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Interest and growth in marine aquaculture are increasing around the world, and with
it, advanced spatial planning approaches are needed to find suitable locations in
an increasingly crowded ocean. Standard spatial planning approaches, such as a
Multi-Criteria Decision Analysis (MCDA), may be challenging and time consuming to
interpret in heavily utilized ocean spaces. Spatial autocorrelation, a statistical measure of
spatial dependence, may be incorporated into the planning framework, which provides
objectivity and assistance with the interpretation of spatial analysis results. Here, two
case studies highlighting applications of spatial autocorrelation analyses in the northeast
region of the United States of America are presented. The first case study demonstrates
the use of a local indicator of spatial association analysis within a relative site suitability
analysis – a variant of a MCDA – for siting a mussel longline farm. This case study
statistically identified 17% of the area as highly suitable for a mussel longline farm,
relative to other locations in the area of interest. The use of a clear, objective, and efficient
analysis provides improved confidence for industry, coastal managers, and stakeholders
planning marine aquaculture. The second case study presents an incremental spatial
autocorrelation analysis with Moran’s I that is performed on modeled and remotely
sensed oceanographic data sets (e.g., chlorophyll a, sea surface temperature, and
current speed). The results are used to establish a maximum area threshold for each
oceanographic variable within the online decision support tool, OceanReports, which
performs an automated spatial analysis for a user-selected area (i.e., drawn polygon)
of ocean space. These thresholds provide users guidance and summary statistics of
relevant oceanographic information for aquaculture planning. These two case studies
highlight practical uses and the value of spatial autocorrelation analyses to improve the
siting process for marine aquaculture.

Keywords: spatial planning, marine aquaculture, spatial autocorrelation, Local Indicator of Spatial Association,
Moran’s I, Multi-Criteria Decision Analysis

INTRODUCTION

The demand for marine aquaculture products in the United States is growing, with
domestic sales from 2007 to 2012, increasing 13% per year (National Marine Fisheries
Service [NMFS], 2017). Marine aquaculture development in the United States has been
increasing 3.3% annually from 2009 to 2011 (National Marine Fisheries Service [NMFS],
2017) and the use of traditional siting analyses will aid development by identifying
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optimal locations that minimize conflict with other industries
and environmental constraints. Spatial autocorrelation, a
statistical measure of spatial dependence, has emerged as a
powerful means to improve the siting of marine aquaculture
development in areas with high competition for ocean space.
Spatial autocorrelation analyses may be incorporated into
planning for marine aquaculture to increase the confidence
of spatial planners, stakeholders, and coastal managers
overseeing development.

Marine Spatial Planning (MSP) provides a framework
for the responsible siting of marine aquaculture and relies
on representative and authoritative data. Remote sensing
platforms – such as satellites, Global Positioning System based
technologies (e.g., Vessel Monitoring Systems (VMS), data buoy
networks), or other similar devices – provide data with a
broad spatio-temporal range and resolution to inform the MSP
process. For example, vessel traffic information derived from
VMS or Automatic Identification Systems (AIS) is used to
characterize navigation-related ocean space-use conflicts among
ocean industries, such as renewable energy (Rawson and Rogers,
2015), commercial fishing (Rouse et al., 2017), and marine
aquaculture (Tlusty et al., 2018). Satellite derived oceanographic
variables are frequently used to site marine aquaculture. For
example, Radiarta et al. (2011) created a suitability model for
Japanese kelp (Laminaria japonica) in Hokkaido, Japan, using
Moderate Resolution Imaging Spectroradiometer (MODIS)
Sea Surface Temperature (SST) data and suspended solid
concentrations calculated from Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) data to identify suitable locations. Reliable
remote sensing data combined with authoritative or regulatory
data, such as shipping lanes or marine protected areas, are
essential for MSP.

Following the collection of reliable data, the next step
in the MSP framework is to evaluate an area for potential
environmental impacts, conflicts with other ocean industries,
and compliance with applicable laws (Douvere, 2008; Collie
et al., 2013; Stelzenmüller et al., 2017). A Multi-Criteria Decision
Analysis (MCDA), also referred to as Multi-Criteria Decision
Making or Multi-Criteria Evaluation, is a commonly used spatial
analysis technique for the MSP of aquaculture (Longdill et al.,
2008; Radiarta et al., 2008; Gimpel et al., 2015; Bwadi et al., 2019).
MCDA allows for numerous environmental and stakeholder
interests to be evaluated within an area of ocean space and has
demonstrated value for the siting of marine aquaculture (Aguilar-
Manjarrez et al., 2017; Lester et al., 2018). Variants of a MCDA
have been conducted to guide aquaculture management decisions
around the world (Aguilar-Manjarrez et al., 2017); examples
include shellfish aquaculture siting in South America (Silva et al.,
2011), siting of kelp in Japan (Radiarta et al., 2011), and siting for
marine fish farms in Italy (Dapueto et al., 2015). The results of a
MCDA are used by resource managers and regulatory authorities
to understand potential environmental or space-use conflicts
associated with a proposed operation while allowing industry to
identify prospective sites with the highest return on investment.

A limitation of using a MCDA within the MSP framework is
the ease and lack of data accessibility, which may be overcome
through the use of an online Decision Support Tool (DST).

Viewing and analyzing spatial data sets requires technical
knowledge of Geographic Information Science and software,
which may prevent stakeholders, industry, or coastal managers
from being able to examine remote sensing or authoritative data
efficiently. Online DSTs provide users of varying skill levels a
rapid and cost-effective method to interactively explore spatial
data and receive summarized results for an area of interest
(Pınarbaşı et al., 2017). Online DSTs may be used to screen an
area of interest prior to a MCDA, to remove areas with known
constraints to reduce computer processing time. Puniwai et al.
(2014) demonstrates the use of an online DST to present the
results of a MCDA identifying areas in the nearshore and offshore
waters of Hawai’i to inform aquaculture sector development
and management. Online DSTs assist planners by providing
quick access and simplified results to various user groups during
the MSP process.

Both MCDA and online DSTs may incorporate spatial
autocorrelation analyses, which have been developed by
geostatisticians and applied to numerous fields of study, to
improve the quality and confidence of results. Landscape
ecologists commonly use spatial autocorrelation analyses, and
have shown that not including a measure of spatial dependence
into an analysis may lead to erroneous results (Legendre, 1993;
Diniz-Filho et al., 2003; Hawkins et al., 2007; Kühn, 2007).
Increasingly, spatial autocorrelation is incorporated into MSP
and marine aquaculture siting analyses as part of a model or
statistical analysis to improve reliability and rigor (Tavornpanich
et al., 2012; Brager et al., 2015; Overton et al., 2018). Spatial
autocorrelation also provides the foundation for identifying
statistically significant high and low clusters, with analytical
approaches being utilized within a variety of fields, including
ecology (Nelson and Boots, 2008), epidemiology (Izumi et al.,
2015), and spatial planning (Truong and Somenahalli, 2011).
For example, Rauner et al. (2016) demonstrated how high
and low clusters of demand for electricity and the supply of
renewable energy systems may be used to guide renewable
energy development in Germany. Similar methods of identifying
clusters within a data set and siting analysis may be applied
to the results of a MCDA. Furthermore, knowledge of cluster
sizes within a data set may be leveraged for use within a DST to
provide users with additional information regarding remotely
sensed or modeled data sets.

Two case studies displaying how spatial autocorrelation
analyses improve on the standard MSP framework for marine
aquaculture are presented. The first case study presents a MCDA
that uses a Local Indicator of Spatial Association (LISA) analysis
to enhance the interpretation of the results. The second case study
demonstrates how an incremental spatial autocorrelation analysis
may be used to calculate area thresholds for key oceanographic
parameters by identifying distances when clustering is most
significant. These area thresholds are used within OceanReports1,
a recently released online DST co-developed by the United States
National Oceanic and Atmospheric Administration (NOAA)
and Bureau of Ocean Energy Management (BOEM). Both case
studies demonstrate how the siting process and planning for

1https://coast.noaa.gov/digitalcoast/tools/ort.html
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marine aquaculture may be enhanced by the inclusion of spatial
autocorrelation analyses.

MATERIALS AND METHODS

Case Study 1: MCDA With Cluster and
Outlier Analysis
A relative suitability analysis, a variant of a MCDA, was
conducted to evaluate potential sites for a hypothetical mussel
longline aquaculture operation in and around Buzzards Bay in
the state waters of Massachusetts, United States (Figure 1A).
This location was selected for use within this case study because
of data availability, known potential conflicts (e.g., extensive
vessel traffic and industrial activities), and increasing regional
interest in marine aquaculture. Table 1 provides the generalized
steps followed for performing the relative suitability analysis
used here. The presented results are for demonstrative purposes
and do not guarantee a location’s suitability with aquaculture.
Further investigation and analysis should be executed if an
aquaculture operation is proposed within this area. Incorporation
of additional data sets and considerations relevant to the type
of aquaculture and geographic setting should be performed
when using this or similar methods that evaluate a location’s
compatibility for marine aquaculture.

With the project goal of siting a mussel longline farm and
target geography identified, a grid with 1 ha grid cells (100 m
by 100 m) was established for an area of interest, containing
a total of 133,776 grid cells (Figure 1A). Cell size for the grid
was determined based on the resolution of available spatial data
for the analysis, inherent spatial variability of the data, and an
industry-standard farm footprint size (Hengl, 2006). Grid cells
shallower than 10 m were removed, leaving 98,369 grid cells
within the acceptable depth range for this aquaculture siting
exercise. Spatial data sets containing potential space-use conflicts
with marine aquaculture operations, such as active military areas,
maritime navigation, ocean industries, and natural resource
management, were collated (Table 2 and Figures 1B–D). Data
sets were individually assigned a score ranging from 0 (low
suitability) to 1 (high suitability) determined by its compatibility
with mussel longlines (Table 2).

TABLE 1 | Generalized steps performed for the relative suitability analysis,
including the Local Indicator of Spatial Association (LISA) analysis.

Steps for relative suitability analysis workflow

1. Define project goal.

2. Identify area of interest.

3. Select grid cell size and create grid.

4. Refine grid based on known constraints.

5. Evaluate spatial data sets relationship with each grid cell.

6. Score each spatial data sets relationship (0–1 Scale).

7. Calculate relative suitability scores.

8. Run a LISA analysis on the relative suitability scores.

9. Extract significantly high clusters of grid cells.

10. Review extracted clusters for further evaluation or site surveys.

Each data set was subsequently evaluated to determine if
a spatial data set was present or absent within each grid cell.
For example, a shipping lane was considered to be present if
it intersected a grid cell, and that grid cell would receive a
score of 0. For continuous data, such as bathymetry, fishing
effort, and sediment grain size, the mean value for each grid cell
was calculated and scores were assigned based on operational
constraints associated with mussel longlines (e.g., low suitability
scores were assigned for areas corresponding with high fishing
effort because of the potential for space-use conflict; Tables 3, 4).
Vessel traffic from 2017 was categorized by type, and the sum
of vessel transits per grid cell was calculated2. The 25th, 50th,
and 75th, percentiles for each vessel type were calculated for the
values in the grid and used to create and categorize the scoring
schema (Tables 5, 6). Any grid cell that contained a data set with
a score of 0 was considered to be unsuitable regardless of the
other scores as that single conflict is completely incompatible for
siting. All data sets were integrated by summing all individual
scores for each grid cell across all data sets and dividing the sum
by the total number of data sets, providing a proportion from
0 to 1, with 0 representing “low suitability” and 1 representing
“high suitability” relative to other grid cells. This final proportion
provides the relative suitability of that cell to all other grid cells in
the area of interest.

A LISA analysis, which is used to identify statistically
significant clusters and outliers within a data set, is then
performed on the final proportion of the relative suitability
analysis (Anselin, 1995). Esri ArcGIS Pro’s “Cluster and Outlier
Analysis” tool was used to perform the LISA analysis (ESRI,
2019)3. The inverse distance spatial conceptualization with a
100 m search distance is used as it includes all grid cells; however,
proximal cells have more influence than distant cells. Row
standardization, application of a false discovery rate correction,
and 999 iterations were all applied for more conservative and
robust results. Statistically significant clusters of the highest
suitable scores were identified, and any clusters smaller than
20 ha were excluded. A minimum size of 20 ha was used
as smaller mussel farms have less economic sustainability and
less flexibility for optimal farm configuration (Ahsan and Roth,
2010; Rosland et al., 2011). The LISA analysis is similar to the
Getis–Ord Gi∗ statistic, but in addition to identifying significant
high and low clusters, this method identifies outliers (Getis and
Ord, 1992; Anselin, 1995). Knowledge of outliers is useful when
interpreting results of a MCDA as it highlights areas that may
need to be avoided when identifying suitable locations for an
aquaculture operation. For example, a sewage discharge pipe or
piece of unexploded ordnance may be surrounded by otherwise
suitable locations.

Case Study 2: Incremental Spatial
Autocorrelation Analysis With Moran’s I
OceanReports enables the public to explore an ocean
neighborhood by drawing a polygon anywhere within the

2https://marinecadastre.gov/ais/
3https://pro.arcgis.com/en/pro-app/tool-reference/spatial-statistics/cluster-and-
outlier-analysis-anselin-local-moran-s.htm
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FIGURE 1 | (A) Area of interest (133,776 ha) located in the state waters of Massachusetts, United States. (B) Pleasure and sailing vessel traffic sum of transits per
1 ha for 2017. (C) Submarine cable area presence (in) or absence (out) for each 1 ha grid cell. (D) Tug and tow vessel traffic sum of transits per 1 ha for 2017.

United States Exclusive Economic Zone (EEZ) to visualize spatial
data within that polygon. An immediate report is provided that
includes location-based, regulatory, abiotic, biotic, cultural, and
geophysical characteristics specific to the user-defined area.
Within the Oceanographic and Biophysical information section
of the tool, descriptive statistics from a variety of remotely
sensed oceanographic data sets are generated for the custom area
(Figure 2A). A user could draw a polygon to inspect and visualize

a large area (e.g., the East Coast of the United States), however,
the summary statistics of oceanographic data for this expansive
area may provide inconsequential information. On the other
hand, drawing a smaller polygon would produce more useful
localized descriptive statistics of oceanographic parameters for
MSP. To address this issue maximum area thresholds were
developed for all oceanographic data sets by identifying the
amount of area at which spatial dependence or clustering was the
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TABLE 2 | Discrete spatial data sets included in the relative suitability analysis with
scores ranging from 0 (low suitability) to 1 (high suitability) and proportion of grid
cells that the parameter is present in along with the data source.

Parameter/data set Score Proportion
of grid

Data source*

Active renewable energy leases 0.5 0 BOEM

Aids to navigation 0 <0.01 NOAA OCM

Anchorage area 0.1 0.27 NOAA OCM

Aquaculture 0.1 <0.01 NROC

Artificial reefs 0 0 NOAA OCM

Audubon important bird areas 0.9 0.01 NAS

Coastal barrier resource system 0.5 0.02 US FWS

Coastal critical habitat designations 0.5 0 NOAA OCM

Coastal wetlands 0.5 <0.01 US FWS

Coastally maintained channel 0 0.01 NOAA OCS

Danger and restricted zones 0.1 0.01 NOAA OCM

Eelgrass 0 <0.01 NROC

MA wind energy areas 0.5 0.07 MA CZM

Military operating area 0.5 0.02 USN

Military range complex 0.5 0.02 USN

Obstructions 0 <0.01 NOAA OCS

Ocean disposal sites 0 <0.01 NOAA OCM

Pipeline areas 0 <0.01 NOAA OCM

Pipelines 0 0 NOAA/BOEM

Protected areas 0.5 1.00 US DOI

Recreational SCUBA diving areas 0.1 0.17 NROC

Right whale seasonal management area 0.5 0.06 NFMS SERO

Shellfish habitats 0.5 0.52 MA DMF

Shipping lane 0 0.03 NOAA OCS

Shipwreck 0 <0.01 NOAA OCS

Submarine cable 0 <0.01 NOAA CSC

Submarine cable areas 0 0.08 NOAA OCM

Unexploded ordnance 0.5 <0.01 NOAA OCM

Unexploded ordnance FUDS** 0.5 0.30 NOAA OCM

*Bureau of Ocean Energy Management (BOEM), National Oceanic and
Atmospheric Administration (NOAA), Office for Coastal Management (OCM),
Northeast Regional Ocean Council (NROC), National Audubon Society (NAS), Fish
and Wildlife Service (FWS), Office of Coast Survey (OCS), Massachusetts (MA)
Office of Coastal Zone Management (CZM), United States Navy (USN), Department
of the Interior (DOI), National Marine Fishery Service (NMFS), Southeast Regional
Office (SERO), Division of Marine Fisheries (DMF), Coastal Services Center (CSC).
**Formerly Used Defense Sites (FUDS).

most pronounced using an incremental spatial autocorrelation
analysis with Moran’s I. OceanReports will not return descriptive
statistics for an oceanographic variable if the user-drawn area
is greater than the maximum area threshold for that data set.

Rather, the tool informs the user to draw a smaller area to receive
summary statistics for that variable (Figure 2B). Thus, the
likelihood of a user receiving meaningless or misrepresentative
summary statistics is reduced.

For this case study, long-term monthly climatologies of
remotely sensed chlorophyll a, SST, and current speed, were
evaluated within the northeast region of the United States,
including state waters to the 200 nm federal waters boundary
of the EEZ (Table 7). These three environmental variables
are commonly used in siting analyses for marine aquaculture
(Radiarta et al., 2008; Snyder et al., 2017; Tung and Son, 2019).
Monthly climatologies of surface chlorophyll a concentrations
produced by the National Aeronautics and Space Administration
(NASA) MODIS-Aqua from July 2002 to February 2019
provide insight into an area’s potential food availability
(i.e., phytoplankton biomass) or possible nutrient loading
(Gentry et al., 2017; NASA Goddard Space Flight Center,
2018; Theuerkauf et al., 2019). Monthly climatologies of water
temperature and current magnitude from October 1992 to
December 2012 were derived from the three-dimensional,
physical oceanographic Hybrid Coordinate Ocean Model
(HYCOM) and Navy Coupled Ocean Data Assimilation
(NCODA) 1/12◦ reanalysis daily 1200 hr measurement (Bleck
et al., 2002; Halliwell, 2004). Water temperature is critical for
evaluating optimal growth ranges, approximate harvest times,
and potential thermal stress thresholds for finfish, shellfish, and
macroalgae aquaculture (Gentry et al., 2017). Oceanographic
current speed is important to consider when siting aquaculture
as well, and is useful for understanding shellfish food availability,
equipment limitations, and fish welfare (Ferreira et al., 2007;
Huang et al., 2008; Jónsdóttir et al., 2019).

An incremental spatial autocorrelation analysis using the
global Moran’s I spatial autocorrelation index with a fixed
distance spatial conceptualization was performed for each
monthly climatology using the “spdep” library in R v3.6.1
(R Core Team, 2019). An incremental spatial autocorrelation
analysis calculates the Moran’s I index and z score at multiple
distances for a single data set. The fixed distances analyzed
were derived from each possible distance between one data
point and all other data points. For example, if 100 possible
distances existed in a data set, Moran’s I index would be run
100 times or once for each distance. The resulting z scores
are then plotted by distance, rather than using the Moran’s I
index value, as the z scores allow for a standardized comparison
of significance by distance (i.e., larger positive z scores have
more significant clustering). The distances at the first peak and

TABLE 3 | Continuous spatial data sets included in the relative suitability analysis with scores ranging from 0 (low suitability) to 1 (high suitability) and proportion of grid
cells that the parameter is present in.

Parameter Value Score Proportion of grid Data source*

Mean bathymetry (m) >−10 0.1 0.04 NOAA NCEI

≤−10 1 0.96

Sediment grain size (mm) ≤2 1 0.87 TNC

>2 0.5 0.13

* United States National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI), The Nature Conservancy (TNC).
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TABLE 4 | Commercial fishing effort 2015–2016 Vessel Monitoring System (VMS) derived (Northeast Regional Ocean Council 2019) categories and scoring schema
ranging from 0 (low suitability) to 1 (high suitability), and the proportion of grid cells in each category by fishery (NMS = Multispecies groundfish, Pelagic includes
mackerel, squid, and herring, SCO = Quahog, SES = Scallop).

Fishing effort Score Proportion of grid by fishery

Herring Monkfish NMS Pelagic SCO SES Squid

<−1 1 0.007 0.017 0.094 0.055 0.074 0.090 0.041

−1 – 0 0.8 0.013 0.027 0.130 0.079 0.025 0.215 0.070

0 – 1 0.6 0.000 0.017 0.039 0.043 0.002 0.034 0.043

1 – 2 0.4 0.001 0.015 0.021 0.029 0.000 0.004 0.028

>2 0.2 0.001 0.005 0.003 0.037 0.001 0.001 0.036

NA 1 0.978 0.920 0.714 0.757 0.898 0.657 0.782

TABLE 5 | Automatic Identification System (AIS) vessel counts by vessel type categories is the count of vessels that passed through a grid cell over the course of 2017
with the corresponding scores ranging from 0 (low suitability) to 1 (high suitability).

Vessel count categories by type Score Proportion of grid by type

Fishing Passenger Pleasure Other Fishing Passenger Pleasure Other

0 0 0 0 1 0.26 0.38 0.13 0.13

1–3 1–2 1–9 1–4 0.8 0.23 0.22 0.22 0.23

4–9 3–5 10–22 5–10 0.6 0.15 0.11 0.21 0.24

10–31 6–16 23–40 11–21 0.4 0.18 0.14 0.22 0.19

≥32 ≥17 ≥41 ≥22 0.2 0.18 0.15 0.21 0.21

The proportion of grid cells in each category by vessel type; for example, 26% of the grid cells had 0 fishing vessel transits and received a score of 1.

TABLE 6 | Larger vessels with limited maneuverability associated with established shipping lanes from the 2017 Automatic Identification System (AIS) data.

Vessel count categories by type Score Proportion of grid by type

Cargo Tanker Tug/Tow Cargo Tanker Tug/Tow

0 0 0 1 0.92 0.96 0.51

1 1–2 1–2 0.5 0.04 0.01 0.15

2 3–6 3–7 0.3 0.01 0.01 0.10

3–9 7–14 8–26 0.1 0.02 0.01 0.12

≥10 ≥15 ≥27 0 0.02 0.01 0.12

With scores ranging from 0 (low suitability) to 1 (high suitability) and the proportion of grid cells in each category by vessel type.

maximum peak were identified for each plot. The first peak
indicates smaller significant clustering and the maximum peak
indicates the distance that clustering or spatial autocorrelation
was most significant in the data set. The distance of the first
z score peak, which also was the maximum peak for all data
sets, provided a radius, and the standard formula for the
area of a circle was performed to calculate an area for each
monthly climatology.

OceanReports provides descriptive statistics for each month
in a user drawn area, and therefore, the smallest area threshold
or the most conservative estimate was chosen as the threshold
for each oceanographic parameter. Using the smallest area
threshold from all monthly climatologies assists in ensuring
a user defined area contains appropriate summary statistics
within the online DST. A temporal component was not included
within this spatial dependence analysis, because the objective
was simply to identify the smallest or most conservative area
as determined by the distance at which spatial clustering was

most significant. Therefore each monthly climatology was treated
as an independent data set. Methodologies for using a spatio-
temporal Moran’s I index have been developed, and examine
how spatial dependence patterns change over time or at different
time scales. For example, Shen et al. (2016) demonstrate how
a temporally detrended global spatio-temporal Moran’s I index,
which accounts for temporal data that is not stationary, may be
used to examine changes in the spatial and temporal dependence
of daily precipitation data sets in China.

RESULTS

Case Study 1: MCDA With Cluster and
Outlier Analysis
The MCDA identified roughly 26% of the area of interest as
unsuitable (i.e., received a score of 0) for mussel longlines. Vessel
traffic, specifically “tug and tow” vessel traffic, and submarine
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FIGURE 2 | Example output from OceanReports providing (A) descriptive statistics for a number of oceanographic variables based on a custom drawn area and (B)
an error message indicating the maximum area threshold has been exceeded.

cable areas removed the greatest amount of suitable area
(Figures 1C,D). The remaining 74% varied in levels of suitability
(i.e., suitability scores ranging from >0 to 1; Figure 3A). The
LISA analysis identified statistically significant highly suitable

clusters with at least 20 ha of a contiguous area within 17% of the
total area (Figure 3D). Within these highly suitable grid cells, the
most considerable constraints were “pleasure and sailing craft”
and “other” vessel traffic, as well as the presence of protected
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TABLE 7 | Oceanographic data sets examined with units, spatial resolution, and source of data.

Data set Resolution (km) Min. distance (km) Max. area (km2) Data source*

Surface chlorophyll a (mg m−3) 4.6 103 33,329 NASA

Surface water temperature (◦C) 9.4 255 204,282 HYCOM NCODA

Surface current speed (m s−1) 9.4 217 147,934 HYCOM NCODA

*National Aeronautics and Space Administration (NASA), Hybrid Coordinate Ocean Model (HYCOM), and Navy Coupled Ocean Data Assimilation (NCODA). The minimum
distance is the smallest value of the first peak over all months from the incremental spatial autocorrelation analysis. The maximum area is the area of a circle using the
minimum distance as the radius. All distance and area calculations performed in North America Albers Equal Area Conic (WKID 102008).

areas and shellfish habitats (Figure 1B; Tables 2, 5). A few
outliers with unsuitable cells adjacent to highly suitable cells
were identified; these were either aids to navigation or other
navigational obstructions (e.g., shipwrecks; Figure 4).

Case Study 2: Incremental Spatial
Autocorrelation Analysis With Moran’s I
The Moran’s I z scores plotted by distance identified the
distances at which clustering was most significant for the three
oceanographic variables presented. Throughout the monthly
climatologies, the distances of the first peak for chlorophyll a z
scores ranged from 103 to 124 km, with the smallest distance of
103 km occurring in April, May, and July (Figures 5A,B). Water
temperature distances had a range of 255 to 453 km, with the
shortest distance in February at 255 m (Figures 5C,D). The first
peak distances for current magnitude ranged from 217 to 245 km,
exhibiting the shortest distance of 217 km in July, August, and
October (Figures 5E,F). Plotting the distance values at the first
peak for all variables by month demonstrates how the sizes of
clusters within a data set fluctuates throughout the year. The
smallest distance is used to calculate the maximum area threshold
used by OceanReports (Table 7 and Figure 6).

DISCUSSION

As global interest in “blue economy” initiatives and strategies
expands, the MSP framework and associated geospatial analyses
will be increasingly relied upon to minimize anthropogenic
impacts on the ocean environment and space-use conflicts
(Golden et al., 2017). Spatial autocorrelation approaches improve
the reliability, rigor, and utility of the decision support guidance
provided by MSP analyses. The two presented case studies
showcase the utility of spatial autocorrelation analyses to (1)
inform identification of clusters of highly suitable ocean areas
for marine aquaculture that minimizes space-use conflict, and
(2) prevent users from receiving misrepresentative summary
statistics for oceanographic parameters within an online DST by
defining maximum area thresholds. The potential applications
of spatial autocorrelation analyses to help resource managers
and industry better understand and apply these analyses
are diverse and hold great promise to reduce uncertainty
and provide a data-driven approach to the interpretation
of results.

The first case study successfully identifies areas that are
completely unsuitable (received a score of 0) for mussel
longline aquaculture. Submarine cable areas, ocean disposal sites,

and other navigational constraints were present; however, the
“cargo”, “tanker,” and “tug and tow” vessel traffic in transit
to the Cape Cod Canal in the area of interest was the most
considerable constraint (Figure 1D and Table 6). Quantifying
vessel traffic from AIS land-based or satellite data ensures
vessel-related considerations are adequately characterized within
spatial analyses to reduce potential conflict with other ocean
industries, such as shipping, fishing, or recreation (Metcalfe
et al., 2018; Tlusty et al., 2018). Any grid cells with values
greater than 0 in the relative suitability analysis are considered
negotiable ocean space.

The LISA analysis identified statistically significant clusters
of cells that have low conflict relative to other grid cells, which
is an improvement over other methods. Typically, the results
of a MCDA for marine aquaculture (e.g., suitability maps) are
visually and qualitatively assessed to identify areas with high
potential for compatibility with marine aquaculture (Figure 3A).
The simplest approach is to exclude areas that were completely
unsuitable and evaluate all other areas by examining constraints
(Figure 3B). Additionally, a threshold may be applied to the
score; for example, grid cell values greater than the 75th percentile
could be considered highly suitable and examined apart from
the other grid cells (Figure 3C). Both approaches may aid in
identifying potential areas, however, simply excluding unsuitable
areas generally leaves a large area that must be sifted through, cell
by cell, to identify sites. Establishing a score threshold reduces
the amount of area; however, choosing a “good” suitability score
threshold may be difficult to establish and justify.

Use of a LISA analysis identified 17% of the total area as
having statistically higher suitable scores relative to the other
grid cells (Figure 3D) and identified outliers that should be
avoided (Figure 4). Compared to the two other approaches
described, the LISA analysis identified a smaller area by means
of spatial statistics, which provides decision makers and coastal
managers increased confidence when examining the results of
a spatial planning analysis. Regardless of the analysis used,
further review of the highly suitable locations is required for
the creation and evaluation of alternative sites for any marine
aquaculture operation. The benefit of the LISA analysis is the
standardized process and method for identifying statistically
significant clusters, which serves as a basis for discussion with
local managers and stakeholders.

Regardless of the methods used to calculate the suitability
scores, a LISA analysis can be used to identify statistically
significant clusters of high values and detect outliers. Methods
range from a simple exclusion analysis (i.e., excluding areas
representing known constraints) to more complicated MCDA
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FIGURE 3 | (A) The relative suitability analysis results. A score of 0 indicates completely unsuitable, while a score closer to 1 indicates higher relative suitability with
aquaculture. (B) Suitable area using a traditional binary exclusion analysis (Suitability score >0). (C) Suitable area using a threshold (Suitability score >75th
percentile). (D) Highly suitable areas greater than 20 ha based on the Local Indicator of Spatial Association (LISA) analysis using the relative suitability score.

suitability modeling that include weighted variables. For example,
Pérez et al. (2005) used a weighted linear combination method
for development of a MCDA whereby decision makers assign
weights to each factor considered within the analysis, with
the final output being a weighted average. Weighted variables

provides more confidence in determining what a “good”
score is; however, setting a score threshold (e.g., 0.80) and
interpreting the results may still be challenging. Thus, a LISA
analysis provides a robust approach that may be used to
guide interpretation of suitability analysis outputs by identifying
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FIGURE 4 | Results of the Local Indicator of Spatial Association (LISA) analysis displaying the highly suitable high clusters, with outliers and low clusters. Groups of
high clusters less than 20 ha were not considered highly suitable.

statistically significant clusters and outliers. In the presented case
study, all data sets were equally weighted, however, if weights
were applied, standardized methods of collecting stakeholder
input or expert knowledge should be used over arbitrary
assignment of values (Alexander et al., 2012; Klain and Chan,
2012; Teniwut et al., 2019).

Similar to other MSP analyses, the relative suitability
and LISA analyses presented here have various assumptions
and limitations. Marine aquaculture spatial planning projects
typically rely upon the best available data for planning despite
known data limitations and gaps (Longdill et al., 2008). For
example in this case study, the most recent and best available

Frontiers in Marine Science | www.frontiersin.org 10 January 2020 | Volume 6 | Article 806

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00806 January 13, 2020 Time: 17:56 # 11

Jossart et al. Spatial Autocorrelation Analyses for Marine Aquaculture

FIGURE 5 | (A) Chlorophyll a z scores plotted by distance band for each month, vertical red dotted line indicates the smallest distance of the first peak, 103 km.
(B) June chlorophyll a climatology with the red circle having an area of 33,329 km2. (C) Sea Surface Temperature (SST) z scores plotted by distance band for each
month, vertical red dotted line indicates the smallest distance of the first peak, 255 km. (D) February SST climatology, red circle with area of 204,282 km2.
(E) Surface current speed z scores plotted by distance band for each month, vertical red dotted line indicates the smallest distance of the first peak, 217 km.
(F) October current speed climatology, red circle with area of 147,934 km2.
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FIGURE 6 | Distance band at first peak by month for the three oceanographic variables examined. The month with the smallest minimum distance band was used to
calculate the maximum area threshold to be used within the decision support tool, OceanReports.

vessel traffic data was used, however, vessels not required to
carry an AIS transponder were not represented. Using the best
available data and noting any assumptions or limitations can
improve trust and reliability in the results, while also highlighting
future data needs. Appropriate grid cell size and search distances
are required, and should be based on the data and size of
area being examined, as using inappropriate sizes or distances
may provide limited results. Additionally a relative suitability
analysis was performed, which means a highly suitable cluster
does not guarantee a location is highly suitable for aquaculture,
only that it is highly suitable relative to the other locations
examined. Regardless of the type of spatial planning analysis,
onsite surveys will be required to ensure a site’s compatibility with
marine aquaculture.

Within the second case study, the distance at which the
Moran’s I index z score first peaked for chlorophyll a, SST,
and current speed, was identified for each month. These
distances are consistent with known regional oceanographic
patterns. Monthly climatological values for chlorophyll a, which
is frequently used as a surrogate variable for phytoplankton
biomass, displayed a general pattern of phytoplankton blooms
in early spring and summer, which is typical in the North
Atlantic (Friedland et al., 2016; Figure 5A). The surface water
temperature displayed higher clustering in the winter months
when temperature differences increase among the estuaries, the
Gulf of Maine, and the Gulf Stream, while in the summer
months, the water temperatures are more uniform throughout
the northeast region (Shearman and Lentz, 2010; Figure 5C).
Surface current speeds had higher clustering in late summer,
which may be related to increased storm activity (Fewings et al.,
2008; Figure 5E). The area threshold for each oceanographic
parameter was calculated by using the smallest distance observed
over the 12 months (Figure 6 and Table 7). The incorporation of
these into OceanReports lessen the possibility of a user receiving
potentially misrepresentative descriptive statistics.

Alternative methods of establishing maximum area thresholds
exist, but the target audience and industry of the DST should
be used to guide any thresholds. For example, a DST built
solely for marine aquaculture planning could use an area
threshold determined by industry or regulatory standards. Since
OceanReports was designed for a variety of industries with
varying needs, determining area thresholds that accommodate
different user groups was required. The incremental spatial
autocorrelation analysis is able to accomplish this by producing
thresholds for each oceanographic variable based on cluster sizes
within that data set. For example, different descriptive statistics
(i.e., changes in the mean concentration of chlorophyll a) are
obtained as the area of interest changes, and once the area
exceeds the threshold the results begin to mean less for localized
planning (Figures 7A,B). When the custom area is smaller than
the threshold a user may still receive inconsequential descriptive
statistics for an oceanographic variable within OceanReports,
because of where and how the area is drawn. However, the
use of a maximum area threshold reduces the likelihood
of this occurring. Inclusion of maximum area thresholds
for oceanographic parameters used by OceanReports provides
guidance for users, especially those unfamiliar with descriptive
statistics and oceanographic parameters, during exploratory
analysis of an area.

Several other pragmatic applications of spatial autocorrelation
analyses may be assimilated into the MSP process for marine
aquaculture, such as spacing of environmental monitoring
stations or farms. Key environmental variables, such as
nutrient input and impact to benthic habitat, may require
monitoring to be performed (Holmer et al., 2008). Environmental
variables with significant spatial autocorrelation (i.e., High
clustering of a variable) around a farm should be sampled at
additional locations, while variables with no significant spatial
autocorrelation (i.e., Random distribution of a variable) require
less spatial coverage for monitoring (Foster et al., 2018). The
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FIGURE 7 | (A) Example of different hypothetical areas of interest
(A1 = 625 km2, A2 = 4,778 km2, A3 = 22,428 km2, A4 = 76,995 km2).
(B) Mean chlorophyll a concentration for each of the area sizes, A1, A2, A3,
and A4.

spacing and distance of sample points may be calculated after
initial survey data has been collected, using a semivariogram
or an incremental spatial autocorrelation analysis. The resulting
distances may be used to space farm sites as well. As marine

aquaculture development continues, so too will the need for
rigorous analysis to provide assurance to stakeholders and coastal
managers that a location is suitable.

CONCLUSION

The marine aquaculture industry needs efficient, objective, and
accessible spatial planning tools in order to responsibly and
efficiently plan for aquaculture. In the first case study, the relative
suitability analysis and LISA analysis identified highly suitable
locations for a hypothetical mussel longline farm in 17% of
the area examined. The use of these analyses to statistically
identify high clusters provides confidence and reliability for
industry, coastal managers, and stakeholders, that these locations
are the most suitable for a mussel longline farm in the area
of interest. The second case study calculated maximum area
thresholds using an incremental spatial autocorrelation analysis
for chlorophyll a, SST, and current speed, to be used within
OceanReports. These area thresholds were determined by the
distance that spatial dependence or clustering was greatest within
each data set, rather than arbitrarily assigning an area threshold.
These maximum area thresholds provide users guidance and
descriptive statistics that are meaningful for MSP activities.
Incorporating spatial autocorrelation analyses into the MSP
process improves efficiency and confidence when planning for
marine aquaculture.
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