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Despite recent technological advances in seafloor mapping systems, the resulting
products and the overall operational efficiency of surveys are often affected by poor
awareness of the oceanographic environment in which the surveys are conducted.
Increasingly reliable ocean nowcast and forecast model predictions of key environmental
variables – from local to global scales – are publicly available, but they are often not used
by ocean mappers. With the intention of rectifying this situation, this work evaluates
some possible ocean mapping applications for commonly available oceanographic
predictions by focusing on one of the available regional models: NOAA’s Gulf of Maine
Operational Forecast System. The study explores two main use cases: the use of
predicted oceanographic variability in the water column to enhance and extend (or
even substitute) the data collected on-site by sound speed profilers during survey data
acquisition; and, the uncertainty estimation of oceanographic variability as a meaningful
input to estimate the optimal time between sound speed casts. After having described
the techniques adopted for each use case and their implementation as an extension of
publicly available ocean mapping tools, this work provides evidence that the adoption
of these techniques has the potential to improve efficiency in survey operations as well
as the quality of the resulting ocean mapping products.

Keywords: ocean mapping, underwater acoustics applications, oceanographic modeling, operational forecast
models, surveying accuracy

INTRODUCTION

Recent technological advances in seafloor mapping systems have greatly improved the quality
and the efficiency of data acquisition (Mayer, 2014; Hughes Clarke, 2018; Lamarche and Lurton,
2018). Nevertheless, the resulting products (e.g., bathymetric grids, acoustic backscatter mosaics)
and the overall operational efficiency of surveys are often affected by the poor awareness of the
oceanographic environment in which the surveys are conducted (Lurton et al., 2015; Hughes Clarke
et al., 2017; Mayer et al., 2018).
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If the timing of sound speed casts does not properly capture
the spatio-temporal variability of the ocean environment, the
under-sampled water column produces refraction-induced depth
biases in the collected soundings (Beaudoin, 2010; Wilson et al.,
2013; Lucieer et al., 2016). Such refraction-induced depth biases
can quickly cause the survey to exceed the allowable error
tolerances prescribed by best practices and by international and
national survey specifications (UKHO, 2004; IHO, 2011; NOAA,
2019a). Along with the sound speed profile, which is critical
for ray-tracing, knowledge of the temperature and the salinity
variability is crucial in the calculation of appropriate absorption
coefficients for acoustic backscatter processing (Masetti et al.,
2017; Malik et al., 2018; Montereale-Gavazzi et al., 2019).
To summarize, a poor understanding of the oceanographic
environment will inevitably lead to increased processing time
and effort and may even lead to the need to acquire additional
data (Hughes Clarke, 2012; Lecours et al., 2015; Weber et al.,
2018). The cautious surveyor will often adopt an approach that
overestimates the effects of oceanographic variability by either
reducing the sonar swath aperture (and thus affecting the survey
efficiency due to the reduced swath coverage) or over-sampling
the water column using underway profilers, with the associated
wear and tear related costs (Masetti et al., 2018).

Given the current level of predictability of the oceanographic
environment, the situation described above can be easily
addressed. Increasingly reliable nowcast and forecast guidance
from operational oceanographic forecast modeling systems –
from local to global scales – are publicly available for key
environmental variables (e.g., water temperature and salinity),
but they are often not used by ocean mappers (Dudhia, 2014;
Bauer et al., 2015; Tonani et al., 2015; Powers et al., 2017; Masetti
et al., 2018). This is likely due to the limited awareness of these
predictions and the lack of tools that easily allow surveyors
to transform model predictions into the estimated effects on
the survey data as well as the limited number of studies that
have shown the potential benefits incorporating modeled data
(Beaudoin et al., 2013; Ros, 2018; Sowers et al., 2019). With
the intent of bridging this gap, this study evaluates possible
ocean mapping applications for publicly available oceanographic
predictions by focusing on one of the available regional models:
NOAA National Ocean Service’s Gulf of Maine Operational
Forecast System (GoMOFS) (Yang et al., 2016). The GoMOFS was
selected because the Gulf of Maine, a semi-enclosed coastal basin
along the United States east coast, has a wide variety of physical
oceanographic phenomena (from a complex circulation system to
strong tidal currents) varying both spatially and seasonally (more
details on the model are provided in section “The NOAA’s Gulf
of Maine Operational Forecast System”). Thus, a good part of the
study’s outcomes should be applicable to other forecast modeling
systems of similar (or less) complexity.

The traditional approach to characterizing the water column
for ocean mapping aims has been to deploy instruments from a
stationary vessel (i.e., performing a hydrocast). Such an approach
requires the cessation of mapping for the duration of the
cast, directly impacting survey efficiency. With this traditional
approach, the ocean mapper is called upon to maintain a
balance between the loss in survey efficiency from each new

cast and the benefits in terms of improved water column
characterization (Beaudoin, 2010; Lucieer et al., 2016; Ros, 2018).
The advent of expendable probes has not substantially changed
this challenge since the reduced loss of profiling time is offset
by the decreased accuracy of the probes relative to a traditional
hydrocast, the cost of each expendable probe (combined with
the environmental impact of abandoning the used probe on the
ocean seafloor). Modern ocean mapping surveys are increasingly
adopting underway profilers that can sample the water column
at very high rates with the vessel in motion (Furlong et al.,
2006; Rudnick and Klinke, 2007). Although those profilers may
considerably improve the survey efficiency, the identification
of the proper balance between the desired spatio-temporal
knowledge of the water column and the working load of the
profilers (with associated higher risk of losing the towed probe)
is also required (Hughes Clarke et al., 2000; Beaudoin, 2010).

By leveraging predictions from GoMOFS, this study explores
two main use cases: the use of predicted oceanographic variability
in the water column to enhance and extend (or even substitute)
the data collected on-site by sound speed profilers during the
survey data acquisition; and, the use of uncertainty estimation
of oceanographic variability as a meaningful input to estimate
the optimal time between sound speed casts. An analysis of ray-
tracing uncertainty is used to evaluate the adequacy level of a
given sampling interval ranging from under-sampling to over-
sampling the spatio-temporal variability of the water column.
With the intention to removing subjectivity in the determination
of the cast interval and improving the overall sounding accuracy,
Wilson et al. (2013) proposed a method, called CastTime,
that estimates the optimal sampling interval by reacting to
the observed variability. This work proposes a new method,
called ForeCast, that combines the CastTime reactive approach
with the predicted spatio-temporal variability provided by an
oceanographic forecast modeling system (i.e., the GoMOFS).

After describing the techniques adopted for each use case as
well as the related code provided as an extension of publicly
available ocean mapping tools (Masetti et al., 2017; Masetti
et al., 2018), this paper provides evidence that the adoption
of these techniques has the potential to improve efficiency in
survey operation as well as the quality of the resulting ocean
mapping products. Finally, several possible future improvements
are discussed and additional tests to validate such techniques
are proposed.

MATERIALS AND METHODS

The NOAA’s Gulf of Maine Operational
Forecast System
The GoMOFS is an operational nowcast/forecast system for the
Gulf of Maine developed by the National Ocean Service (NOS)
of the National Oceanic and Atmospheric Administration (Yang
et al., 2016). The GoMOFS uses the Regional Ocean Modeling
System (ROMS) as its core hydrodynamic prediction model. The
model domain is centered on the Gulf of Maine and extends
from Rhode Island coast to the mid-coast of Nova Scotia,
Canada (Figure 1), with its open ocean boundary extending

Frontiers in Marine Science | www.frontiersin.org 2 January 2020 | Volume 6 | Article 804

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00804 December 26, 2019 Time: 16:33 # 3

Masetti et al. Enhance Oceanographic Awareness for Ocean Mapping

FIGURE 1 | Map of the Gulf of Maine region with the GoMOFS model domain represented using its bathymetric coverage (in meters). The inset shows (with a
red-framed yellow rectangle) the location of the model in the world.

past the shelf break south of Georges Bank. The model grid
has a horizontal resolution of about 700 meters and has thirty
vertical sigma layers. This region, located along the NE seacoast
of the United States, includes a range of physiographic features
(e.g., shoals, banks, channels) as well as intense tidal, circulatory,
and meteorological phenomena that are modulated in intensity
both spatially and seasonally (Greenberg, 1979; Xue et al., 2000;
Yang et al., 2016). Thus, the outcomes of this study are likely to
be applicable to predictions from forecast modeling systems of
similar (or less) complexity.

Before becoming operational in 2018, the GoMOFS outputs
were compared against observations (for the year of 2012) at
various depths, and the results demonstrated that the hindcast
performance meets the NOS standard criteria (Hess et al., 2003;
Zhang et al., 2006). Based on Yang et al. (2016), the following
root-mean-squared errors were estimated: less than 1.5◦C for
temperature, and less than 1.5 psu for salinity. Furthermore,
the model successfully reproduced both the magnitude and the
annual cycle of the temperature, while it was noted that it tends
to overestimate the salinity (Yang et al., 2016).

GoMOFS is run four times per day at 0, 6, 12, and 18
Coordinated Universal Time (UTC) and consists of both a
now cast cycle and a forecast cycle. GoMOFS’ nowcast cycle
is forced by very-short-range meteorological forecast guidance
from the National Weather Service’s (NWS) North American
Mesoscale (NAM) weather prediction forecast modeling system
(NOS, 2017). GoMOFS’ lateral open ocean boundary conditions

for water temperatures, salinity, baroclinic velocity, and sub-
tidal water levels are based on predictions from NWS’ Global
Real-Time Ocean Forecast System (Global RTOFS) (Peng et al.,
2018). Tidal forcing is provided by the ADCIRC Tidal Database
(Luettich et al., 1992). Freshwater water inputs, as represented by
discharge rates are specified for nine rivers based on the latest
observations from United States Geological Survey (USGS) river
gages. Each nowcast cycle uses the nowcast from the previous
cycle as its initial conditions. There is no data assimilation by
GoMOFS (NOAA, 2019b). GoMOFS’ forecast cycle is forced by
forecast guidance out to 72 h from the NAM forecast modeling
system and Global RTOFS along with tidal forcing from the
ADCIRC Tidal Database (NOS, 2017). River discharge rates at
the nine river gages for the 72-hour duration of the forecast cycle
are not presently based on forecast guidance from a river model
forecast modeling system. Instead, the most recent discharge
observations at the gages are persisted for the duration of the
forecast cycle (Peng et al., 2018). The forecast cycle uses the most
recent nowcast to provide its initial conditions (NOAA, 2019b).
GoMOFS is run on NOAA Weather and Climate Operational
Supercomputer System.

The two GoMOFS variables used in this study are water
temperature and salinity. They represent the key components in
calculating “synthetic” sound speed profiles from the GoMOFS
products. Specifically, the variation of sound speed with depths
was calculated – with the related limitations and accuracy – using
the dependences of temperature, salinity, and pressure on depth
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as defined by the United Nations Educational, Scientific and
Cultural Organization (UNESCO) adopted equation of Chen and
Millero (1977).

Study Area and Input Dataset
The input dataset for this study was collected as ancillary data
from a high-resolution hydrographic survey completed during
June 2019. The primary objective of the survey was to meet
the academic requirements of the Hydrographic Field Course,
part of the Ocean Mapping curricula at the University of New
Hampshire’s (UNH) Center for Coastal and Ocean Mapping
(CCOM). The survey data were collected (and the deliverables
were prepared) following the requirements of the NOAA NOS
Hydrographic Survey Specifications and Deliverables 2019 (HSSD)
manual (NOAA, 2019a). Two distinct areas were surveyed: a
main area (hereafter, “A”) that was north of Gerrish Island, ME
and south of the Cape Neddick lighthouse; and an offshore
area (hereafter, “B”) south east of the coastline around York
Harbor (see Figure 2). As shown in the inset of Figure 2, the
study area is located in the middle of the western area of the
GoMOFS domain region.

During the survey, water column properties were measured
using an AML Oceanographic MVP30 underway profiler
installed onboard the R/V Gulf Surveyor. The towed body
was equipped with an AML Sound Velocity, Pressure, and
Temperature (SVPT) sensor. At the survey speed of 6–8 knots,
the underway profiler can collect profiles up to a depth of about
60 meters, with cycles between 2.0 and 1.8 min. Accordingly,
the sampling intervals adopted during the survey were of the
order of a few minutes. Such high-rate datasets are useful for the
near-continuous evaluation of the structure of the water column
below the survey vessel. A data set of 329 casts was acquired
during the survey (Figure 2). For the purpose of this study,
three subsets where extracted from the whole dataset: the “A”
and “B” subsets corresponds to the two distinct surveyed areas,
the “C” subset was collected during an offshore-sailing transect
(Figure 2). Additional details about the subsets are provided in
Table 1 and, graphically, in Figure 3.

The Sound Speed Manager Application
Jointly developed by the NOAA Office of Coast Survey (OCS) and
the UNH’s COM, Sound Speed Manager (SSM) is an open-source
application (and software library) designed to perform accurate
processing and management of sound speed profiles (HydrOffice,
2019b). Since its inception, the main aim has been to support the
surveyors in fulfilling the accuracy and validity requirements of
a modern survey workflow (Masetti et al., 2017). After its official
deployment during the 2017 NOAA OCS field season, SSM has
been adopted by several NOAA and UNOLS vessels, as well as by
a number of professionals around the world (Johnson et al., 2018;
Masetti et al., 2019; Sowers et al., 2019).

SSM supports cast data collected from various types of devices
(e.g., CTDs, velocimeters, expendable bathythermographs (XBT),
underway profilers), and formats. Once imported (or received
from the network), the user is able to enhance/extend the
profile (e.g., based on oceanographic atlases) and then export
the validated data in a number of formats commonly recognized

by acquisition and processing applications. Through SSM, the
surveyor may also retrieve synthetic profiles from oceanographic
databases (e.g., the NOAA World Ocean Atlas 2013) and forecast
modeling systems (e.g., the NCEP Global Real-Time Forecast
System) (Mehra and Rivin, 2010; Levitus et al., 2013). As part of
the research efforts presented in this study, SSM was extended
to support predictions from NOAA NOS regional operational
forecast modeling systems and, specifically, the GoMOFS (Yang
et al., 2016). The synthetic profiles from the model forecasts
can be used to complement collected profiles with environment
variables that have not been directly measured (e.g., the salinity
for XBT profiles), extend them to a deeper depth, and/or perform
a visual comparison to confirm their reliability.

SSM stores the processed profiles in a per-project SQLite
database and provides several analysis functions and tools to
manage the database-stored profiles (Masetti et al., 2017). Among
those functionalities, the surveyor also has access to a software
implementation of the previously cited CastTime algorithm
designed to estimate the time when performing the next cast
(Wilson et al., 2013).

SmartMap
SmartMap is a tool that estimates the ray-traced refraction
component of the surveyed depth uncertainty based on a
spatial variability analysis of publicly available oceanographic
environmental data (Masetti et al., 2018). First, the SmartMap
analysis estimates the uncertainty up to the minimum common
depth among the retrieved synthetic profiles. Then, based on
the consideration that the largest sound speed variability is
commonly observed in the uppermost area of the water column
(Medwin and Clay, 1998; Kinsler et al., 2000), the results
are provided as a percentage of ray-tracing depth uncertainty
(PDUrt

r,c) as a function of the calculated uncertainty (δrt
r,c) scaled

to the 95% confidence level and the full depth (dr,c) at each grid
location (r, c):

PDUrt
r,c =

2δrt
r,c

dr,c
∗ 100.0 (1)

Finally, a logarithmic transformation is applied (due to the large
range of the resulting ray-tracing uncertainty values), and the
resulting map is stored in the GeoTIFF format (Ritter and Ruth,
1997). SmartMap maps are made available daily (and stored)
through Open Geospatial Consortium (OGC) web services and
a Web GIS1 (Michaelis and Ames, 2012; HydrOffice, 2019a).

SmartMap outputs can be used in all the phases of a survey:
planning (e.g., by accessing the output based on the model
forecasts), execution (by providing a synoptic representation
of the water column variability during the data acquisition),
and processing (by retrieving the analysis from past dates) (de
Moustier, 2001; Hughes Clarke, 2003; Beaudoin et al., 2004).

The original implementation of SmartMap provides maps
based on the predictions from Global RTOFS and data from
NOAA World Ocean Atlas 2013 (Mehra and Rivin, 2010; Levitus
et al., 2013). Support for GoMOFS forecasts (Yang et al., 2016)
has been added to SmartMap (see Figure 4) to underpin the

1https://www.hydroffice.org/smartmap/
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FIGURE 2 | Bathymetric coverage completed by the UNH Hydrographic Field Course 2019. The collected casts (in blue) were grouped into three subsets: the “A”
and “B” subsets corresponds to the two distinct surveyed areas, the “C” subset was collected during an offshore-sailing transect. The inset shows the locations of
the survey area (red-framed yellow rectangle) and the GoMOFS domain (green tilted rectangle) in the Gulf of Maine.

TABLE 1 | Information about the adopted cast subsets.

Subset Name Collection Time Number of Casts

A 13–14, 17–20 June 2019 174

B 24 June 2019 59

C 26 June 2019 58

predictive component of the ForeCast algorithm (more details on
the algorithm are provided in section “The ForeCastAlgorithm”),
and ease its potential future transition to operations.

The ForeCast Algorithm
The ForeCast algorithm estimates the optimal cast timing
by combining a reactive component based on the observed
variability and the predicted spatio-temporal variability provided
by the predictions of an oceanographic forecast modeling system
(i.e., the GoMOFS).

The main processing steps of the algorithm are:

• Application of a constant-gradient ray-tracing algorithm
for each newly acquired sound speed profile.
• Using uncertainty analysis, comparison of each newly

collected cast with the latest acquired profiles.
• Retrieval of the local GoMOFS-derived spatio-temporal

depth bias from the SmartMap WCS.

• Estimation of a new sampling interval based on previous
intervals, the GoMOFS-derived spatio-temporal depth
bias, and a specified maximum allowable tolerance.

Figure 5 provides a flowchart outlining the main algorithmic
steps, data inputs, user parameter, and processing outputs. All
the processing steps have been implemented in the Python 3
programming language (van Rossum, 2018).

Constant-Gradient Ray-Tracing
Normally, a multibeam echosounder (MBES) repeatedly emits
acoustic pulses that are much broader in the across-track
direction than along track. After having traveled through the
water column, those pulses insonify a seafloor area that usually
has a width of several times the measured depth and are
then scattered back in multiple directions (Lurton, 2010). The
component of each pulse returned to the MBES is processed
through electronic beam steering to determine the travel time
at each beam angle (Burdic, 1991). Finally, those pairs of travel
time and beam angles (β) are combined with the sound speed
profile to obtain seafloor depth measurements (z) or the range
of mid-water targets within the swath (Medwin and Clay, 1998).

Ray-tracing is one of the most popular methods for obtaining
the swath measurements through modeling of underwater sound
propagation (Huang, 2012). Ray-tracing is performed by splitting
the sound speed profile, c(z), into a set (N) of finite layers (with
indices n = 0, . . . , N), and then calculating the refraction of a
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FIGURE 3 | The upper panel shows the aggregate plot based on all the available casts (with the resulting average profile in blue). The other panels show the casts
by subset and day of acquisition.
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ray path across the layer (Medwin and Clay, 1998). With the
constant-gradient approach, the ray-tracing algorithm assumes
linear variation of sound speed between each subsequent pair of
samples in a profile (Medwin and Clay, 1998). For each of the
N − 1 finite layers, a constant gradient of sound speed (gn) is
estimated:

gn =
cn − cn−1

zn − zn−1
(2)

The algorithm then applies the Snell-Descartes law for isotropic
media to trace the ray (a is a constant known as the ray
parameter):

cos βn

cn
=

cos βn−1

cn−1
= a (3)

The resulting path through the finite layer draws an arc of a circle
(see Figure 6) whose center lies at a baseline depth calculated
by extrapolating the layer sound speed to zero (Medwin and
Clay, 1998). After having calculated the local radius of curvature
(Rn), the circular refraction formulae for changes in depths and
horizontal ranges (r) can be derived (Lurton, 2010):

Rn =
cn−1

gn cos βn−1
(4)

{
rn − rn−1 =

cn−1
gn cos βn−1

(sin βn−1 − sin βn)

zn − zn−1 =
cn−1

gn cos βn−1
(cos βn − cos βn−1)

(5)

Finally, the total travel time can be obtained by integration of
the travel times along the layers. Figure 7 shows an example
of the described ray-tracing algorithm in action, at different
initial beam angles.

Uncertainty Analysis on Acquired
Profiles
The uncertainty analysis adopted by ForeCast is based on pairs
of ray-traced profiles (Figure 5). For each profile, the ray-tracing
algorithm is iteratively executed until the desired end-point is
reached. The depth and launch angle of each individual ray-trace
have to be adjusted based on the current sonar configuration:
the dynamic draft of the sonar head, the sound speed values
measured at the transducer, and the adopted angular swath
aperture. The results are interpolated to a decimetric resolution
by applying a spline interpolation of third order and stored
into a look-up table (Ferguson, 1964). Because sound speed
measurements within a given profile are likely collected at depths
distinct from another profile, the interpolated values are used to

FIGURE 4 | Visualization on the SmartMap Web GIS (https://www.hydroffice.org/smartmap/) of the GoMOFS-based 24-hr forecast map of estimated ray-tracing
depth bias as percentage of water depth (valid on July 25, 2019).
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FIGURE 5 | The flowchart shows, in black, the main steps of the ForeCast algorithm with a dashed connector when optional (i.e., the predictive component based
on SmartMap’s GoMOFS maps). The inputs are represented in green, the user parameter in orange, and the timeline in blue.

FIGURE 6 | Geometry and symbols used in the constant gradient ray-tracing
algorithm for a given ray in a finite layer.

obtain a consistent comparison between pairs of ray-traced sound
speed profiles. Since the results of the ray-tracing are symmetrical
about the sonar nadir, the computation is only necessary on one
side of the sonar swath.

Any bias in the environmental characterization in one or
more of the profile layers directly affects the quality of the
resulting sonar solutions. As such, by ray-tracing subsequent
profiles, it is possible to compare the outdated water column

characterization with a newer (and likely better) representation.
The ray-tracing outputs can be used to perform a quantitative
comparison between pairs of sound speed profiles to estimate
the sounding uncertainty due to water column variability. Such
an evaluation does not require actual sounding data, and can
be performed at any desired depth that is covered by both the
profiles (Beaudoin, 2010; Wilson et al., 2013).

Figure 8A shows an example of applying the described
uncertainty analysis on two acquired profiles. When profile b
is acquired, it is assumed to provide a better representation of
the water column conditions than profile a. While profile a was
showing quite well-mixed conditions (i.e., water temperature and
salinity have limited variations), profile b has generally higher
sound speed values as well as the presence of a thermocline.
An assessment of the biases that would have been introduced
by the continued use profile a is performed and shown in the
Figure 8B. This assessment is obtained by first calculating, based
on profile b, the travel time required by a ray (with a given
initial β) to reach a simulated flat seafloor, then retrieving the
corresponding r and z values in the ray-traced profile a. The
differences between those values and the corresponding ones
in profile b provide the absolute (vertical and horizontal) bias
(δz and δr). In other words, the rays based on profile a will
no longer end at the assumed flat seafloor because the travel
times are derived from the ray-tracing of the (assumed) more
correct profile b. The resulting artificial curvature of the seafloor
is commonly known as refraction smile, and it is usually used
by surveyors to qualitatively evaluate the presence of refraction
issues. As shown in both the bias plots in Figure 8, the highest
values tend to be associated with beam angles larger than 65◦
(visualized as a red dotted line). Although possible in ideal
conditions to acquire MBES data with a swath aperture larger
than 65◦, such a value will be adopted as a reference value for this
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FIGURE 7 | An example of application of the constant gradient ray-tracing algorithm. The left panel shows the sound speed samples (in blues) from one of the
collected survey profiles. The middle panel and the right panel, respectively provide the resulting travel time (t) and horizontal range (r) at different initial beam
angle (β).

FIGURE 8 | Outcomes from the uncertainty analysis applied to the pair of profiles on the panel (A). The two panels on the right (B) show the absolute depth bias and
the absolute horizontal bias, respectively. The initial beam angle of 65◦ is provided as a reference in dotted red.

work (Hughes Clarke, 2012; Masetti et al., 2018). For example,
given the scenario shown in Figure 8, the depth bias using 65◦
as initial beam angle would be ∼0.38 m at the deepest common
depth between the profiles.

Retrieval of the Predicted Spatio-Temporal Variability
The predicted spatio-temporal depth bias for the study area is
retrieved through the SmartMap server. As noted in section
“SmartMap,” the support for GoMOFS predictions has been

added as part of the research efforts of the present study.
The main advantage of such a solution is that the download
of the large NetCDF files storing the GoMOFS nowcasts and
the computationally demanding spatial variability analysis are
performed on the remote server (Yang et al., 2016; Masetti et al.,
2018). Then, a subset of the map (limited to the survey area,
thus usually just a few kilobytes) can be accessed through the
GeoServer-provided implementation of the OGC Web Coverage
Service (WCS) (Deoliveira, 2008).
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FIGURE 9 | An example of observed variability exceeding the maximum allowable error (red dotted line). When a model forecast is not available, the ForeCast
algorithm assumes linear increase in depth bias between observed profile (A). (B) Shows an example application for the full algorithm where the predictive
component (based on GoMOFS SmartMap maps) is calibrated using the observed spatial variability at different model locations along the track (in blue) and applied
to predict the time interval (in orange) when the target depth bias (green dashed line) is reached.

Estimation of Future Casting Intervals
The estimation of a new sampling interval is based on a user-
specified maximum allowable tolerance that is evaluated against
previous intervals and combined with the GoMOFS-derived
spatio-temporal depth bias.

Although any error tolerance can be potentially adopted in
order to follow agency-specific survey requirements, the default
parameters of the ForeCast algorithm are based on the NOAA
OCS’s refraction error tolerance (εz) for MBES surveys as defined
in the HSSD manual (NOAA, 2019a). The εz , is given in meters
by combining a fixed component and a variable part that is a
function of the water depth (wd):

εz = 0.3+ 0.005× wd (6)

The calculated εz is useful to provide a baseline (i.e., an upper and
a lower limit) of accepted variability surrounding the assumed-
correct answer that is derived from ray-tracing the latest profile.
Whether the tolerance limits have been exceeded is evaluated at
a user-defined β that has to be modified to match the adopted

MBES settings. For such an angle, the ForeCast algorithm has a
default value of 65◦ (the assumed outermost beams used and thus
the worst-case) that is adopted for the analysis presented in the
reminder of this work.

The algorithm logic in estimating the future casting time is
based on a target depth bias (δztgt) calculated as a percentage of
εz . The adopted formula for δztgt uses the following default value:

δztgt = 0.5× εz (7)

If the analysis is limited to information that can be retrieved
from the collected profiles, the solution proposed by Wilson
et al. (2013) of assuming that the depth bias linearly increases
with the elapsed time between pairs of subsequent profiles
would represent an acceptable strategy. However, given that the
GoMOFS-based SmartMap maps provide a representation of the
oceanographic variability in the survey area, those values are used
to derive a spatial component (e.g., a calibration factor) for the
ForeCast algorithm, thus potentially improving its forecasting
capability (Figure 5). Specifically, the predicted rate of change
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FIGURE 10 | Each collected profile is compared against a synthetic profile retrieved from the GoMOFS predictions. The resulting depth bias (δz) is shown with a blue
cross, while the refraction error tolerance (εz ) and the target depth bias (δztgt ) are represented by a red dotted line and a green dashed line, respectively.

FIGURE 11 | Percentages of GoMOFS-derived profiles per subset that have
δz exceeding εz (in red), within εz and δztgt (in yellow), and fulfilling this latter
requirements (in green).

obtained from the SmartMap analysis is first calibrated using
the variability observed in the collected profiles (initialization
phase), then the obtained calibration value is used to predict
the optimal timing interval based on the δztgt (Figure 9). The
adoption of such an approach requires the addition of the vessel
route and speed over ground to the algorithm’s input parameters
that are not required in the CastTime algorithm (Wilson et al.,
2013). However, when a model forecast is not available, the

ForeCast algorithm reverts back to the reactive-only method
(see Figure 9B).

RESULTS

The testing was conducted using the three subsets (“A”, “B”,
and “C”) of profiles described in section “Study Area and Input
Dataset.” The profiles, collected in the “s21” variant of the
Kongsberg Maritime SSP datagram, have been loaded in SSM,
assessed for quality assurance, and then stored in the application’s
project SQLite-based database (Kongsberg, 2015).

For each subset, the profiles were used to evaluate the use of
the synthetic values derived from the GoMOFS nowcasts in place
of the observed data (Figure 10). The percentages of profiles that
fulfill the refraction error tolerance (εz) and the target depth bias
(δztgt) are summarized in Figure 11. The maps in Figure 12 are
provided to spatially locate the calculated depth biases.

Due to the higher variability in depth bias, the profiles in
subset C were selected to evaluate the ForeCast algorithm.
The profiles were analyzed separately based on the vessel
heading during the data acquisition: seaward (Figure 13) and
shoreward (Figure 14).

In Figures 13A, 14A shows the evolution of δz in the
worst-case scenario that only a single cast would have been
collected at the beginning of the transect. In Figures 13B,
14B, an optimal cast timing solution is presented. Specifically,
based on the assumption that the high-density subset represents
an over-sampled water column, the addition of a new cast is
triggered each time that δz exceeds the locally estimated δztgt .
The first obtained cast time is used to define the initialization
time (in yellow) of the ForeCast algorithm. The predicted
casting times in Figures 13C,D, 14C,D are obtained from the
ForeCast algorithm in two different ways: by only using its
reactive component (thus, with a logic similar to the CastTime
algorithm) in Figures 13C, 14C, and with its full version (thus,
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FIGURE 12 | Georeferenced δz derived from comparing observations and GoMOFS-derived synthetic profiles. The values are represented as percentage of εz .

adjusting the estimated times based on the spatial component
provided by the SmartMap analysis of GoMOFS predictions) in
Figures 13D, 14D. The actual δz is the depth bias computed
using the full high-density series of profiles (blue markers
in Figures 13, 14). The observed δz is the depth bias that
would be observed following the cast times suggested by the
algorithm (orange markers in Figures 13C,D, 14C,D). For
the full ForeCast algorithm, Figures 13D, 14D also shows the
intermediate estimated observed δz (i.e., adjusted based on the
GoMOFS SmartMap output) as orange dots between cast times
(see Figure 9).

The algorithm performances may be assessed by both
evaluating the survey efficiency and the mitigation of the resulting
refraction-driven depth bias in the acquired soundings. This
latter is based on the comparison between the observed δz
(in orange) and the actual δz (in blue). δz For instance, in

Figure 13D, both the observed δz and the actual δz are assumed
zero at the 80-minute epoch; then, the observed δz is increased
with time in function of the underline spatial variability predicted
by the GoMOFS model. The algorithm triggers the collection of
a new profile at the 100-minute epoch, when the observed δz
overcomes the target depth bias (δztgt) of 0.37 m. The actual δz
between the casts suggested by the algorithm are not used in
the algorithm computation, but they are provided for evaluation
of the uncaptured variability. For instance, there are ∼0.2 m of
uncaptured depth bias at the 84-minute epoch in Figure 13D.

DISCUSSION

The use of the GoMOFS-predicted oceanographic variability
in the water column in place of the observed profiles was
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FIGURE 13 | Worst-case scenario (A), optimal solution (B), solutions from the reactive-only (C) and the full (D) ForeCast algorithm for profiles from Subset C
collected in the seaward direction.

evaluated in Figure 10 for each of the three input subsets.
Although the results are quite satisfactory for subsets A and
B – with 74.4 and 76.3% of profiles fulfilling the allowable
εz , respectively (Figure 11) –, the large number of profiles
(63.8%) in subset C exceeding εz and their values in percentage
of εz (Figure 12) demonstrate reliability concerns in adopting
the model-derived synthetic profiles to fully substitute the
profile collection during a regular survey. Indeed, the critical
hydrographic practice of collecting hydrocasts should never
be abandoned. Nevertheless, the GoMOFS-derived synthetic
profiles (in conjunction with synthetic profiles derived from
climatological atlases such as WOA) provide a useful reference
to evaluate the quality of newly collected data (e.g., identifying
a malfunctioning device). Furthermore, they offer acceptable
estimates to be used to enhance and extend the data
collected on-site by sound speed profilers. The accuracy of
nowcasts from NOS’ regional oceanographic forecast modeling
systems are expected to improve as they are upgraded
to assimilate in situ and satellite-based observations. Based
on such considerations, both capabilities (visual comparison

and profile enhancement) were added to SSM to facilitate
the transition from research to operations of some of the
outcomes of this study.

The second part of the results presented in this work evaluates
whether the uncertainty estimation of the oceanographic
variability can be used as a meaningful input to estimate the
optimal casting time. The predictive component of the ForeCast
algorithm required the addition of a GoMOFS layer to SmartMap
(Figure 4). Such an addition does not only represent a required
step toward a potential future transition to operations of the
ForeCast algorithm, but also provides surveyors mapping in
the Gulf of Maine with a tool to synoptically evaluate the
spatio-temporal variability of the oceanographic conditions in
the survey area.

Figures 13, 14 show the evolution of δz in different scenarios,
using the analysis of ray-tracing uncertainty to evaluate the
adequacy level at different profiling times. The worst-case
scenarios represented in Figures 13A, 14A clearly show the
need to perform additional casts after the collection of the
first profile. The optimal solutions, represented in Figures 13B,
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FIGURE 14 | Worst-case scenario (A), optimal solution (B), solutions from the reactive-only (C) and the full (D) ForeCast algorithm for profiles from Subset C
collected in the shoreward direction.

14B, provide a baseline to evaluate the performance of the
reactive-only (Figures 13C, 14C) and the full (Figures 13D,
14D) ForeCast algorithm. The full algorithm estimates cast
times whose actual δz values are generally lower than the
ones provided by the reactive-only algorithm. Furthermore, a
surveyor following the full algorithm would have exceeded the
threshold for εz in only one case (shoreward case, Figure 14D),
while it happens a few times in Figures 14C,D. Based on
such considerations, the proposed method seems to alleviate
the subjectivity in the determination of the casting interval
and improve the overall sounding accuracy for effect of the
predicted spatio-temporal variability provided by GoMOFS.
However, more extensive test datasets need to be collected to
confirm these results, and new data acquisition are planned
for the UNH CCOM’s Hydrographic Field Course in 2020.
Among others, a relevant possible future improvement to the
current algorithm would be in the definition of the initialization
time that is currently estimated based on the first obtained
cast time from the optimal solution. From a speculative
point of view, a relation between the initialization time and

the SmartMap-provided PDUrt
r,c could be identified. Another

improvement could be manifested by integrating the values of
sound speed continuously measured at the MBES transducer.
The weight given to such point measurements is an open
research question.

Although a general evaluation of the survey environment can
potentially be retrieved directly from the available climatological
atlases and forecast modeling systems, the applications presented
in this work digest the large amount of information contained in
four-dimensional oceanographic variables and present it in a way
most relevant to the ocean mapper. A more accurate knowledge
of the oceanographic variability in the survey area has several
potential implications. For instance, during the planning phase,
surveying directions may be oriented to limit the number of
crossings of large uncertainty fronts. In case that the estimated
uncertainty for the outmost swath depths is too large based on
the targeted specifications, the time of survey execution may
be modified, or the estimated swath coverage can be reduced
accordingly. Other possible uses are the selection of a calibration
site with limited environmental variability and the identification
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of the appropriated device to sample the water column (e.g., a
survey area with high environmental variability should suggest
the adoption of an underway profiler).

This work presents a shift in awareness from the traditional
method of monitoring the sound speed at the transducer –
a point measurement of sound speed (at ∼1-Hz temporal
resolution) that has a critical role in beam forming –
and performing profiles measurements at fixed intervals
(with additional casts as needed). The combination of these
two types of measurements provide a limited awareness of
the surrounding oceanographic variability that the methods
presented in this work try to overcome. The adoption of the
proposed methods has the potential to improve efficiency in
survey operations as well as the quality of resulting ocean
mapping products.
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