transit, giving rise to

depleted radiocarbon fingerprints borne by mineral-stabilized
amino acids. It is thus hypothesized, that radiocarbon isotopic
compositions of individual amino acids can provide a biomarker
tool to measure the effect of organic matter-mineral interactions
in natural sedimentary environments (Figure 2; see also ideas by
Keil et al., 1998). One of the greatest uncertainties in studying
the stabilization effects of minerals on organic matter in nature
is the longstanding and ongoing discussion whether organic
matter is stabilized by minerals or if organic matter is intrinsically
stable due to its structural characteristics or by other factors
(compare Hedges et al., 2001; Eusterhues et al., 2005; Schmidt
et al., 2011; Keil and Mayer, 2014; Kleber et al., 2015). To this
end, amino acid-specific radiocarbon can offer new perspectives
in this ongoing debate. Method developments have also opened
up this frontier of amino acid-specific radiocarbon in sediments
to exploration (Blattmann et al., 2020).

IS ENANTIOMER-SPECIFIC
RADIOCARBON THE NEXT FRONTIER?

With methods for amino acid-specific radiocarbon now
developed for biological (Ishikawa et al., 2018) and earthen
(Blattmann et al., 2020) samples, we share our thoughts on the
merits of what we see as a promising next analytical frontier.
Radiocarbon isotopic composition of individual compounds
reflects a combination of influences stemming from aging,
mixing, reservoir effects, etc. By isolating the effect of radioactive
decay, constraints on the time since synthesis are attainable
(Libby et al., 1949). In addition to this radioactive clock common
to all organic compounds, amino acids distinguish themselves
by having enantiomers (i.e., mirror image molecular structure
like our left and right hands). In the biosphere, the L-form
dominates, with certain organisms containing D-amino acids
including bacteria (Corrigan, 1969; Lam et al., 2009), plants
(Neuberger, 1948), freshwater and marine algae (Yokoyama
et al., 2003), and higher organisms including insects and
mammals (Neuberger, 1948; Corrigan, 1969). In a process called
racemization, L-amino acids switch into D-configuration and
vice versa. Racemization is a time and temperature dependent
process and is also influenced by humidity, pH, and a host of
matrix effects (see review by Bada, 1985). Over time, increasing

FIGURE 2 | Generalized affinity of amino acids for kaolinite simplified after the
findings of Hedges and Hare (1987). Increased affinity is hypothesized to
enhance retention and protection of different amino acid classes, thereby
leading to greater discrepancies in their radiocarbon ages.
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amounts of D-amino acids are present in living tissue with
slow turnover (e.g., dentin and eye lenses) such as for whales
(Olsen and Sunde, 2002) and humans (Masters et al., 1977).
This trend continues in organic remains such as in wood (Lee
et al., 1976), bones (Bada et al., 1973, 1989), and in biospheric
remains in the form of dissolved organic matter (Yamaguchi and
McCarthy, 2018), subfossil foraminifera (Harada and Handa,
1995), and sedimentary organic matter (Bada et al., 1970;
Kvenvolden et al., 1970; Bada and Schroeder, 1975; Bada and
Man, 1980). Over time (within 15 million years), a steady state
is approached where all amino acid enantiomers are present in
a racemic mixture (i.e., D/L ratios equal to 1), which is mostly
the case in kerogen (Kvenvolden, 1975) and extraterrestrial
amino acids (Engel and Nagy, 1982). In addition to racemization
producing D-amino acids, D-amino acids are actively removed
from soils by way of enzymatic activity (racemase) by microbes
(Zhang and Sun, 2014), further construing environmental
amino acid enantiomeric ratios. However, despite these
compications, with constraints on temperature history (e.g.,
organism and sediment temperature), amino acid enantiomers
harbor rich information on age constraints (or vice versa),
with less precision than radiocarbon, but extending back
further in time (see also reviews by Kvenvolden, 1975 and
Kaufman and Miller, 1992).

Going a step beyond amino acid-specific radiocarbon,
development of a method for enantiomer-specific radiocarbon
could be pursued. The technical feasibility of such an approach
was recently made plausible, where underivatized individual
amino acids, which were previously isolated from sediments,
were chromatographically separated into their L and D forms
(Blattmann, 2018). If collected, such isolates can provide
insight into the radiocarbon population distributions of a
single compound on a coarsest of levels. Other efforts to
constrain the complex age distributions of organic matter
using compound-specific radiocarbon (using fatty acids)
have recently come to fruition using time series inversion
approaches deconvolving pools of organic matter with different
turnovers (French et al., 2018; Vonk et al., 2019). However,
even without performing inversions, enantiomer-specific
radiocarbon can provide direct insight into the radiocarbon
population distributions of individual amino acids. In a
simplest end member of cases involving conservative mixing,
contributions of biospheric L-amino acids can be teased
apart from petrogenic sources, which exhibit D/L ratios
equal to 1. In such a case, the age of biospheric L-amino
acids can be assessed by mass balance as petrogenic amino
acids would equally contribute to the radiocarbon fingerprint
of L- and D-amino acids, while biospheric sources would
exclusively contribute to the L-amino acid pool (c.f. Silfer
et al., 1994). In open systems involving dynamic changes
such as contributions of D-amino acids stemming from
peptidoglycan from bacteria (c.f. Pelz et al., 1998; Glaser and
Amelung, 2002; Veuger et al., 2005), an enantiomer-specific
approach can provide insight into microbial pathways of
carbon flow embedded in the tapestry of radiocarbon ages
contained within dissolved and sedimentary organic matter
(e.g., incorporation of carbon derived from young, labile organic

FIGURE 3 | Synthesizing the many unknowns in amino acid biogeochemistry.
As carbon is incorporated in biomass and propagates through the food chain,
radiocarbon isotopic signatures in individual amino acids should reflect
primary (e.g., dissolved inorganic carbon) and secondary (e.g.,
benthic-derived organic matter) carbon sources. Biomass subject to decay
releases amino acids that undergo differential degradation and interact with
available mineral substrates, thereby influencing their bioavailability and
sealing their fate in the geosphere.

matter into bacterial biomass). Additionally, for calibrations
of archeological and geochronological time using amino
acid enantiomer ratios (e.g., Bada et al., 1984; Kosnik et al.,
2013; Simonson et al., 2013), the integrity of purportedly
closed systems such as within biominerals can be tested with
enantiomer-specific radiocarbon, which can provide insight
into radiocarbon disequilibria between enantiomers thereby
unveiling open system behavior. The possibility of performing
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enantiomer-specific radiocarbon for amino acids is unique
among most other compounds and the hypothesized benefits
for understanding biogeochemical cycles for ecological as well as
environmental applications look promising.

SYNTHESIS AND OUTLOOK

Following the biospheric pathways along which amino acids are
synthesized, propagate through food webs, and decay with a
very small fraction finding its way into the geosphere, many
questions arise regarding the origin and fate of carbon in
these biosphere internal and biosphere-geosphere exchanges
(Figure 3). Following their purposes in the biosphere, amino
acids face extensive degradation and diagenetic changes, yet
remain among the largest characterizable fractions of organic
matter preserved in the geologic record (Trask, 1936; Erdman
et al., 1956; Wakeham et al., 1997). Amino acid-specific
radiocarbon appears a promising tool to confront a range of
ecological, sedimentological, and biogeochemical challenges. The
authors will report on their progress in future contributions.
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