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The inherent optical properties of water in the North Sea vary widely in space and time.

Their impact on the performance of a 3D-ecosystem-model of the North Sea needs to be

critically evaluated, which is the major research issue in the present paper, specifically the

horizontal variability of turbidity. We have performed a sensitivity analysis to a modification

of a common approach of light treatment that is both valid for the North Sea, as well as

computationally efficient to implement within a 3D-ecosystem-model. Using a coupled

hydrodynamical model (Regional Ocean Modeling System, ROMS) and biological model

(Carbon Silicate and Nitrogen Ecosystemmodel, CoSiNE), we found that simple changes

to the original parameterization can yield significant improvements. ROMS-CoSiNE is

shown to be suitable for use in a coupled ecosystem model of the North Sea. The model

accurately reproduces the seasonal cycle of primary production in terms of timing and

magnitude, while still being more affordable in comparison to full hyperspectral treatment

or solving the radiative transfer equation. The modification introduces vertically increasing

attenuation that is stronger in shallow domains, in a way that is similar to attenuation

due to sediment. The resulting reduction of light availability leads to strongly reduced

phytoplankton growth in shallow areas with high turbidity and weak nutrient limitation.

Areas of depths between 50 and 100 m show greatest relative change with respect

to their total ranges, while the deepest areas remain largely unchanged. We found that

the consideration of spacial variability of light attenuation is necessary when modeling a

heterogeneous domain, such as the North Sea.

Keywords: SPM, ROMS, CoSiNE, ecosystem model, chlorophyll, light availability, light attenuation, North Sea

1. INTRODUCTION

A common class of biological models are the Nutrient, Zooplankton, Phytoplankton and Detritus
(NPZD) models, which are usually simple four component models. Other models are immensely
more complex with several, in some cases uncoupled nutrient cycles, functional groups of
phyto- and zooplankton, bacteria, etc. (e.g., Fasham et al., 1990; Baretta et al., 1995; Kühn and
Radach, 1997; Moll, 1997, 1998; Bissett et al., 1999, 2001; Chai et al., 2002; Schrum et al., 2006a,b;
Daewel and Schrum, 2013). What all of these models have in common, however, is that for
phytoplankton growth, specifically for photosynthesis, light is required.
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There are various approaches to treat light in biological
models. Especially in the early years of ecosystem modeling,
simplifications had to bemade due to the limitations in affordable
computational power. Common approximations that are found
in literature are spacially averaging the physics (Baretta et al.,
1995; Lenhart et al., 1995; Chai et al., 2002), or using spectrally
integrated irradiance or photosynthetically available radiation
(PAR) instead of a spectral approach (Baretta et al., 1995; Chai
et al., 2002; Schrum et al., 2006a; Daewel and Schrum, 2013).
For some purposes, a simple approach may well be appropriate.
However, Mobley et al. (2015) have shown that both a spectral
light treatment and the inclusion of a daily cycle can significantly
change the results of a biological model, while technological
advances have made these approaches more affordable. Thus, for
quantitatively more correct, complex and precise applications, it
is advisable to use fewer approximations. In our case, the sparsity
of available spectral data, the greater effort in evaluating a spectral
model, justify the use of spectrally integrated irradiance.

In many biological models, attenuation due to suspended
particulate matter (SPM) is sometimes considered indirectly by
increasing the attenuation coefficient of water, which is often
assumed constant in space and time. Hence, such approaches
only show spacial or temporal variability of light attenuation due
to chlorophyll, yet not due to SPM. However, many areas of the
North Sea are rich in SPM and independently so of chlorophyll,
with rather high horizontal variability (e.g., van der Molen et al.,
2009). An online coupling between the optical components of a
biogeochemical and the physical model is rare, however, it has
been shown that optically active water constituents can influence
the physics significantly (Cahill et al., 2008; Mobley et al., 2015).
Cahill et al. (2008) found feedback mechanisms between light
attenuation and the resulting mixed layer depth. They concluded
that stronger stratification leads to higher concentrations of
optically active water components in the upper water column,
causing the stratification to become even stronger. This indicates
the importance of considering vertical variability of attenuation.
However, many models do not consider horizontally or vertically
varying turbidity.

The light climate in the North Sea has been subject to change
over the past decades. Recent studies on Secchi-depth data
have found centennial negative trends, indicating an increase
in turbidity and a subsequent decrease in light availability
for photosynthesis (Dupont and Aksnes, 2013; Capuzzo et al.,
2015). Capuzzo et al. (2015) defined distinct areas through
their hydrodynamic properties as permanently mixed, seasonally
stratified, intermediate, regions of fresh water influence and
the East Anglia plume. They attributed significant decreases in
mean Secchi-depths from the first to the second half of the
twentieth century to SPM (e.g., due to increased dredging) and
chlorophyll (Capuzzo et al., 2015) or colored dissolved organic
matter (CDOM) (Dupont and Aksnes, 2013). Both SPM and
CDOM have been found to have a stronger effect on light
attenuation than chlorophyll has (Harvey et al., 2019). Opdal et al.
(2019) support the hypothesis that the coastal darkening is not
impacted by changes in chlorophyll, but rather non-planktonic
substances, i.e., SPM and CDOM. The darkening has been shown
to delay the spring bloom of phytoplankton (Opdal et al., 2019).

Wilson and Heath (2019) indicate that over the past 20 years,
due to climate change and a subsequent change in the wind
regime, the trends of increasing SPM over the twentieth century
might have reversed in several areas of the North Sea. The above
mentioned works motivate investigations into how changes to
the light climate affect the ecosystem in the North Sea, given
the apparent trend in reduced light availability and increased
turbidity, especially in the southern North Sea.

We aim to analyse the underwater light field numerically, and
specifically the effects of introducing heterogeneous, bathymetry
dependent turbidity. For this purpose, we set up a three-
dimensional (3D) hydrodynamic model (ROMS), coupled with
a one-dimensional (1D) biological model (CoSiNE) of the
North Sea. We modified the classic light treatment in CoSiNE,
making the attenuation effectively bathymetry dependent and
vertically increasing, independently of phytoplankton. This is
to accommodate for the greater turbidity in shallow coastal
waters, while being virtually no more expensive in terms of
computational effort than the original formulation. We test the
capability of the modified light treatment as a functioning proxy
for attenuation due to horizontally varying inorganic SPM. For
reasons of simplicity, we exclude both the effects of CDOM and
temporal changes in SPM in this work.

Through sensitivity studies, the impact of reduced light
availability is determined. The model results are compared to
the Atlantic Margin Model with 7 km horizontal resolution of
the MetOffice, UK, and the European Regional Seas Ecosystem
Model (ERSEM, Baretta et al., 1995; Blackford et al., 2004),
to which AMM7 is coupled, using the reanalyzed data as
provided by the Copernicus Marine Environment Monitoring
Service (CMEMS, http://marine.copernicus.eu), Chlorophyll
Color Index (CCI, https://esa-oceancolour-cci.org) satellite
data, as well as bottle and FerryBox data, provided by the
International Council for Exploration of the Sea (ICES, https://
ices.dk) and the Coastal Observing System for Northern and
Arctic Seas (COSYNA, https://www.hzg.de/institutes_platforms/
cosyna/index.php.de, Baschek et al., 2017), respectively. The
models, the used data and the experiments are described in
section 2. The results are described and discussed in section 3,
and the conclusions we draw from them are found in section 4. A
brief overview of the model’s physical performance can be found
in the supplement.

2. DATA AND METHODS

2.1. Physical Model
The physical model is the regional ocean modeling system
(ROMS) (Haidvogel et al., 2000). It solves the primitive
equations, using a split-explicit time-stepping scheme. In the
vertical, it utilizes a terrain-following s-coordinate (Song and
Haidvogel, 1994), and in the horizontal a curvilinear structured
grid. Turbulence closure is achieved with a generic length scale
(GLS) approach in a k-kl configuration (Umlauf and Burchard,
2003; Warner et al., 2005).

The horizontal grid is taken from the MetOffice’s AMM7
model, as is available from the COPERNICUS web portal,
extended from 5◦W to 13◦E and 48◦N to 60◦N. The horizontal
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resolution is 7 km. In the vertical, the domain is divided into 35
s-layers, stretched to increase the resolution at the surface. The
initial and boundary conditions (IC and BC) were taken from
AMM7 as well. We applied a Champman type BC for the free
surface, which is tidally filtered and averaged daily and the ROMS
tidal constituent model using Finite Element Solution (FES,
the 2014 model as provided by AVISO) tides, contributing the
tidal signal. A Flather type BC was chosen for 2D-momentum,
and radiation with nudging BC for 3D-momentum and tracers.
The atmospheric forcing is taken from NCEP/NCAR and is
of a quarter daily temporal and 21 km horizontal resolution.
The river input is climatological, and is taken from the pan-
European Hydrological Predictions for the Environment (E-
HYPE) model of the Swedish Meteorological and Hydrological
Institute (SMHI), which gives freshwater fluxes from 34 rivers
discharging into the Baltic Sea and North Sea. For reasons of
simplicity, we have used only the rivers Trent, Thames, Seinne,
Maas, Rhine, Schelde, Ems, Weser, Elbe, and Glomma, as well as
the combined outflow of the Baltic Sea in the Kattegat.

The vertical coordinate in ROMS can be configured in such
a way that all surface layers are at the same approximate
geopotential depth. This is beneficial for reducing pressure
gradient error and other density related issues that s-coordinates
typically have. Our model has strong horizontal density gradients
in several areas of the domain, e.g., the German Bight or the
Skagerrak. While the German Bight is relatively shallow and
has comparably smooth bathymetry gradients, the same cannot
be said about the Skagerrak. The errors resulting from using
conventional s-coordinates, where the surface layers are not at
approximately the same geopotential depths, are thus expected
to be relatively small in the German Bight, and larger in the
Skagerrak. Therefore, a detailed comparison to the output of
AMM7 has been performed. Our simulations are satisfactorily
similar to that of AMM7 (not shown). We describe in section
2.3.2 that our light parameterization benefits from our model’s
surface layers not being equally distributed.

2.2. Biological Model
The biological model is the CoSiNE model, as developed by
Chai et al. (2002). In the used version, it consists of 11
state variables, including the four nutrients nitrate (NO3),
ammonium (NH4), silicate (SiOH4), and phosphate (PO4), two
phytoplankton groups (small phytoplankton, S1 and diatoms,
S2), two zooplankton groups (microzooplankton, Z1 and
mesozooplankton, Z2), as well as detrital nitrogen (dN) and
silicate (dS), as well as oxygen (O2). All plankton groups are
expressed in units of mmol N m−3. The details may be found
e.g., in Chai et al. (2002) and Liu et al. (2018). Nitrate uptake by
phytoplanktonmay be inhibited, if ammonium is more abundant
than nitrate (Liu et al., 2018), however, we do not make use of this
function. The biological IC and BC (in the 3D-model) are taken
from AMM7-ERSEM, as available from CMEMS (described in
section 2.4). In the case of those variables that arent available,
typical ratios are assumed, e.g., ammonium is assumed to be
of about a tenth the abundance of nitrate. Plankton BC are of
Neumann type. River input of nutrients is taken from E-HYPE.

2.3. Light Parameterization
2.3.1. Classic Formulation

The exponential decay of irradiance (e.g., Evans and Parslow,
1985; Zielinski et al., 2002) is perhaps the most frequently used
formulation of light in biological models. The basis of this scheme
can be found in the description of CoSiNE (Chai et al., 2002), with
additions regarding SPMmade in recent works (Liu et al., 2018).

I(z) = I0 · exp(cff 1)) (1)

cff 1 = aw · (ζ − z)+ ap

∫ ζ

z
(P1+ P2) dz′

+

∫ ζ

z
aSPMSPM dz′, (2)

with ζ being the free surface height, and aw = 0.036 1/m, ap =

0.03 m2/mmol N and aSPM being the attenuation coefficients,
specifically for water, phytoplankton and inorganic SPM. P1
and P2 are the phytoplankton biomass of small phytoplankton
and diatoms, respectively, in units of mmol N/m3, taken from
CoSiNE. Because there is a technical possibility to compute SPM,
it is included in Equation (2). It is, however, excluded in the
experiment, because SPM content is not known, so that it cannot
be explicitly prescribed and we do not couple our model to
a sediment and wind wave module. A homogeneous approach
is not valid for the entire domain, due to the large horizontal
variability, and a vertical distribution function would need to be
found and validated first.

2.3.2. Index Scheme

The index (IND) scheme was designed as a cost efficient way to
estimate the effects of SPM on light attenuation, by multiplying
the right hand side of Equation (2) with a factor k/N, where
k ∈ [1, 2, 3, . . . ,N] is the layer index and N is the total number of
layers, k = 1 being the bottom most layer and k = N being the
top layer. This way, the attenuation is strongest at the bottom.
While in the classic scheme, the 1%-depth is exactly twice the
10%-depth, in the IND scheme, this is not the case. Figure B.1A
shows the ratio of 1%-depth over 10%-depth in the default state
(without chlorophyll specific attenuation). Note that it is slightly
larger than 2 in the deeper areas, but slightly smaller than 2
elsewhere. This is due to the stretching of the vertical coordinate
(see section 2.1). The full modified version of Equations (1) and
(2) then reads

IIND(z) = I0 · k/N · exp

(

−awz − ap

∫ ζ

z
(P1+ P2) dz

)

= Iclassic(z) · k/N, (3)

with k/N taking the role of exp
(

−aSPM
∫ ζ

z SMPdz
)

. Because

k/N ≤ 1, downwelling irradiance is always lower in the IND
scheme below the top most layer.

There are mathematical and physical inconsistencies in this
formulation. Taking the factor k/N into the exponential, and
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discretizing yields

I(zk) = I0 · k/N · exp

(

−awz − ap

N
∑

i=k

(P1i + P2i) · 1zi

)

= I0 · exp

(

−awz − ap

N
∑

i=k

(P1i + P2i) · 1zi + ln

(

k

N

)

)

,

(4)

where 1 ≤ k ≤ N ∈ N, and 1zi is the distance between the depth
of a cell center zi and that of the cell above zi+1, except when
i = N, where 1zi = zi. The first and most obvious flaw with this
approach is that the natural logarithm is not bounded, and thus
for k = 1,

N → ∞ : ln(k/N) → −∞. (5)

While this is theoretically undesirable, this is not problematic in
practice, as the natural logarithm does not occur in the coding,
k/N and exp(− ln(k/N)) converge to zero, and N is bounded
by numerical and practical constraints. Nevertheless, in this
formulation, the strength of the attenuation at depth is dependent
on the number of layers (Figure 1). The curve for N = 10 is less
attenuated by about 1.8% at −0.5 m, and 2.4% at −9.5 m depth
than that for N = 20. The dependency of the attenuation on N at
the same depth vanishes as N → ∞. The number of layers thus
affects the hypothesized SPM content, which is clearly unrealistic.
Furthermore, consider a water column of 10 m depth. In the
classic formulation, the lowest layers would always be above 70%
of the surface radiation for a water attenuation coefficient of
aw = 0.036 1/m. For N = 10, the remaining irradiance at the
center of the bottom layer would then be

IIND,N=10(k = 1) = Iclassic(k = 1) · 1/10 ≈ 0.071 · I0,

and for N = 20

IIND,N=20(k = 1) = Iclassic(k = 1) · 1/20 ≈ 0.036 · I0.

Physically, this means that for N ≥ 10, the irradiance at the
bottom is always lower than 10% of its surface value. For high
values of N, it vanishes entirely. This is obviously false, since
there is no physical basis to assume that downwelling shortwave
radiation must always vanish toward the bottom. For many areas
of application, also in the North Sea (Capuzzo et al., 2015), the sea
floor is within the photic zone. In our model, using 35 layers and
aminimum depth of 10m, the bottom layer can have amaximum
of 19% of the surface irradiance. In applying this method, we
thus accept a physical inconsistency, for the benefit of efficiency
over online coupling to a full 3D sediment module, which in
turn would require a wind wave module to simulate the wave
component of the bottom stress, which is needed to compute
erosion and deposition.

Another inconsistency arises from the assumption
that ln(k/N) is analogous to the attenuation due to SPM

aSPM
∫ ζ

zk
SPMdz, as it implies that every layer has a homogeneous

concentration of SPM over the entire horizontal domain, i.e.,
a specific layer carries the same amount of sediment in the
Sakgerrak as it does in the German Bight, even though the
Skagerrak has more than ten times the depth of the German
Bight, and a layer that is close to the surface is unlikely to carry
the same content of SPM in both regions. Additionally, as the
s-layers are thicker in deeper regions, integrating sediment over
depth would imply that deeper regions contain more sediment
within the water column. It is thus important to understand that
k/N is in fact not a proxy for SPM. However, for layers below
the photic zone, where photosynthesis is impossible, the error is
biggest, but also least important. The modification can thus serve
as a proxy for attenuation due to SPM in the photic zone, yet not
as a proxy for actual SPM distribution.

Keeping in mind that the classic scheme assumes constant
attenuation over the entire domain when neglecting the influence
of phytoplankton, it is helpful to visualize what that implies.
While it is impossible to display the sea floor illumination in
the IND scheme, due to the noted physical inconsistency, it
is possible to compare the 1%- and 10%-depths, as shown in
Figure 2. In the classic scheme, if disregarding phytoplankton,
the 10%- and 1%-depths are analytically found at z10% =

1
aw

·

ln(0.1) = −64m and z1% =
1
aw

·ln(0.01) = −128m, respectively,
for aw = 0.036 1/m. As shown above, the 1%-depth is always
lower in the IND scheme than in the classic scheme and the
bottom layer irradiance is always lower than 10% of its surface
level. Consequently, in areas shallower than 64 m (i.e., the floor
would be illuminated in the classic scheme), the IND scheme
often has a 1%-depth that is shallower than the 10%-depth of the
classic scheme.

Both methods are somewhat unrealistic and must be applied
with caution and knowledge of their respective flaws. Trying to
make a model of a conglomerate of several notoriously complex
and diverse ecosystems in such an oversimplified way as we
do will come with its shortcomings. While a more precise
approach is certainly desirable for some applications, especially
in a more localized domain, we argue for efficiency over precision
when trying to show the effects of reducing light availability
globally, but more strongly in shallow areas. Furthermore, we
stride to make a simple, qualitative study on the effect of
heterogeneous reduction of light availability. The IND method
has been shown to improve model performance over a large
domain with heterogeneous turbidity, while not requiring the
costs of a full 3D sediment model (Zhou et al., 2017). The
expected results thus justify the use of the IND method.

2.4. Description of Used Data
All of our set-ups of ROMS-CoSiNE are initialized, and in
the case of the 3D set-ups also forced at the open boundaries
with data taken from AMM7-ERSEM. The Forecasting Ocean
Assimilation Model (FOAM, Bell et al., 2003) was applied to
the Atlantic Margin Region (40 degN, 20 degW to 65 degN,
13 degE) with 1/15 deg latitudinal and 1/9 deg latitudinal
resolution (∼7 km-square, hence the acronym AMM7), giving
reanalyzed hydrodynamic data. The physical core of AMM7
is the Nucleus for European Modeling of the Ocean (NEMO,
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FIGURE 1 | Influence of number of layers N on the attenuation of normalized irradiance for a depth of 10 m. The abscissa is normalized irradiance, and the ordinate is

depth. The solid red line is the classic scheme, the other lines are for the IND scheme: solid black is for N = 10, dark blue dashed is for N = 20, bold dashed blue is

for N = 35 (as in our model), and dotted blue is for N = 70. The circles in the magnified inset denote the cell center depths of the respective layers.

FIGURE 2 | Colors: 1%-depths for the IND scheme (A) neglecting chlorophyll and (B) considering chlorophyll. The dashed gray isoline in (A) is the 1%-, and the white

isoline is the 10%-depth of the classic scheme. Blank cells mark areas where the bottom layer irradiance is higher than 1 or 10%, respectively.

Madec, 2008), which uses a structured horizontal Arakawa C-
grid, as well as a hybrid s-z-grid in the vertical. The physical
model is coupled to ERSEM (Baretta et al., 1995; Radach
and Lenhart, 1995). In its original formulation, the biological

structure ERSEM is immensely complex, compared to that of
CoSiNE (Baretta-Bekker et al., 1995; Baretta et al., 1995; Chai
et al., 2002; Zhou et al., 2017; Liu et al., 2018), including both
a benthic and a pelagic component for a combined total of 31
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state variables with decoupled nutrient cycles1. For reasons of
simplicity, benthic modules are often omitted—as in the case
of AMM7-ERSEM and ROMS-CoSiNE. CoSiNE is based on a
nitrogen cycle, to which carbon, phosphate, and silicate cycles are
coupled, and mostly act as nutrient limiting factors. It also does
not explicitly model dissolved organic matter (DOM), as ERSEM
does. The version of ERSEM that was used in AMM7 is one-
dimensional along the vertical axes, and is described in Blackford
et al. (2004). We compare our model against AMM7-ERSEM,
because (a) our model was built on it, and (b), the available
amount of in situ data is rather poor and AMM7-ERSEM has
been reanalyzed using the available data.

Because we aim for a simple, inexpensive model, CoSiNE13
is an optimal choice. We accept several strong restrictions
for the benefit of efficiency, yet to test the modification of
the light treatment, a model like ERSEM or CoSiNE in
its 2014 formulation (Xiu and Chai, 2014) would be too
complex. Nevertheless, when aiming for accuracy in prediction
of chlorophyll and nutrient dynamics, one might consider
or even prefer utilizing a more complete and less restrictive
ecosystem model.

2.5. Methods of Analysis
To compare magnitudes of phytoplankton bloom as well as
horizontal distribution of surface values to measurements and
AMM7-ERSEM, monthly means were computed at the surface
over the entire domain. We performed area averages over the
ICES boxes (see Figure 3, O’Driscoll, 2014). To do so, we first
interpolated the ROMS data onto geopotential layers (z-layers).
For reasons of comparability, we chose to take the same depth
levels as are available for AMM7-ERSEM data via CMEMS (0, 3,
10, 15, 20, 30, 50, 75, 100, 125, 150, 200, 250, 300, 400, and 500m).
To quantify the effect of the modification, the bias and root mean
square differences (RMSD) of the area averages, normalized by
the total range of chlorophyll for the classic scheme within a box
(nbias and nRMSD), were calculated for each z-layer.

Utilizing a method applied to Scanfish data (Zhao et al.,
2019b), we sorted chlorophyll profiles in the German Bight
into four categories: high content in upper layers (HCU) and
lower layers (HCL), well mixed profiles (WM) and subsurface
chlorophyll maxima (SCM). Zhao et al. (2019b) distinguished
between SCM with HCL, with HCU and otherwise well mixed
situations, however, due to the relative scarcity of SCM, we do
not make this distinction here.

3. RESULTS AND DISCUSSION

3.1. Evaluation of the Biological Model
The model simulates a realistic seasonal cycle. Figure 4 shows an
example of nitrate, all plankton groups and nitrogenous detritus
at depth vs. time in the German Bight (black cross in Figure 1)
for the IND scheme. The spring bloom for diatoms occurs
earlier than that for small phytoplankton. The microzooplankton

1Note, that we are comparing ERSEM to a version of CoSiNE with 13 state

variables (CoSiNE13). There exists a version of CoSiNE with 31 pelagic state

variables (CoSiNE31), utilizing a spectral treatment of light, which is applied to

the Pacific ocean, hence not requiring a benthic module (Xiu and Chai, 2014).

FIGURE 3 | Bathymetry of the model area. Contour intervals are 50 m, dashed

line denotes 100 m. Red lines and tags show ICES boxes after O’Driscoll

(2014). The black cross marks the station to which Figures 4 and 7 refer.

feeds on small phytoplankton exclusively, and as the latter is
outcompeted by the diatoms, the microzooplankton is also of low
concentration. Because the diatoms are more abundant in the
second year, the small phytoplankton is almost entirely absent,
and subsequently, so is the microzooplankton, not occurring
at all in 2013. The year 2012 was slightly colder than 2013,
which is why primary production in 2013 was stronger. This also
shows in AMM7. The mesozooplankton feeds of diatoms, small
phytoplankton, microzooplankton and detritus, for which reason
it is present throughout the entire runtime, usually with a phase
lag of a few weeks, respective to phytoplankton and detritus. Both
diatoms and detritus sink to the floor. This leads the diatoms
to accumulate below the surface, where light availability is still
high enough.

A comparison with AMM7-ERSEM data for the same
nutrients showed no obvious or critical mismatch. All nutrients
recover in the winter of 2012 and 2013 to about the same value
they had in the IC. Note that Figure 4 shows output at one
particular station in the German Bight, which is a region of strong
horizontal turbulence. Thus, no single station is representative
of the entire region. Area averages reveal that all nutrients do
indeed recover (not shown). Given the immense complexity of
ERSEM and AMM7, relative to our model, and the fact that we
are comparing to reanalyzed data, could explain some of the
quantitative differences. The comparisons to AMM7 and CCI
data (Figure 5) show that ROMS-CoSiNE matches the spacial
distribution patterns of the chlorophyll dynamics in the North
Sea, and in some cases even better than AMM7-ERSEM does.
ROMS-CoSiNE shows an overestimation of chlorophyll along
the south western shore, and an underestimation in the deeper,
northern North Sea, as well as the East Anglia Plume. However,
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FIGURE 4 | Hovmöller diagrams of ROMS-CoSiNE simulations using the IND scheme at the station marked by the black cross in Figure 1. In top down order, the

panels are NO3 (mmol NO3m−3) (A), small phytoplankton (B), microzooplankton (C), diatoms (D), mesozooplankton (E) and nitrogenous detritus (F) (all mmol Nm−3).

The dashed vertical line marks the first of January 2013.

the horizontal distribution patterns of ROMS-CoSiNE (both
schemes) and CCI are very alike.

The area averages of both schemes and AMM7 at 3 m
depth, as well as ICES bottle data and FerryBox data of
chlorophyll-a is shown in Figure 6. In the north western boxes,
the data availability is rather scarce, however there, the CCI
data (Figure 5) can be taken as a good point of reference. The
agreement between models and measurements are of varying
degree, both locally and temporarily. Many of the differences

between the models and data are found for both models.
Furthermore, the in situ data consists of subsampled data from

a large domain that shows significant horizontal variability.

We have filtered the bottle and FerryBox data points so that
only regions of salinity greater than 30PSU were considered.

This was done to exclude data points taken in river mouths or
very close to the shore (e.g., the Wadden Sea), where processes
which we cannot resolve might influence the phytoplankton
growth. Furthermore, we have taken daily averages, in case there
were multiple data points per day. The comparison shows that
our simulations are realistic, qualitatively speaking. Pätsch and
Kühn (2008) have performed a study using a 3D ecosystem
model (ECOHAM) in the North Sea for the years 1993 to 1996.
Simulated nitrate and chlorophyll values in the upper layers
(their Figure 6) were found to largely agree with our simulations,
patternwise. Magnitudes were lower in ROMS-CoSiNE for box 1
and 7 (compare Figure 6 to Pätsch and Kühn, 2008, their Figures
6D,E—note that AMM7 is overestimating here), and higher for

box 5a (Pätsch and Kühn, 2008, their Figure 6F). Another reason
for differences could be that we are comparing different time
periods with 17 years between their study and ours. Note also
that while we are comparing area averages, the areas we average
over are of different size than those (Pätsch and Kühn, 2008)
average over.

3.2. Comparison of the Two Light Schemes
The coupling of CoSiNE in the classic formulation to ROMS
increases the total amount of parallel computation time by 226%
with respect to a physical run. The inclusion of the IND scheme
does not influence the runtime, relative to the classic formulation
by any significant number (0.57%).

The effect of the IND scheme is visualized in Figure 7,
which shows normalized irradiance attenuated with depth, taking
phytoplankton absorption into account. Without phytoplankton
present (i.e., winter months), the normalized irradiance in the
classic scheme is well above 10% at the bottom, while the
10%-depth in the IND scheme is at around 21 m by default.
While the chlorophyll attenuation coefficient is the same in
both set-ups, the factor k/N has a strong effect in lower layers,
causing the 10%-depth to be reduced by half in times of high
chlorophyll-a abundance. In the classic scheme, the remaining
light never reaches a value of 1% or lower, while it does in the
IND scheme.

Floeter et al. (2017) have performed measurements in
the German Bight in similar positions as station used in
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FIGURE 5 | Monthly means of chlorophyll-a [mgChl − am−3 ] for ROMS-CoSine in the classic formulation (A,E), and the IND formulation (B,F), as well as AMM7

(C,G), and CCI data (D,H) for March 2013 (A–D) and May 2013 (E–H).

Figures 1, 4, 7. Using a hyperspectral TriOS Ramses-ACC
irradiance sensor, they calculated the 1%-depths along transects
through wind farms. The measured depths ranged between 26
and 21 m in July 2014 (see Floeter et al., 2017, their Figure
11). As can be seen in Figure 7, the IND scheme is thus more
realistic here, showing similar (if slightly too great) 1%-depths
in the summer months of 2012 and 2013. Note that we neglect
the effects of CDOM, which are potentially significant at this
particular station in the German Bight (compare to e.g., Painter
et al., 2018).

The nRMSD and nbias are shown in Figure 8. While the
patterns of both quantities are largely similar, there is often times
a pronounced nRMSD at the surface, while there is no or only a
small nbias there. This is explained by a difference in timing with
no or little difference in magnitude (as can be seen in Figure 6).
Note that the maxima of nRMSD and nbias are not found in the

bottom layers but around the boxes’ average depths. Over large
areas along the southern shore, the North Sea is shallower than
10 m, yet, our model has no dryfalling and a minimum depth
is prescribed as 10 m. Around a third of box 5a is shallower
than 15 m (compare Figure 1), which explains why the largest
nRMSD and nbias are found there at 10 m depth (Figure 8), as
we are comparing the area averages that have been interpolated
onto a z-grid. The two boxes where the largest nRMSD and
nbias do not occur at the boxes’ respective average depths (boxes
6 and 8) are so deep that in both schemes, the lowest layers
are outside of the photic zone. Accordingly, there is neither
significant nbias nor nRMSD in the bottom layers of these boxes.
The least pronounced effects on both nRMSD and nbias are
found in boxes 1 and 6, where there is mostly a shift in timing
(see also Figure 6). The largest values for nRMSD and nbias are
found in the lower layers of box 7a (central North Sea), a box
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FIGURE 6 | Area averages of chlorophyll at 3 m depth in units of mg Chl m−3. Blue line is the classic scheme, red is the IND scheme, black is AMM7, black crosses is

FerryBox data and black circles is ICES bottle data.

that is remote from any river influx and has an average depth of
62 ± 5 m (which is close to the 10%-depth of 64 m in the classic
scheme). This largely falls into a domain which Capuzzo et al.
(2015) described as seasonally stratified and for which they found
average Secchi depths between zSD = 4.11± 1.3 m in winter and
zSD = 10.61± 3.56 m in summer. According to Lee et al. (2015),
the Secchi depth is approximately the inverse of the downwelling

attenuation coefficient kd, and given that kd = −z−1
1% ln( I(z1%)I0

),
it follows that zSD ≈ 0.22z1%. Figure 3B shows that the IND
scheme is close to this, with z1%-values ranging between roughly
20 and 70 m, and thus Secchi depths of roughly 4 to 15 m on
average. The classic scheme never reaches values below zSD ≈ 30
m (not shown).

For the IND scheme, as Figures 9C,D show, the largest
reductions of both the 1%- and 10%-depths with respect to the

total water depth are found in the southern North Sea, along

the Dutch, German, and Danish coasts. This is likely due to

the overestimation of diatoms there. The same can be seen
in the classic scheme (not shown). However, all areas where

the relative change in 1%- and 10%-depths are greater than

15% are characterized by large riverine nutrient influxes. In

other shallow regions, e.g., at the Oyster grounds (box 7b), the

reductions are not as pronounced. The areas of the greatest

absolute change are thus areas that are light limited and those
with the greatest relative change are nutrient limited (compare
e.g., Zhao et al., 2019a, their Figure 3). In absolute terms,
the greatest reduction of the 1%- and 10%-depths are found
along the Norwegian coast and in the Skagerrak, which is
largely due to the greater water depth (Figures 9A,B). Figure B.1
shows the ratios between 1%- and 10%-depths both with and
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FIGURE 7 | Normalized irradiance at depth vs. time for ROMS-CoSiNE at the station marked by the black cross in Figure 1 using (A) the classic formulation and

(B) the IND scheme. The solid line denotes the 10%-, and the dashed line the 1%-depth.

FIGURE 8 | Normalized RMSD (A) and bias (B) of chlorophyll between classic and IND for all boxes.

without considering chlorophyll specific attenuation. The ratio
noticeably increases in the areas where the absolute reductions
of the 1%- and 10%-depths are greatest (Figures 9A,B), which
is due to the self shadowing of phytoplankton. Capuzzo et al.

(2015) show a map of sea floor illumination in the area of
the East Anglia Plume (their Figure 3), classifying regions that
have been illuminated before and after 1950 (dark blue), only
were illuminated before 1950 (lighter blue), or were never
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FIGURE 9 | Differences of the 2 year means of the 1%- (A,C) and 10%-depths (B,D) with chlorophyll specific attenuation minus without. Absolute values are shown

in (A,B), and (C,D) show the same, normalized by the local water depth.

illuminated (light blue). Noticeably, the areas that are still
illuminated today match the areas in our model were the average
bottom irradiance is greater than 1% of the surface irradiance
(Figure B.1B).

The area averaged chlorophyll differences show that there
is merely a reduction of magnitude, but no vertical shift of a
subsurface maximum between the two schemes. From Figure 6,
we can see that in box 7b, there is one strong peak of chlorophyll
in the summer of 2013 for the classic scheme, but in the
IND scheme, there is one peak in spring and one in autumn,
both being smaller than the peak in the classic scheme. The
biannual mean of the differences are low at the surface, because
approximately the same amount of chlorophyll is produced in
both schemes, yet the nRMSD responds to the different temporal
behavior of the blooms (Figure 8). In the Skagerrak, there are
biases of 2mg Chl m−3, reaching depths of up to 50 m and
prevailing for several months (not shown). This is due to the
inclusion of parts of the Kattegat in Box 8, which is rather shallow,
and heavily influenced by the Baltic outflow. All other deep boxes
do show differences, but they are mostly differences in timing and
less in magnitude. As Figure 6 shows, the blooms in these boxes
are comparably short.

Comparing our results for the German Bight (box 5a,
Figure 10) to Zhao et al. (2019b their Figure 4), there are a few
differences, but the overall agreement is reasonably good, and

more so with the implementation of a modified light regime.
There are fewer stratified profiles in the IND case, compared
to the classic case, in almost all areas and at almost all times,
except areas that are of depths between 15 and 25 m, where
the IND scheme shows generally more stratified profiles. In
regions deeper than 15 m, there are more HCU situations in
the IND scheme than in the classic scheme. There are relatively
fewer SCM situations in ROMS-CoSiNE than there are in the
scanfish data, analyzed by Zhao et al. (2019b). A likely reason
for this is the relatively coarse resolution of 35 layers. Due to the
overestimation of winter chlorophyll, there are more stratified
profiles in early months in the model than there are in the
Scanfish data. SCM tend to occur in shallower regions in the
IND scheme, compared to the classic scheme and the Scanfish
data. HCL situations are more frequent than HCU, because
the diatoms, which are prevalent in the German Bight, sink to
the floor.

Figure 11 shows depth integrated chlorophyll for both
schemes. Especially in boxes that are shallow and/or have large
riverine nutrient influence (3b to 6, 7b, and 8), the spring bloom
peaks are of similar, and sometimes higher magnitude than the
classic scheme. There is a time shift of up to several months in
both years (explaining the presence of nRMSD, yet absence of
bias in the upper layers; see above and Figure 8). The growth
throughout the rest of the year shows no shift in timing, but often
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FIGURE 10 | Categories of vertical chlorophyll profiles in the German Bight. Dark blue are subsurface chlorophyll maxima (SCM), turquois are well mixed profiles

(WM), yellow are high chlorophyll content in upper layers (HCU), and red are high chlorophyll content in lower layers (HCL). The left bars show the classic scheme and

the right the IND. Early spring is March and April, late spring is May, summer is June, July, and August, and autumn is September, following the classification of Zhao

et al. (2019b).

significantly lower magnitudes. In the remaining boxes (1 to 4a,
and 7a), the growth is generally weaker and slower.

The comparisons of area averages (Figures 6, 11), as well
as that of monthly means of surface chlorophyll to CCI and
AMM7 data (Figure 5) show that for some situations, the classic
scheme is closer to the data (more in the deep northern and
western areas), and for others the IND does. It can be noted that
the agreement between AMM7 and ROMS-CoSiNE is generally
good, with some glaring differences (AMM7 chl is higher in the
deeper, northern regions, but lower near the Belgian, Dutch, and
German coast). The inclusion of the IND scheme helps to bring
ROMS-CoSiNE and AMM7 closer together in some areas (e.g.,
boxes 4, 5a, 5b), but in others, it does the opposite (e.g., boxes 1,
2, 3a, 7a). Incidentally, the deep, northern boxes 1 to 3a are the
ones where AMM7 agrees least with CCI data (Figure 5).

4. CONCLUSIONS

A functioning ecosystemmodel was established, which is capable
of reproducing a realistic seasonal cycle of nutrients, phyto- and
zooplankton, as well as detritus. The horizontal distribution of

chlorophyll matches that of measurements. Because the model
is relatively cheap to run, it gives a good starting point for
further investigations of light climate, although adjustments
will need to be made to accommodate the effects of temporal
variability and CDOM. To the best of our knowledge, there
has not been a published application of ROMS-CoSiNE in the
North Sea. We have shown that ROMS is capable of giving
reliable numeric simulations of the physical North Sea. CoSiNE
is capable of simulating important aspects of its biology. For
the purpose of a sensitivity study, the model produces results of
sufficient accuracy.

The reduction of light availability leads to weaker total
production of chlorophyll-a. Because the modification reduces
light availability in the entire domain, this was an expected
result. For all boxes, the reduced light availability in the IND
scheme expresses itself in three ways: the spring bloom peaks
occur later, their magnitudes are weaker, and the magnitude of
growth after the spring bloom is weakened. However, these three
characteristics need not be present in the same extremity for all
boxes. Generally, deep boxes with little terrestrial nutrient input
(1, 2, and 3a) show the least change in total magnitude. The far
greatest total reductions in growth are found in regions with large
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FIGURE 11 | Depth integrated area averages of chlorophyll-a for ROMS-CoSiNE in the classic formulation (blue) and the IND scheme (red), as well as AMM7 (black),

for all areas.

river inputs. Because there is no nutrient limitation there, light
limitation is dominant. The total magnitudes are also larger there,
allowing for greater total reduction. In relative terms, the greatest
impact is found in deep areas with low magnitudes and strong
nutrient limitation. As regions of high terrestrial water input are
typically rich in CDOM (e.g., Painter et al., 2018), the inclusion
of CDOM specific attenuation is expected to further increase the
total reduction of magnitude in those areas.

The IND scheme thus provides the expected results exactly
where they are desired, but also brings undesired results
elsewhere. A hybrid scheme could help correct for this, where the
IND scheme (or a similar modification) is active in a nearshore
environment and inactive in domains that can be seen as case
1 waters, are deep enough for SPM to not play a role, or where
there is otherwise naturally little SPM effect on light attenuation.

For turbid regions, such as estuaries or specific marginal seas
or coastal subbasins (e.g., German Bight, East China Sea, San
Francisco Bay, Chesapeake Bay—all areas where CoSiNE has
been used), the global use of the IND scheme may be more
desirable than coupling to a sediment and wind wave module,
for reasons of simplicity, affordability, and qualitatively similar
results. The use of a simple weighting function (e.g., activating
the IND scheme for all depths below a threshold value, or
activation via a prescribed mask) can make the scheme more
flexible without defeating the purpose of having a very affordable
scheme that is also easy to implement. Furthermore, ROMS has
the capability (as do many other models), to distribute the upper
layers (almost) equally, along geopotential surfaces, especially in
deeper areas. This is generally desirable for physical applications
in areas of large bottom slopes and strong stratification, but it
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is not ideal for the use of the IND scheme. Again, this may be
controlled for by weighting functions.

The SPM attenuation proxy we apply has several important
short-comings: (a) we only account for inorganic SPM, while
organic SPM is left out [more advanced biological models can
account for organic SPM (e.g., Xiu and Chai, 2014)]; (b) the
proxy is dependent on bathymetry only, while SPM content in
a water column itself has several important influencing factors,
such as bottom stress due to wind waves and currents (which
is time dependent), grain size and the soil texture of the sea
floor (which is horizontally varying, and which can be advected);
(c) the vertical distribution of SPM content is approximated by
a dependency on bathymetry following s-layers, i.e., a model
specific quantity, and not a physical one; (d) the actual SPM
content need not be (pseudo) linearly or even monotonously
increasing with depth, as we assume it to be; (e) our SPM
proxy is, mathematically speaking, unstable, because it contains
a singularity (which is numerically speaking outside of our
domain). Nevertheless, it is extremely simple to implement and
has proven to be effective (Zhou et al., 2017), while being literally
no more expensive than the classic approach, without the need
to employ an online-coupled sediment and wind wave module,
next to the existing configuration. Given that the omission of the
modification is equally unphysical, but considerably less realistic,
we deem its use justified.

As stated in the introduction, we do not consider CDOM in
this work. However, CDOM has been shown in numerous works
to be one of the key influences of water clarity (e.g., Dupont and
Aksnes, 2013; Urtizberea et al., 2013; Opdal et al., 2019). In the
context of coastal ocean darkening over the twentieth century,
as it is suggested by multiple studies (e.g., Dupont and Aksnes,
2013; Capuzzo et al., 2015; Opdal et al., 2019), one cannot ignore
the role CDOM plays. Future works on the subject of the coastal
underwater light field will have to include the effects of CDOM,
be it through directly modeling it, as (e.g., Xiu and Chai, 2014)
do, or inversely modeling it by applying linear relationships with
salinity (e.g., Bowers et al., 2004; Bowers and Brett, 2008; Painter
et al., 2018). It is our intention to include CDOM in future works.
Furthermore, SPM contents in the North Sea are subject to both
seasonal (e.g., van der Molen et al., 2009; Dobrynin et al., 2010;
Gohin, 2011) and interannual variability (e.g., van der Molen
et al., 2009; Capuzzo et al., 2015; Wilson and Heath, 2019). The

IND scheme cannotmodel temporal effects and is thus unsuitable
for use in long term studies. For such purposes, one might use
offline data, or directly model SPM.
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