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Though microalgae have been considered the potential resource for lipid production,
native strains are unable to meet the industrial demand. Here, we aim to uncover
the complex molecular relationship between algal growth and lipid accumulation.
Transcriptomic analysis revealed the crucial role of plastidial fatty acid and triacylglycerol
(TAG) biosynthetic machinery in lipid overproduction. The expression of key fatty acid
biosynthetic genes such as acetyl-CoA carboxylase (ACCase), malonyl CoA−acyl carrier
protein transacylase (MCAT), 3-ketoacyl synthase (KAS), 3-ketoacyl-ACP reductase
(KAR) increased during day 10–13 of cultivation, particularly plastidial TAG biosynthetic
genes substantially increased. However, expression of genes involved in ER TAG
biosynthesis increased only in the stationary phase, which implied the potential of
plastidial TAG biosynthesis. This report provides a novel insight into the growth-phase
dependent lipogenic orchestration, and also uncovers the signature genes and plastidial
TAG biosynthesis that might be extrapolated for improving lipogenic traits of algae.

Keywords: growth phase, lipogenesis, triacylglycerol assembly, fatty acid biosynthesis, Nannochloropsis
oceanica

INTRODUCTION

Microalgae have emerged as the potential biological feedstocks for the sustainable production of a
wide range of biocomponents including lipids, polyunsaturated fatty acids, vitamins, carotenoids,
and recombinant proteins (Mata et al., 2010). Considering the negative environmental and
economic impact of fossil fuels combustion and rapidly depleting reserves have further attracted the
research attention toward commercial exploitation of microalgal biofuel owing to their inherited
beneficial characteristics (Chisti, 2007). Particularly, oleaginous microalgal species are gaining
huge research interests due to their promising oleaginicity and possibilities of wide commercial
applications (Han et al., 2017). However, native strains do not hyperaccumulate biocomponents
under optimal conditions, which extremely incumbers their commercial applications (Chisti,
2013). For instance, algal cells have been shown to overproduce triacylglycerol (TAG), the critical
precursor for biofuels under stress conditions which constrain the biomass and growth, thereby
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imped the overall productivity and commercial viability of the
whole production process (Yang et al., 2013). Thus, it is of
paramount significance to improve the genetic traits to produce
algal biocomponents in a commercially feasible manner.

Genetic engineering provides a promising strategy to precisely
perturb the crucial metabolic node to enhance the titer of desired
products, possibly without impeding the cellular physiological
characteristics. However, previous algal genetic engineering
studies have yielded inconsistent success (Li et al., 2010).
Among the factors governing algal genetic engineering, judicious
selection of potential metabolic targets has been considered
crucial (Li et al., 2019). With the advancement of genomics,
development of genetic tool kits and characterization of potential
genetic elements have paved the way for designing proficient
genetic transformation (Zou et al., 2018). Various studies
have interrogated the differential expression pattern of key
lipogenic genes under nutrient stress that could elicit algal lipid
accumulation potential (Yang et al., 2013; Li et al., 2014). These
studies have examined the mechanistic role of nutrient limitation
in orchestrating the key metabolic circuits in various microalgae
at the cost of cellular growth and altered metabolic activities.

Meanwhile, the growth phase of the algal life cycle possesses
crucial points that govern the growth during log phase and
accumulation of energy reserves for the cellular requirements
during late-growth phase (Yang et al., 2013; Yuan et al., 2019).
However, data availability on the expression pattern of key
genes during algal growth is limited, which has been the critical
point in governing the biomass and lipid accumulation. There
are few reports that report the complex and contradictory
relationships between growth and lipid accumulation during
the growth phase. To this end, we sought to investigate the
transcriptome to uncover the expression pattern of key genes
involved in lipid metabolic pathway in the oleaginous heterokont
Nannochloropsis oceanica, which might provide some valuable
molecular cues that underlie the concurrent biomass and
lipid overproduction.

MATERIALS AND METHODS

Algal Strain and Cultivation
Nannochloropsis oceanica CCAP 849/10 (formerly CCMP1779)
was procured from NCMA (National Center for Marine Algae
and Microbiota, United States). The algal cells were cultivated in
f/2 liquid medium at 25◦C as reported previously (Li et al., 2016).

Process Monitoring of N. oceanica Cells
Algal cultivation was monitored by evaluating certain crucial
parameters. Cell growth was determined by direct cell count
method under a light microscope (Li et al., 2016). Photosynthetic
efficiency was monitored by measuring the chlorophyll
fluorescence parameter Fv/Fm, the maximum photochemical
quantum yield of photosystem II as described previously (Li
et al., 2016). Total phosphorus concentration in the culture
medium was determined by using inductively coupled plasma
analyzer iCAP 7400 (Thermo Scientific, United States) and the

total nitrogen concertation was determined using a Dionex ICS-
5000 ion chromatography system with suppressed conductivity
detector (Thermo Scientific).

Analyses of Lipids and Fatty Acid
Composition
Relative neutral lipid content was fluorometrically measured by
Nile red staining as described (Li et al., 2016). The total fatty acid
composition was determined as fatty acid methyl esters by gas
chromatography-mass spectrometry (GC-MS) as described (Li
et al., 2016). Lipid saturation index was calculated as described
previously by using the formulae below (Chandra et al., 2019).

Saturation index =

Total fatty acid − Unsaturated fatty acid
Amount of total fatty acid

× 100

Transcriptome Sequencing and Analyses
Total RNA was extracted from the cells at Day 7, 10, and 13 of
cultivation using RNA Iso plus kit (Takara, Japan), with three
replicates each treatment. Illumina sequencing was conducted at
the Gene de novo company (Guangzhou, China). The prepared
mRNA samples were enriched with oligo (dT) beads and added
with fragmentation buffer and the mRNA was fragmented.
Thereafter, the mRNA was retroscribed using a random hexamer
primer and subsequently, the second strands were synthesized.
The double-stranded cDNA was purified using the QIAGEN
quick PCR extraction kit and the purified cDNAs were subjected
to end repair and single adenine (A) addition. Finally, sequencing
adaptors were ligated to the cDNA fragments, and the resultant
samples were resolved in agarose gel electrophoresis for gel-
purification and then enriched by PCR amplification. The library
products were sequenced using the Illumina HiSeq 2000 platform
(Illumina, San Diego, CA, United States). The default parameters
were used to pass reads using the Illumina quality-control tools
(Li et al., 2014). The relative transcript abundance of key fatty
acid and lipid biosynthetic genes was quantified by real-time
quantitative PCR (qPCR) using a SYBR green qPCR SuperMix
(Invitrogen, United States) on ABI PRISM 7500 Sequence
Detection System (Applied Biosystems, United States) as per the
protocol described elsewhere (Li et al., 2016).

RNA-seq Data Processing and Pathway
Analysis
Nannochloropsis oceanica reference genome was retrieved (Vieler
et al., 2017) and used for annotation. We aligned our RNA
short reads under optimized conditions to the reference genome
using SOAP 2.21 (BGI, Shenzhen, China). The identified gene
with a minimum of one read of lower than this was considered
as non-confident and thus discarded. The RPKM value was
estimated and log2-transformed for each gene defined in the
Nannochloropsis database, to estimate the differential expression
pattern between three different cultivation phases (Li et al.,
2014). The KEGG pathway database was downloaded, and all
annotated genes of the N. oceanica genome were obtained from
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the KEGG database, with an e-value cut-off of 1e-5. BLAST (Basic
Local Alignment Search Tool1) search was carried out for the
Nannochloropsis genes as the query against all available annotated
KEGG genes from other species.

Subcellular Localization Prediction of
Key Proteins Involved in Lipogenesis
The subcellular localization of key proteins involved in TAG
biosynthesis with significant differential expression was predicted
by using online tools including SignalP (Petersen et al., 2011),
ChloroP (Emanuelsson et al., 1999), Mitoprot (Claros, 1995), and
HECTAR (Artzi et al., 2008).

Ultrastructural Analysis by TEM
Ultrastructural analyses of the N. oceanica cells at 7th, 10th, and
13th day of cultivation were analyzed by transmission electron
microscopy as described previously (Li et al., 2019) and ultrathin
sections were cut made on an ultramicrotome LKB 8800 (LKB
Instruments, United States). Thereafter, sections were stained and
observed under a JEM-1200EX transmission electron microscope
(JEOL, Japan), and images were recorded on EM film 4489
(Eastman-Kodak, NY, United States) (Li et al., 2019).

RESULTS AND DISCUSSION

Bioprocess Monitoring and Lipidomic
Analyses Revealed the Potential Growth
Phase for Lipid Accumulation
Growth rate and algal biomass are regarded as the crucial
parameters that determine the economic feasibility of the algal
industrial applications (Li et al., 2018). Growth rate of the
photosynthetic microalgae is regulated by various factors such
as nutrient, light and temperature and thus, monitoring the
microalgal cultivations has been considered crucial for assessing
algal commercial potential (Havlik et al., 2013a,b). Thus, we
attempted to monitor the process of microalgal cultivation during
the study by assessing growth rate, biomass content, maximum
quantum yield of photosystem II (Fv/Fm), determination of
nitrogen and phosphorus content and cellular morphology. It is
well known that algal cells involve in growth during log phase,
whereas cells involve in energy metabolism in the stationary
phase to meet the energy demand and for the cell survival under
nutrient-deprived conditions (Yang et al., 2013). Consequently,
various strategies such as nutrient deprivation, stress treatments,
etc. have been used to increase algal lipid accumulation, however,
these sub-optimal treatment methods resulted in reduced growth
and impaired biomass accumulation. Thus, concurrent biomass
and lipid accumulation during the microalgal cultivation phase
has been considered the most contradictory parameters to be
achieved (Wang et al., 2019). However, large-scale production of
algal biocomponents in a commercially viable manner warrants
simultaneous overproduction of biomass and lipids. We thus

1http://blast.ncbi.nlm.nih.gov/Blast.cgi

evaluated the growth and lipid accumulation properties of
N. oceanica cells during the whole 14-day cultivation phase.

As shown in Figures 1A,B, the growth rate was gradually
increased and reached the stationary phase on day 10 of
cultivation and similar trend was observed in terms of Fv/Fm.
We then determined total nitrogen and phosphorus content
in the cultivation medium, which showed that both nitrogen
and phosphorus content was found to be reduced during
cultivation (Figure 1C). It is well known that nitrogen and
phosphorus are the indispensable nutrient elements required for
the biosynthesis of biological macromolecules, photosynthesis,
and energy transfer, thereby govern the crucial role in
cellular metabolism and growth (Singh et al., 2015; Kokabi
et al., 2019). Consistently, adequate availability of the nitrogen
and phosphorus content during log phase of the microalgal
cultivation facilitated the growth rate of the cells. Meanwhile,
effective consumption of these nutrient molecules by the algal
cells during log phase resulted in reduced availability of N and P
content during the stationary phase, thereby resulted in induced
lipid accumulation (de Alva et al., 2018). This observation is
in accordance with the previous report which implied that
reduced nutrient concentration during the stationary phase
induced lipid accumulation (Ren et al., 2019). However, the
phenomenon of lipid increment during the stationary phase
in the optimized cultivation medium is different from that
cultivated in nutrient deprived conditions (Yang et al., 2013).
Under nutrient deprivation the routine cellular metabolic
activities were altered and physiological characteristics were
impaired, which in turn led to accumulation of energy rich
molecules at the cost of algal growth, whereas under optimized
cultivation conditions the cellular physiological parameters and
metabolic activities would not be impaired, thereby cells would
enter the lipid accumulation phase without hindered growth
activities during the stationary phase (Adams et al., 2013).
Similarly, the lipidomic analysis revealed that lipid content was
lower during the log phase and gradually increased from day
10, and reached the peak level on day 13 (Figures 1D,E), and
lipid productivity was 5.93 mg/L/Day (Figure 1E). Besides, lipid
saturation index was calculated and lipid unsaturation was found
to be increased on day 10, whereas lipid saturation was found
to be increased on day 7 and 13 (Figure 1F). During day
10 and 13, both growth and lipid content were significantly
altered, which revealed that the lipid accumulation is highly
associated with the growth phase (Chiu et al., 2009). In this
regard, it is of paramount importance to scrutiny the potential
phase that elicited both biomass and lipid accumulation in
microalgae (Klok et al., 2013). Zheng et al. (2016) identified
that cells hyperaccumulated biomass and lipids after day 6 of
cultivation under high-temperature treatment in Scenedesmus
quadricauda. Congruently, Chlorella ellipsoidea accumulated
both biomass and lipid on day 9 of cultivation which was
between the log and stationary phase (Yang et al., 2011). Besides,
the scrutinization of the cultivation phase for simultaneous
accumulation of lipids and biomass is considered crucial and this
time point can exemplify the critical time point for analyzing
the expression pattern of key genes that underpin the concurrent
enhancement of lipids and biomass (Msanne et al., 2012).
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FIGURE 1 | Bioprocess monitoring and lipidomic analyses throughout the cultivation phase. (A) Photosynthetic performance as determined by Fv/Fm; (B) Cell
growth curve as measured by direct count method; (C) Determination of nitrogen and phosphorus concentration in the growth medium; (D) Determination of relative
neutral lipid content by Nile-red fluorometric method per ml of culture; (E) Total lipid content (DCW) and total lipid productivity, LP- lipid productivity (mg/L/Day);
(F) Lipid saturation index (%). Significant difference is indicated at P < 0.05 (*) level. Each value represents mean ± SD (n = 3).

To further gain insights into the fatty acid composition of the
lipids under this cultivation phase, we determined fatty acid
composition by GC-MS on day 7, 10, and 13 of cultivation.
Interestingly, fatty acid content was comparable on day 13 than
other days (Supplementary Table S1). Besides, Our previous
study has reported the significance of chloroplast localized TAG
biosynthetic pathway on governing the fatty acid composition
in TAG pool, specifically C16:0 at the sn-2 position was found
to be remarkably increased over C18:0 fatty acids (Balamurugan
et al., 2017). Fan et al. (2011) demonstrated that nitrogen starved
Chlamydomonas cells accumulated significantly higher amount
of C16 fatty acid moieties, which is accounted for up to 90%
of the total TAG implied the substrate specificity of plastidial
LPAAT toward C16:0 fatty acid moieties rather than ER-localized
LPAAT (Fan et al., 2011). These studies have provided the crucial
role of subcellular organelles in governing the TAG biogenesis
and our results which depicted that C16:0-fatty acids were the
predominant fatty acid composition compared to other fatty
acids, thereby provoking the necessity to interrogate the role of
subcellular compartments in governing lipogenesis in a growth-
phase dependent manner (Kim et al., 2018).

RNA-seq Analyses of Transcriptional
Modifications and Their Functional
Annotation
Thereafter, transcriptomic analysis was carried out at different
cultivation phases. Totally, 10939 of genes were expressed in
all experimental sets, i.e. day 7, 10, and 13 of the cultivation.
Among them, 340 were differentially expressed at a significant

level (p > 0.05) between day 7 and 10. Meanwhile, 1283 genes
were differentially expressed in the set compared between day
13 and 7 of cultivation. To investigate the characteristics of
the transcriptome pattern during various phases of the growth
curve, we carried out the gene ontology analysis of the genes
expressed on day 7, 10, and 13 and the expression pattern
was compared among these cultivation phases and defined as
three categories such as day 7 versus day 10, day 7 versus day
13 and day 10 versus day 13 (Supplementary Figure S1). In
the first category, i.e. day 7 versus day 10, most of the GO
terms under all the “Biological Process,” “Molecular Function”
and “Cellular Component” were down-regulated. In the second
category, most of the GO terms under all three categories
were found to be differentiated. Particularly, “death” GO term
under “biological process,” “virion” GO term under the cellular
component and “transporter” and “translation regulator activity”
under “molecular function” category were downregulated. In
the third category, except “localization,” “biological regulation”
GO terms under “biological process” category and “catalytic
activity” GO term under “molecular function” all the GO terms
were up- and down-regulated. The differentially expressed genes
(10393) were clustered into the 8 major clusters according to
their differential expression patterns (Supplementary Figure S2).
The transcriptional patterns of key lipogenic genes including
GPAT, LPAAT, PAP, and DGAT were measured quantitatively
(Supplementary Dataset S1), which corroborated the above-
mentioned growth phase-dependent lipogenic phenomenon. In
addition, we have determined the relative transcript abundance
of the genes LPAAT, PAP, and ACBP by qPCR, which showed
that plastidial localized enzymes were highly dynamic during the
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growth-phase dependent TAG biosynthesis and ACBP did not
exhibit any difference during growth phases, which corroborate
our transcriptome data (Supplementary Figure S3). These
results implied the importance of the cultivation phase on
governing the biochemical potential including lipogenesis and
provided the necessity to uncover the expression pattern of the
key metabolic pathways that underlie the lipogenic property.

Expression Pattern of Key Lipogenic
Genes Was Orchestrated in a Growth
Phase-Dependent Manner
Given the interesting lipidomic and growth data during different
growth phases, we further sought to investigate the expression
pattern of key lipogenic genes under these growth phases.
Generally, ER-localized TAG biosynthesis has been considered as
the traditional pathway for TAG biogenesis, however, previous
studies reported the occurrence of plastidial localized TAG
biosynthesis (Frentzen, 1998; Fan et al., 2011). However, such
data remain largely obscured in N. oceanica. Thus, we examined
the crucial role of growth phase-dependent lipid accumulation
and the underlying TAG biogenesis. Intriguingly, we found that
genes involved in plastidial TAG pathway such as GPAT, LPAAT,
and DGAT were remarkably higher on both day 10 and 13
(Figure 2A). On the other hand, the expression pattern of key

genes involved in ER-localized TAG pathway did not display
significant increment on day 10, however, expression of these
genes was drastically increased on day 13. These data uncovered
the unique expression pattern of these key lipogenic genes in a
growth-phase dependent manner.

Prokaryotic TAG Biosynthetic Pathway
Could Be the Master Regulator in
Growth-Phase Dependent Lipid
Accumulation
It is worth mentioning that plastidial TAG biosynthetic
machinery has been found to be highly active during the late-
log and early stationary phase compared to the ER-localized
enzymes, which were increased during the stationary phase. To
reinforce this notion, we predicted the subcellular localization
of the enzymes using various bioinformatic tools such as
SignalP, ChloroP, Mitoprot and HECTAR which corroborated
the possible plastidial localization of these enzymes such
as LPAAT (2512-mRNA, 5263-mRNA and 10774-mRNA)
and DGAT (DGAT-2K) was predicted to be localized in
the ER (Supplementary Dataset S2). Microalgal TAG has
been considered to be synthesized via acetyl-CoA dependent
and/or acetyl-CoA independent phospholipid:diacylglycerol
acyltransferase (PDAT) TAG pathway (Yang et al., 2013). TAG is

FIGURE 2 | Regulation of the expression of key genes involved in ER and plastidial TAG pathways and fatty acid metabolism. (A) Heat map indicates the fold
changes of relative transcripts of key lipogenic genes during various growth phases in the chloroplast and ER; (B) Heat map depicts the transcriptional pattern of key
genes involved in fatty acid metabolism. Values of the differential gene expression were calculated as the log2-fold changes.
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synthesized by sequential acylation of glycerol backbone at sn-1,
sn-2, and sn-3 positions by glycerol-3-phosphate acyltransferase
(GPAT), lysophosphatidate acyltransferase (LPAAT), and
diacylglycerol acyltransferase (DGAT), respectively, to form
TAG (Li et al., 2016). Among these key enzymes, LPAAT plays
a crucial role in determining the fatty acid composition of
TAGs via their stringent substrate specificity toward certain
acetyl-CoAs (Balamurugan et al., 2017). Substrate specificity of
these LPAATs has been determined by its subcellular localization
(Allen et al., 2015), plastidial LPAAT has been demonstrated
to possess prokaryotic enzymatic activity which prefers C16
acyl-CoA instead of ER-localized LPAAT that prefers C18
acyl-CoA moieties, referred to as the eukaryotic pathway (Wang
et al., 2017). Besides, the potential role of LPAAT in governing
the fatty acid profile has received research interests owing
to the importance of fatty acid composition that elevate the
functional and economic features of biofuels. The previous
report has shown that overexpression of plastidial LPAAT
elevated saturated and polyunsaturated fatty acids, and decreased
monounsaturated fatty acids with particular increment and

decrement of C16:0 and C16:1 fatty acids, respectively
(Balamurugan et al., 2017). Similarly, dual overexpression
of plastidial GPAT and LPAAT resulted in remarkable lipid
enhancement with an altered fatty acid profile in Phaeodactylum
tricornutum (Wang et al., 2018). In addition, DGAT, which
catalyzes the final committed step of TAG biosynthesis, was
remarkably increased during the late growth phase. Various
previous studies have demonstrated the pivotal role of DGAT in
elevating the TAG content of microalga, which is in accordance
with our lipidomic data (Li et al., 2016; Klaitong et al., 2017;
Wei et al., 2017).

Given these observations which highlighted the differential
expression of key lipogenic genes, we further investigated the
ultrastructural changes in the cells by transmission electron
microscopy. There were no physical aberrations observed
in terms of cellular structural, while at the same time
lipid droplets accumulated more in the cytosol compared
to the chloroplast (Supplementary Figure S4). It has been
well documented that TAG biosynthetic mechanisms warrant
intricate trafficking of fatty acid precursors between ER and

FIGURE 3 | Schematic representation of the expression pattern of key genes on day 13 of cultivation. Genes that are up- and down- regulated are marked by red
and green arrows, respectively. Yellow boxes denote the transporter genes.
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chloroplasts (Andersson et al., 2007; Sparkes et al., 2009). Being
the preliminary site for fatty acid biosynthesis, chloroplasts
play a crucial role in providing fatty acid precursors, which
could be exported to ER for TAG biosynthesis (Ohlrogge
and Browse, 1995). Previous reports have demonstrated the
transport of various lipid molecules between chloroplasts and
ER by the involvement of various membrane transporters
(Mehrshahi et al., 2014). Besides, the structural modification
of organelle membranes in response to the interaction of
lipid molecules with the membrane proteins could facilitate
lipid transportation across membranes (Goren et al., 2014).
Phosphatidic acid has also been reported to play a pivotal role
in plastid-ER lipid transportation by modulating membrane
curvature and enzymatic activity (Block and Jouhet, 2015).
Collectively, our observations implied that the overproduced
fatty acids and lipids could be exported to the cytosol for lipid
droplet formation, which is in accordance with the reports
mentioned above.

Our data showed that a series of transporter genes
was upregulated during the stationary phase, particularly,
the expression pattern of the identified transporters was
significantly increased on day 13 (Figure 3). Various studies
have demonstrated the crucial role of these transporters
in inter-organelle lipid trafficking (Mehrshahi et al., 2013),
however, there are few reports available on their molecular
characterization, particularly such data are yet to be
explored in Nannochloropsis. Interestingly, the expression
of phosphate translocators was significantly increased
along with the transporters such as CCMP1779| 10107-
mRNA-1, CCMP1779| 11843-mRNA-1. Sharkey et al.
(2019) reported that transcriptional activation of phosphate
translocator 2 resulted in the transportation of reduced carbon
molecules across plastidial membranes, which enhanced
photosynthesis and carbon metabolism. Similarly, loss of
phosphate transporters resulted in serious growth and
photosynthesis impairment in Arabidopsis (Hilgers et al.,
2018). These data are consistent with our findings, which
imply that expressed transporters might play a crucial role
in lipid trafficking, thereby plastidial fatty acids could be
transported to the cytosol to form cytosolic lipid droplets
(Block et al., 2007). Together, these data provide a novel insight
into the mechanistic role of plastidial TAG biosynthesis in
Nannochloropsis for the first time, which warrants further
in-depth molecular characterization.

Analyses of Fatty Acid Biosynthetic
Genes Under Different Cultivation
Phases
Reasoning the remarkable alterations in the lipid content and
the expression pattern of key lipogenic genes, particularly the
genes involved in plastidial TAG biogenesis, we sought to
explore the expression mechanism of key genes involved in fatty
acid biosynthesis. As shown in Figure 2B, key genes such as
acetyl-CoA carboxylase (ACCase), MCAT, KAS, KAR, and ENR
involved in fatty acid biosynthesis were significantly increased
on day 10 and 13. Particularly, expression of these genes was

remarkably higher on day 10, which implied the crucial role of
these genes in providing fatty acid moieties for lipogenesis.

Lipid biosynthesis is critically regulated by various regulatory
factors such as the provision of metabolic carbon precursors,
reducing equivalents and reducing the competing metabolic
pathways. Amongst, provision of fatty acids as the key
precursors has been considered crucial for fatty acid biosynthesis.
Overexpression of plastidial ACCase resulted in significant
elevation of fatty acid and lipid content in P. tricornutum (Li
et al., 2018). Similarly, overexpression of MCAT resulted in
the remarkable elevation of fatty acids and lipids by providing
adequate fatty acid precursors for lipogenesis in Nannochloropsis
(Chen et al., 2017). KAS, KAR, and ENR have also been shown
to play a role in lipid metabolism in various organisms (Ajjawi
et al., 2017). Altogether, our data demonstrated the potential
of plastidial lipogenic machinery on substantially improving
algal lipid content.

In summary, we have elucidated the mechanisms of lipid
biosynthesis and uncovered the signature genes that underpin
the intricate lipogenesis without impairing cellular physiological
properties. Our data demonstrated that plastidial fatty acid
biosynthetic machinery played a promising role not only in
providing adequate fatty acid precursors but also in TAG
biosynthesis in the heterokont Nannochloropsis (Figure 3).
These results are of paramount importance which exemplify
the orchestration of key metabolic circuits under optimized
conditions instead of previous stress treatment. Moreover, our
data provide a novel insight into the crucial lipid trafficking,
particularly from plastids to ER, which raises an interesting topic
for further study.
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FIGURE S1 | Gene ontology annotation. Distribution of the relative transcripts with
GO involved in Biological Process, Molecular Function, and Cellular
Component categories.

FIGURE S2 | Transcript abundance of various genes under seven clusters
differentially expressed during various growth phases.

FIGURE S3 | Relative transcript abundance of key fatty acid and lipid biosynthetic
genes. Significant difference is indicated at P < 0.05 (∗) level. Each value
represents mean ± SD (n = 3).

FIGURE S4 | Ultrastructural analyses of the cells by TEM on (A) day 7; (B) 10,
and (C) 13 of cultivation. Cp, Chloroplast; OB, Oil Bodies. Bars = 0.5 µm.

TABLE S1 | Fatty acid composition of N. oceanica cell during cultivation.

DATASET S1 | Transcriptional dynamics of key genes involved in central
carbon metabolism.

DATASET S2 | Bioinformatic prediction of the subcellular localization of
the key proteins.
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