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High-definition video surveys of remotely-operated vehicle (ROV) dives from the NOAA’s
Mountains in the Deep 2017 expedition (EX1705) along volcanic ridges and seamounts
of the Manihiki Plateau coupled with multibeam bathymetry data and water column
profiles, reveal no or minimal sediment cover on the basaltic edifice, but variable
amounts of cold-water corals on ferromanganese-encrusted basaltic rocks. Coarse
sediment, however, accumulates in crevasses and sedimentary ripples testify the
existence of currents in the area. Collectively, these observations illustrate the strong
influence of deep currents on the surficial geology and cold-water coral distribution
at ∼2,000 m water depths. Dive transects along two basaltic seamounts show stark
differences of sedimentary features and cold-water coral distribution. On the ridges of
“Te Kawhiti” (water depth: 2,089–2,220 m), basaltic slabs, and cold-water corals are
far more abundant in comparison to the slope of a mesa in “Te Tuku” (water depth:
2,440–2,495 m). The increased abundance on “Te Kawhiti” is due to the exposure
of “Te Kawhiti” to Lower Circumpolar Deep Water that sweeps the summit of the
ridges as indicated by frequent ripples observed in between the basaltic rocks. The
currents are strong enough to sweep fine-grained sediments away, leaving coarse-
grained sediments behind, inducing the formation of ferromanganese crust on the
basaltic rocks. Both dive sites are below the high-Mg calcite saturation horizon, and
as a result, the cold-water coral community is dominated by Isididae, which can build a
high-Mg calcite skeleton in water undersaturated in regards to high-Mg calcite.

Keywords: seamounts, current deposits, cold-water corals, high-Mg calcite saturation horizon, Lower
Circumpolar Deep Water

INTRODUCTION

Seamounts are isolated topographic elevations with summit depths at least 1,000 m above
the seafloor, which includes large plateaus and platforms. Seamounts have a significant effect
on circulation patterns and currents locally and regionally, influencing the morphology and
sedimentology of the surrounding seafloor (Batiza, 2001; Rogers, 2013). On seamounts, sediments
accumulate from settling particles through the water column, forming a drape of pelagic ooze. The
Manihiki Plateau formed by volcanic activity approximately 125 million years ago as part of the
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giant Ontong Java-Manihiki-Hikurangi plateau in the Pacific
Ocean (Pietsch and Uenzelmann-Neben, 2015; Timm et al.,
2011). The sediment accumulation rate at the Manihiki Plateau
is 10 m/million year and, in some areas in the deep troughs, up
to 1 km of sediments were accumulated due to redeposition of
plateau sediments by slumps and turbidity currents (Winterer
et al., 1974). In other areas, however, the seamounts consist of
bare basaltic rocks with little to no sediment cover, indicating
that sediment falling through the water column is swept off the
basaltic edifice by deep ocean currents.

This study focuses on two such areas along the Northern
Manihiki Plateau surveyed during the Mountains in the Deep
2017 expedition (EX1705) – the slope of the “Te Tuku” mesa
and the summit of “Te Kawhiti” ridges. These sites were selected
from the National Oceanic and Atmospheric Administration’s
Campaign to Address Pacific monument Science, Technology,
and Ocean NEeds (CAPSTONE; Kennedy et al., 2019). We rely
on multibeam bathymetry, conductivity, temperature, and depth
(CTD) data, and remotely-operated vehicle (ROV) video footage
to show the influence of currents conditions on the sediment
accumulation and Isididae occurrences in water depths below
the high-Mg calcite saturation horizon (HMCSH). Isididae or
“bamboo-corals” are octocorals characterized by their calcite
internodes alternating with organic nodes skeletal arrangements,
resembling bamboo plants (Grant, 1976; France, 2007). The
calcitic part of the skeleton are made of high-Mg calcite
fibers and granular crystals which are precipitated from the
surrounding seawater dissolved inorganic carbon (Roark et al.,
2005; Noé and Dullo, 2006).

We map the seafloor facies and fauna along two dive transects
with the goal of investigating the relationship between the
sediments and Isididae distribution with the current conditions
in the Northern Manihiki Plateau. Observations from the ROV
also document a viable community of Isididae found below
2,000 m on a seamount-ridge. We further outline possible
processes of how the isidids can precipitate their skeleton in the
high-Mg calcite undersaturated seawater.

STUDY AREA

The Manihiki Plateau is a ∼600,000 km2 section of elevated
ocean floor in the western equatorial Pacific Ocean (Figure 1A),
surrounded by approximately 6-km-deep basins, which include
the Penrhyn Basin to the east, Samoan Basin to the southwest,
Tokelau Basin to the northwest, and the Central Basin of
the Pacific to the north (Heezen et al., 1966; Winterer et al.,
1974). The Lower Circumpolar Deep Water (LCDW), which
enters the Pacific basin southeast of New Zealand as a deep
western boundary current and flows northward, touches the
Manihiki Plateau and the two dive sites (Figure 1B; Kawabe
and Fujio, 2010). “Te Tuku” is located at the leeward of the
LCDW, while “Te Kawhiti” is located facing the LCDW flow
direction. Within the water masses of the southwest Pacific are
levels of chemical concentrations in seawater that directly affect
the surrounding environment. The aragonite saturation horizon
(ASH) and the calcite saturation horizon (CSH) fall under this

category. Below the ASH is the depth at which the seawater
becomes undersaturated with respect to aragonite. The CSH is
similar to the ASH, except it is for all calcite concentrations;
usually, the CSH is at a greater depth than that of the ASH due to
the increased solubility of aragonite. The ASH in the Southwest
Pacific is ∼200 to 1,320 m (Feely et al., 2002), while the CSH is
at ∼2,800 m water depth (Feely et al., 2002; Bostock et al., 2011).
The solubility of high-Mg calcite is similar to or slightly higher
than aragonite, which is between 1 and 1.5 km (Morse et al.,
2006). Calcifying organisms that use carbonate concentrations in
seawater to produce their skeletons are limited to depths that are
above the ASH or CSH, respectively (Feely et al., 2002).

MATERIALS AND METHODS

Bathymetric data, ROV videos and images, and CTD data
were used from two dives in the Northern Manihiki Plateau
at sites named in consultation with the Office of the Prime
Minister in the Cook Islands and Ui Ariki Ngateteitei o Te
Kuki Airani (The Paramount Kings and Queens of the Cook
Islands) “Te Tukunga o Fakahotu” (“Te Tuku”) and “Te Kawhiti
a Maui Potiki” (“Te Kawhiti”). The two dives were conducted
using the ROV Deep Discoverer and a camera and lighting
platform, ROV Seirios. The ROVs captured high-definition
videos, collected both biological and geological samples, and
measured parameters such as salinity, water temperature, depth,
and dissolved oxygen using on-board sensors. The “Te Tuku”
dive (Dive 02) was conducted from 2,440 to 2,495 m, and the
“Te Kawhiti” dive (Dive 03) from 2,089 to 2,220 m. The seafloor
bathymetry was mapped using a Kongsberg EM302 multibeam
system and analyzed using Fledermaus software (Figures 1C,D).
Conductivity, temperature, and depth measurements from the
ROV determined general water mass characteristics and the
influence of physical parameters of water masses (Figures 1E,F).
Current measurements were conducted with an acoustic doppler
current profiler (ADCP) mounted to the ship measuring currents
in the top 600 m of the water column and, thus, did not provide
information at study sites more than 2 km deep. However, the
direction of the ripples observed at the dive sites are in concert
with the direction of current measured from ADCP. Cold-water
corals and associated surficial sedimentary facies distribution
were analyzed from the ROV videos and images (Cantwell et al.,
2017). The mapping of the cold-water corals focuses on the
distribution of the Isididae as their skeleton is made up of
high-Mg calcite.

RESULTS

Bathymetric Settings of the Dives
Location
The elongated mesa of “Te Tuku” is 82 km-long, 15 km-wide, and
2,300 m-tall. The mesa shows a tapered shape with the northwest
end being the widest section and narrowing to the southeast. The
dive on the eastern slope of the mesa moved up the slope from
2,495 to 2,440 m water depth, covering roughly 60 m of water
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FIGURE 1 | (A) Map of the Northern Manihiki Plateau displaying ROV dives location in black boxes. Plateau regions are labeled in yellow and basins are in white.
(B) Map from Ocean Data View showing main circulation patterns and directions (according to Kawabe and Fujio, 2010 and Werner et al., 2013) are displayed with
green arrows (<1,000 m water depth) yellow arrows (1,000–1,500 m water depth), red arrows (1,500–3,000 m water depth), and blue arrows (bottom water,
>3,000 m water depth). Yellow oval indicates the AAIW formation region. Water masses in the area are AAIW, Antarctic Intermediate Water; UCDW, Upper
Circumpolar Deep Water; LCDW, Lower Circumpolar Deep Water; SPEW, South Pacific Equatorial Water; EUC, Equatorial Undercurrent and SECC: south Equatorial
Counter Current (modified from Molina-Kescher et al., 2018). Blue dots represent CTD data available from the World Ocean Database (Boyer et al., 2018).
(C) Bathymetry of the “Te Tuku” mesa. (D) Bathymetry of the “Te Kawhiti” ridges. (E) Cross-section of the mesa at “Te Tuku” with dive transect (black box) and
LCDW direction (red arrow). (F) Cross-section of seamounts summit at Te Kahwiti with dive transect marked in black box LCDW direction (blue arrow).
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depth. The slope angles of the dive transect range from 12◦ to
22◦ (Figures 1C,E).

The Te Kawhiti ridge is 78 km-long, 17 km-wide, and 2,300 m-
tall with a series of peaks. The dive began on the southwest side of
the ridge, following the slope upward, then along the crest of the
ridge for 160 m reaching the summit of a local high point on the
ridge crest. The slope angles at the dive sites ranged from −3◦ to
23◦ (Figures 1D,F).

Physical Water Mass Properties
Different water masses exist in the Manihiki Plateau area based
on the temperature–salinity (T-S) plot from the ROV CTD
and CTD data from Boyer et al. (2018). From the surface
down, the water masses are the South Equatorial Counter
Current (SECC), the Equatorial Undercurrent (EUC), Antarctic
Intermediate Water (AAIW), South Pacific Equatorial Water
(SPEW), Upper Circumpolar Deep Water (UCDW), and LCDW.
Both dive locations are located in the range of the LCDW
(Tomczak and Godfrey, 2003; Kawabe and Fujio, 2010; Hartin
et al., 2011; Figures 2A1,2).

The vertical profiles of the ROV CTD show that throughout
the dives, the LCDW temperature varied between 1.5 and 2.5◦C,
with average temperatures at “Te Kawhiti” warmer by 1◦C than
at “Te Tuku." The salinity recorded throughout both dives were
quite uniform at 34.5 PSU. Oxygen saturation at “Te Tuku”
ranged from 125 to 130 µmol/kg but was uniform at 116 µmol/kg
at “Te Kawhiti” (Figures 2B1,2). Both dives are located below
the HMCSH (Figure 2B). Assuming that the current at 2,000–
2,500 m is in the same direction as measured with ADCP at
600 m, the “Te Tuku” dive is located on the “leeward” side of the
northeast bottom current flow. At “Te Kawhiti,” where the dive
path is perpendicular to the south-flowing LCDW (Figure 2A3).

Video Footage-Based Mapping
The video footage from ROV Deep Discoverer reveals the basaltic
basement, some sediment coverage, and a variable amount of
cold-water corals. The facies of the seascape is divided into
eight groups: basaltic cobbles, boulders and slabs, coarse sands,
coral debris, ripples, living single Isididae, and living Isididae
thickets (Figure 3).

“Te Tuku”
Figure 4A displays the distribution of the basaltic basement,
sediments, and Isididae along the dive path at “Te Tuku.” The
substrate along this dive consists only of cobbles and boulders.
Coarse sediments fill the depressions in between these substrates,
but the sediments do not cover the cobbles and boulders.
Asymmetric ripples in coarse sand layers were observed only once
at 2,455 m water depth. Living single Isididae are found at 2,440,
2,460, and 2,490 m water depths.

“Te Kawhiti”
Figure 4B displays the distribution of the basaltic basement,
sediments, and Isididae along the dive path at “Te Kawhiti.”
The substrate observed along this dive consists of cobbles,
boulders, and basaltic slabs. Coarse sediments fill the depressions
in between the substrates and covers them. Ripple structures are

present frequently along the dive path, except on the steeper slope
toward the summit of the ridge. Isididae thrive as thickets along
the dive except at 2,220 m water depth. Here, the Isididae live
as singles between coarse sands and coral debris. Coral debris is
sparse but is observed at 2,160 and 2,135 m water depths.

Difference Between the Two Sites
Although the morphology of the “Te Tuku” mesa and the “Te
Kawhiti” ridges are different, the bedrock at both locations is
composed of ferromanganese-encrusted basaltic rocks. The slope
of the “Te Tuku” mesa consists of scattered basaltic cobbles
and boulders lying exposed on soft sediments with depressions
infilled with trapped sediment (Figures 3A,B). In contrast, the
ridges of “Te Kawhiti” are dominated by large basaltic slabs
that exhibit a smooth surface with small crevices infilled with
sediment (Figure 3C).

Three main sediment features are observed: coarse sands,
ripples, and rare coral debris. Coarse sands, likely consisting of
foraminifera and ossicles of carbonate-secreting organisms, are
deposited between the basaltic boulders and cobbles (Figure 3D).
Little to no sediment accumulates on top of the boulders.
The carbonate sands sometimes form small, symmetric current
ripples between the boulders (Figure 3H). In one area at “Te
Kawhiti,” the ripples are arranged in a fan-like pattern, indicating
that a strong current that is deflected by the topography of the
seamounts. There is a stark contrast of sediment distribution in
both dives; the “Te Tuku” site has a large abundance of coarse
sands with no ripples and no occurrence of coral debris. At “Te
Kawhiti,” sediments show an abundance of ripples, some coral
debris, but lack the coarse sand (Figures 3, 4).

Among various types of biota observed, cold-water corals were
abundant. The identification of coral species based solely on video
footage is difficult, but based on the combined observations of
onboard and shore-based EX1705 deep-sea biologists, cold-water
corals along the dives include Isididae, Paragorgia, Zoantharia,
and Antipatharia. As with the sediments and substrates, we
observed a significant contrast in Isididae occurrences. At the
slope of the “Te Tuku” mesa, solitary Isididae corals live on the
basaltic cobbles and boulders. No coral thickets were observed.
In contrast, Isididae thickets thrive and are well-distributed along
the summit of the ridge at “Te Kawhiti” from 2,089 to 2,220 m
depth (Figures 3F, 4B). Many of these thickets are taller than the
ROV Deep Discoverer (2.6 m tall). In areas with coarse mobile
sands, generally no corals were observed, but few living single
Isididae and coral debris were found at depths greater than 2,200
m (Figure 4).

DISCUSSION

Sedimentological Features as Indicators
of Current Strength and Direction
At the two sites, there is a stark contrast in the distribution of
coarse carbonate sand. The coarse sand layers at “Te Tuku” have
asymmetric ripples that indicate a southward direction of the
current. Ripples in such coarse-grained sediments are formed
by currents, with a strength that likely reaches up to 0.5 m/s
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FIGURE 2 | Current data at the dives transect (A1) Temperature-salinity diagram with water masses identified. AAIW, Antarctic Intermediate Water; UCDW, Upper
Circumpolar Deep Water; LCDW, Lower Circumpolar Deep Water; SPEW, South Pacific Equatorial Water; EUC, Equatorial Undercurrent, and SECC, South
Equatorial Counter Current. (A2) Water masses across the water depths. The dives depths are within the LCDW (white box). Yellow lines indicate the approximate
depths of the aragonite saturation horizon (ASH) and calcite saturation horizon (CSH). (A3) Current direction of the top 600 m, collected from ADCP during EX1705.
The red arrows give the temperature and shallow water current direction in “Te Tuku.” The blue arrows give the temperature and shallow water current direction in “Te
Kawhiti.” (B1) and (B2) are ROV CTD temperature (green lines), oxygen saturation (black lines), and salinity (orange lines) profiles of “Te Tuku” dive (B1) and “Te
Kawhiti” dive (B2). High-Mg calcite saturation horizon (HMCSH) is indicated with yellow lines. Rectangular boxes at the bottom of the graphs show the dive locations.

(Stow et al., 2009; Figures 3H, 4B). The limited occurrence of
sand and ripples at “Te Kawhiti” implies even stronger currents
on the summit of the ridges, which inhibit the deposition of
sediments, causing the formation of ferromanganese crust on the
basaltic rocks. The fact that the 125 million years old basaltic
seamounts are not covered by sediment or diagenetically altered
limestone implies that currents were sweeping the study site
since their formation. The acting currents must have changed
through time as the Manihiki Plateau moved with the plates in

the Pacific (Winterer et al., 1974). Currents in the Pacific also
change through time due to the combined result of the closure
of the Tethys seaway 80 million years ago and the concomitant
mixing of Atlantic and Pacific waters (Stille, 1992) and the onset
of Antarctic Circumpolar Current in the Oligocene (Lyle et al.,
2007). Despite these changes and the resulting changes in the
strength of the current, no relict sediment beds or limestone
caps were observed during the dives, indicating a permanent,
strong current system at 2,000 m water depth in the Pacific

Frontiers in Marine Science | www.frontiersin.org 5 May 2020 | Volume 7 | Article 288

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00288 May 1, 2020 Time: 12:46 # 6

Bashah et al. Northern Manihiki Plateau

FIGURE 3 | Eight facies observed on the seafloor of the dive sites. (A) Ferromanganese-encrusted basaltic cobbles, (B) Ferromanganese-encrusted basaltic
boulder, (C) Ferromanganese-encrusted basaltic slabs, (D) Coarse sands, (E) Living single Isididae, (F) Living Isididae thickets, (G) Coral debris, and (H) Ripples of
coarse sediments between the basaltic boulders. Image courtesy of the NOAA’s Office of Ocean Exploration and Research, Mountains in the Deep: Exploring the
Central Pacific Basin.

since the Mid-Cretaceous. The current-removed sediment likely
accumulates in drifts surrounding the Manihiki Plateau.

Deep Ocean Currents Control on Isididae
Distribution
At both dive locations, Isididae colonize the ferromanganese-
encrusted basaltic boulders and cobbles. The abundance of large
slabs available in “Te Kawhiti” likely created favorable conditions
for cold-water coral larvae to settle and colonize (Edinger et al.,
2011; Thresher et al., 2014), although deep-water bamboo forests
have been reported from muddy environments (de Moura Neves
et al., 2015). The abundance of isidids coverage is markedly

different at the two dive sites, likely the result of the different flow
direction of the LCDW at each dive site. Isidids are suspension
feeders and depend on current flow to deliver organic material
to their polyps (Roark et al., 2005; Tracey et al., 2007; Hill
et al., 2014). Current-facing ridge flanks are optimal for the
interception of food particles, and coral colonies in this position
experience higher survivorship (Dorschel et al., 2007; Correa
et al., 2012). The “Te Tuku” site is on the leeward side of
the current flow, while the site “Te Kawhiti” is exposed to the
southward flowing current regime. As a result, isidid colonies
flourish at “Te Kawhiti,” reaching great heights forming thickets,
while at site “Te Tuku,” only individual isidids were observed. In
areas of mobile sediments, no corals are present likely due to the
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FIGURE 4 | Facies distribution along “Te Tuku” mesa (A) and “Te Kawhiti” ridges summit (B). Red and blue filled triangles represent the occurrence of single Isididae
and Isididae thickets. No Isididae thickets and basaltic slabs were observed along “Te Tuku” dive. Fewer Isididae were observed at depths where coarse sands are
dominant. The substrates for the Isididae are ferromanganese-encrusted basaltic boulders, cobbles, and slabs represented in circles. Green, yellow, and magenta
dots represent coarse sands, ripples, and coral debris.

combined result of (1) a lack of a stable surface for coral larvae
to settle and (2) exposure to stronger currents that inhibit the
settling of the coral larvae.

Isididae Growth Below the High-Mg
Calcite Saturation Horizon
The solubility of high-Mg calcite is similar to or slightly higher
than that of aragonite (Morse et al., 2006); hence, these dive sites
are 1–1.5 km below the probable HMCSH. Despite being located
below the HMCSH, cold-water corals and other carbonate
secreting organisms are abundant on the seamounts and ridges
visited during the Central Pacific Basin expedition (EX1705). This

is possible because isidids have an absolute low tolerance limit of
about 40% undersaturation as suggested by Thresher et al. (2011).
The outer layer of organic tissue protecting the skeleton of live
corals, and food availability facilitates the growth of isidids in the
low-carbonate conditions (Cohen and Holcomb, 2009; Sherwood
et al., 2009; Thresher et al., 2011).

CONCLUSION

Two dives on volcanic mesa and ridges at ∼2,000–2,500 m
water depth of the Northern Manihiki Plateau give insight into
the influence of deep ocean currents on sediments and Isididae
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distribution. Direct evidence of persistent sweeping by the
currents is given by the fact that the basaltic edifices do not exhibit
pelagic drapes or remnants of old sediment cover, although
they formed 125 million years ago and are subjected to pelagic
sedimentation and carbonate sediment production by benthic
organisms. As a result of non-deposition, ferromanganese crusts
cover the basaltic cobbles, boulders, and slabs. Coarse sediments,
however, accumulate in crevasses and depressions and record
current activity and direction with asymmetric ripples.

The hard substrates and the currents enable cold-water corals
to grow. Isidids abundance is related to the current strength
with single isidids in the lee side of currents (as seen at “Te
Tuku”), and thickets of isidids in the more current-exposed “Te
Kawhiti” ridge summit. Here, the isidids flourish, although the
sites are located below ∼2,000 m water depth and thus, below the
HMCSH, where the water masses are undersaturated in regards
to high-Mg calcite. The growth of isidids on these dive sites
indicates that water depths is not the factor of growth for this
species. A reason for the abundant growth is the food availability
through the bottom currents flow at the dive sites.
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