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Our previous studies have shown that ARA regulated the gonadal steroidogenesis
and the synthesis of gonadotrophin-releasing hormone (GnRH) in the brain in a
gender-dependent manner in Chinese tongue sole, a marine teleost with typical sex
dimorphism. As a following up-study, the current study aimed to clone and characterize
a gene responding to dietary ARA differently between males and females, cholesterol
25-hydroxylase (ch25h), which has important roles in cholesterol and lipid metabolism
of mammals, but is rarely investigated in fish. The full-length cDNA of Chinese tongue
sole ch25h was cloned and characterized, and its transcription in the gonads, brain
and liver of both males and females in response to dietary ARA levels (0.34, 2.53, and
9.63% of TFA) was investigated. The Chinese tongue sole Ch25h, which putatively is
Ch25h subtype B, shared moderate identity to its known orthologs of other teleost and
lower identity to human Ch25h. It has high transcription levels in the gonads, followed
by skin and muscle, but low levels in the intestine, spleen, and kidney. High ARA levels
significantly increased the ch25h transcription in the gonads and brain of male fish,
but did not affect the transcription in the females. However, the effect of dietary ARA
on ch25h transcription in the liver showed an opposite gender-difference pattern to
those in the gonads and brain. To our knowledge, this is the first study in marine teleost
investigating the nutritional regulation of ch25h expression.

Keywords: Cynoglossus semilaevis, Ch25h, cloning, characterization, gene expression, arachidonic acid

INTRODUCTION

The membrane-associated enzyme cholesterol 25-hydroxylase (Ch25h) catalyzes the formation of
25-hydroxycholesterol (25HC, oxysterol) from cholesterol, and thereby plays important roles in
cholesterol and lipid metabolism (Lund et al., 1998; Horton et al., 2002; Joseph et al., 2002). It has
been reported that 25HC is a co-repressor that blocks sterol regulatory element binding protein
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(SREBP) processing and ultimately leads to inhibition of gene
transcription (Lund et al., 1998). 25HC also acts as a ligand of
liver X receptor (LXR). The regulation of LXR/SREBP signaling
pathway by 25HC reduces cholesterol synthesis and increases its
efflux and elimination (Janowski et al., 1996; Accad and Farese,
1998; Radhakrishnan et al., 2007). The regulation of LXR/SREBP
signaling pathway by 25HC also affects lipid metabolism in
other ways depending on the roles of SREBP and LXR in lipid
metabolism (Shimano, 2001; Oosterveer et al., 2010; DeBose-
Boyd and Ye, 2018). In addition to the well-known metabolic role
of oxysterols, some publications have also reported the function
of 25HC in immune regulation and virus resistance (Yi et al.,
2012; Shrivastava-Ranjan et al., 2016; Cagno et al., 2017; Doms
et al., 2018; Shawli et al., 2019; Zhang et al., 2019).

Compared to mammals, the functions of Ch25h or 25HC
in fish have been poorly understood. Only in zebrafish, the
interferon independent antiviral role of 25HC was validated
(Pereiro et al., 2017). In Chinese tongue sole, a recent
study of ours with feeding trial followed by transcriptomic
analysis has shown that ch25h transcription in the brain was
significantly affected by dietary arachidonic acid (ARA), which
plays important roles in fish reproduction (Izquierdo et al.,
2001; Norberg et al., 2017), and this effect was different between
male and female fish (Xu et al., 2019). Our previous studies
have also shown that dietary ARA differentially regulates the
gonadal steroidogenesis in Chinese tongue sole depending on
fish gender (Xu et al., 2017a). Chinese tongue sole have typical
characteristics of sex dimorphism. The different response of
cholesterol metabolism to dietary ARA in male and female
Chinese tongue sole seems interesting and is worth further
investigation. As a following-up study, the present study aimed to
clone and characterize the full-length mRNA of Chinese tongue
sole ch25h, as well as to investigate its transcription in response
to dietary ARA in different tissues of both male and female fish.
The results will contribute to the general knowledge of Ch25h
physiology in fish.

MATERIALS AND METHODS

Feeding Trial
Three experimental diets containing different levels of ARA were
used in the feeding trial (Table 1). In the control diet (Diet
C), tristearin was used as the main supplemented lipid source.
Diets with low (Diet ARA-L) and high (Diet ARA-H) ARA
level were prepared by replacing tristearin in diet C with ARA-
enriched oil. The ARA content in the three experimental diets
was 0.34, 2.53, and 9.63% of total fatty acids (TFA), respectively,
(Table 2). Constant levels of n-3 LC-PUFA enriched oil and
soya lecithin were supplemented to all the diets to meet the
requirement. The experimental diets were prepared following the
routine procedures in our laboratory (Xu et al., 2016).

A 10-week feeding trial was conducted to investigate the
effects of dietary ARA on the ch25h gene expressions in Chinese
tongue sole. Chinese tongue sole hatched in the last autumn was
used in the feeding trial. The fish have been fed a commercial
diet before the experiment. Fifteen male fish with an average

TABLE 1 | Formulation and composition of the experimental diets (g kg−1 dry
matter)a.

Ingredients C ARA-L ARA-H

Fish meal 400.0 400.0 400.0

Soybean meal 150.0 150.0 150.0

Casein 60.0 60.0 60.0

Corn gluten meal 50.0 50.0 50.0

Wheat meal 222.2 222.2 222.2

Vitamin premixb 2.0 2.0 2.0

Mineral premixc 5.0 5.0 5.0

L-ascorbyl-2-polyphosphate 5.0 5.0 5.0

Choline chloride 5.0 5.0 5.0

Monocalcium phosphate 10.0 10.0 10.0

Ethoxyquin 0.5 0.5 0.5

Betaine 3.0 3.0 3.0

Calcium propionate 0.5 0.5 0.5

Soya lecithin 20.0 2.00 2.00

n-3 LC-PUFA enriched oild 15.0 1.50 1.50

ARA enriched oile 0.0 6.1 25.7

Tristearinf 51.8 45.7 26.1

Proximate composition

Dry matter 926.2 912.5 915.5

Crude protein 496.1 496.1 495.6

Crude lipid 136.4 127.6 123.5

Ash 90.6 101.8 101.8

aAll the ingredients were purchased from Qingdao Great Seven Co., Ltd. bVitamin
premix (mg kg−1 diet): thiamin 25 mg; riboflavin, 45 mg; pyridoxine HCl, 20 mg;
vitamin B12, 0.1 mg; vitamin K3, 10 mg; inositol, 800 mg; pantothenic acid,
60 mg; niacin, 200 mg; folic acid, 20 mg; biotin, 1.2 mg; retinol acetate, 32 mg;
cholecalciferol, 5 mg; alpha-tocopherol, 120 mg; wheat middling, 661.7 mg.
cMineral premix (mg or g kg−1 diet): MgSO4 · 7H2O, 1200 mg; CuSO4 · 5H2O,
10 mg; ZnSO4 · H2O, 50 mg; FeSO4 · H2O, 80 mg; MnSO4 · H2O, 45 mg; CoCl2 ·
6H2O (1%), 50 mg; NaSeSO3 · 5H2O (1%), 20 mg; Ca(IO3)2 · 6H2O (1%), 60 mg;
zoelite, 3.485 g. dn-3 LC-PUFA enriched oil: containing 37% DHA and 21% EPA (of
total fatty acids); in the form of triglyceride; Hebei Haiyuan Health Biological Science
and Technology Co., Ltd., Changzhou, China. eARA enriched oil: containing 41%
ARA (of total fatty acids); in the form of triglyceride; Jiangsu Tiankai Biotechnology
Co., Ltd., Nanjing, China. fHUDONG Daily Chemicals Co., Ltd., Jiaxing, China.

initial body weight of 20.3 g and eight female fish with an
average initial body weight of 72.0 g were reared in each
polyethylene tank (200 L). At the beginning of the feeding trial,
the fish were fed the control diet for 7 days to acclimate to
the experimental conditions. The feeding trial was conducted
in a flow-through seawater system in Huanghai Aquaculture
Co., Ltd., (Haiyang, China). Each diet was randomly assigned to
triplicate tanks. Fish were hand-fed to apparent satiation twice
daily (9:00 and 17:00). The tanks were cleaned daily by siphoning
out residual feed and feces.

At the end of the feeding trial (late autumn), after being
anesthetized with eugenol (1:10,000), the developmental status
of fish gonads was determined before sampling. Most male fish
were mature. The maturity of male fish was confirmed by the
release of milt when handled. However, unfortunately, visual
observation and microscopic examination of oocyte morphology
showed that most female fish were immature, and the ovaries had
not developed at all. Five mature male fish and five immature
female fish per tank were dissected, and whole brain, gonad
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TABLE 2 | Fatty acids composition of experimental diets (% total fatty acids).

Fatty acids C ARA-L ARA-H

C14:0 2.61 2.42 2.19

C16:0 37.83 34.83 25.60

C18:0 19.35 18.58 13.39

C20:0 0.30 0.36 0.45

6SFA 60.09 56.19 41.63

C16:1n−7 1.71 1.63 1.70

C18:1n−9 4.90 5.45 7.12

C18:1n−7 1.08 1.10 1.20

6MUFA 7.69 8.19 10.02

C18:2n−6 10.51 11.17 13.65

C20:4n−6 0.34 2.53 9.63

6n-6 PUFA 10.86 13.70 23.28

C18:3n−3 1.25 1.26 1.27

C18:4n−3 0.70 0.67 0.67

C20:5n−3 5.36 5.46 5.45

C22:5n−3 1.35 1.35 1.49

C22:6n−3 9.00 9.17 9.53

6n-3 PUFA 17.65 17.92 18.40

6n-3/6n-6 1.63 1.31 0.79

ARA/EPA 0.06 0.10 1.77

SFA, saturated fatty acids; MUFA, mono-unsaturated fatty acids; n-6 PUFA, n-6
poly-unsaturated fatty acids; n-3 PUFA, n-3 poly-unsaturated fatty acid.

and liver samples were collected. All the tissue samples were
immediately frozen with liquid nitrogen, and stored at −86◦C
before analysis. All sampling protocols, as well as fish rearing
practices, were reviewed and approved by the Animal Care and
Use Committee of Yellow Sea Fisheries Research Institute.

RNA Extraction and cDNA Synthesis
Total RNA in livers was extracted using RNAiso Plus [TaKaRa
Biotechnology (Dalian) Co., Ltd., Dalian, China] and then
electrophoresed on 1.5% agarose gel to test the quality and
integrity. The concentration was determined with Colibri
Microvolume Spectrometer (Titertek-Berthold, Germany). The
RNA was then reversely transcribed with PrimeScriptTM RT
reagent Kit with gDNA Eraser (Perfect Real Time) (TaKaRa)
according to the user manual.

Cloning and Sequencing of ch25h
The complete CDS of ch25h can be obtained from GenBank
(Accession No.: XM_008315046.3). The predicted sequence from
GenBank was validated with specific PCR and sequencing of the
product. The full-length cDNA of ch25h was cloned with rapid
amplification of cDNA ends (RACE). Specific primers for ch25h
were designed based on the known ch25h sequence to clone
the 5′- and 3′-end, respectively. The SMARTerTM RACE cDNA
Amplification Kit (Clontech, Mountain View, CA, United States)
was used to perform the RACE cloning, and the 3′- and 5′-
end cDNA templates were synthesized according to the user’s
manual. The primers were synthesized by TsingKe Biological
Technology, Co., Ltd., (Qingdao, China). PCR amplifications
were performed on peqSTAR (PEQLAB, Erlangen, Germany). All

PCR products were run on a 1.5% agarose gel, and then purified
by Zymoclean Gel DNA Recovery Kit (ZYMO RESEARCH,
Irvine, CA, United States). PCR products were cloned into
pEASY-T1 simple cloning vector (TransGen, Beijing, China)
and sequenced in TsingKe (Qingdao, China). Other details of
the PCR amplification were similar to our previous studies
(Xu et al., 2014).

Real-Time Quantitative Polymerase
Chain Reaction (qRT-PCR) Analysis
Real-time fluorescent quantitative PCR (qRT-PCR) was used
to assay the relatively quantitative mRNA expression of ch25h
in different tissues of Chinese tongue sole (10 3-year-old
fish used, six males and four females, all at phase II of
gonadal development), as well as the gene expression in fish
from different dietary groups. β-actin (GenBank Accession No.
KP033459.1) and β-2 microglobulin (β2M, GenBank Accession
No. FJ965563.1) were used as the reference genes (Vandesompele
et al., 2002). Specific primers for target genes and reference
genes were designed using Primer 5.0 (Table 3) and synthesized
by TsingKe Biological Technology Co., Ltd., (Qingdao, China).
The amplification efficiency for all primers, which was estimated
by standard curves based on a 6-step 4-fold dilution series
of target template, was within 95∼105%, and the coefficients
of linear regression (R2) were more than 0.99. SYBR R© Premix
Ex Taq TM [TaKaRa Biotechnology (Dalian) Co., Ltd., Dalian,
China] and a quantitative thermal cycler (Roche LightCycler
96, Basel, Switzerland) were used for the real-time qPCR. The
reaction system consists of 2 µl cDNA template, 10 µl SYBR R©

Premix Ex TaqTM (2×), 0.8 µl forward primer (10 µM),
0.8 µl reverse primer (10 µM), and 6.4 µl sterilized water.
The program was as follows: 95◦C for 5 min followed by 40
cycles of “95◦C for 5 s, 55◦C for 20 s, 72◦C for 10 s.” Melting
curve analysis (1.85◦C increment/min from 58◦C to 95◦C)
was performed after the amplification phase for confirmation
of a sole product. Each sample was run in triplicate. The
mRNA expression levels were calculated with qRT-PCR method:
2−11CT (Livak and Schmittgen, 2001).

TABLE 3 | Sequences of the primers used in this work.

Primer Sequence (5′-3′) Type

ch25h-F0 TGAACTCCAGAGACGACATGGT CDS validation

ch25h-R0 TGTCCCTCAGACACTTCTGTCCT

ch25h-F1 GAGGACCACTGTGGCTACGA 3′ Race (outer)

ch25h-F2 CACCACCTCAAGTCCTCATG 3′ Race (inner)

ch25h-R1 CCAGTTTAGCACAGTGAGGGGGAA 5′ Race (outer)

ch25h-R2 CTGTGAGGCTGGAGCTTGTACTTGC 5′ Race (inner)

ch25h-F3 CTTCCAGCACAACTGAGCCT qPCR

ch25h-R3 GGACGGAAGAGTTTCTCACAAT

β-actin-F GGCTACTCTTTCACCACCACA qPCR

β-actin-R GCCACAGGACTCCATACCAA

β2M-F ACGTCCTCGTCTCTTCTGTGAT qPCR

β2M-R CCAACCTTCTGTTCGCATCT
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Statistical Analysis
Similarity searches of the sequenced cDNA of ch25hs were
done by blastn1. The multiple-sequence alignments of amino
acids were performed using BioEdit. The deduced amino acid
sequences were analyzed with DNAman and ExPASy Compute
pI/MW2. SMART program3 and PROSITE program4 were used
to predict the functional sites or domains in the amino acid
sequence. Phylogenetic analyses based on amino acid sequences
were carried out using the neighbor-joining method, and the trees
were constructed using MEGA 4.1.

All gene expression data were subjected to one-way analysis
of variance in SPSS 16.0 for Windows. Differences between
means were tested by Tukey’s multiple range test. The level of
significance was chosen at P < 0.05 and the results were presented
as means± standard error.

RESULTS AND DISCUSSION

Cloning and Characterization of ch25h
The full length of ch25h cDNA from Chinese tongue sole
(uploaded under GenBank Accession No. MN646884.1) was
1468 bp, including a 5′-untranslated region (UTR) of 372 bp, a 3′-
UTR of 340 bp, and an open reading frame of 756 bp encoding a
polypeptide of 250 amino acids with predicted molecular weight
of 28.7 KDa and theoretical isoelectric point of 8.22 (Figure 1).
The deduced protein sequence possessed a characteristic fatty
acid hydroxylase domain, containing three transmembrane

1www.ncbi.nlm.nih.gov/blast/
2http://web.expasy.org/compute_pi/
3http://smart.embl-heidelberg.de/
4http://kr.expasy.org/prosite/

regions (20–42, 74–91, and 106–128) and clusters of histidine
residues that are essential for catalytic activity (Figure 1). Unlike
most other sterol hydroxylases, Ch25h is not a cytochrome P450,
but rather it is a member of a small family of enzymes that utilize
diiron cofactors to catalyze the hydroxylation of hydrophobic
substrates (Lund et al., 1998). The deduced Chinese tongue sole
Ch25h has three potential phosphorylation sites (T-7, S-18, and
Y-23), but no predicted signal peptide sequence.

Multiple Sequences Alignment and
Phylogenetic Analysis
The multi-sequence alignment (Figure 1) revealed that the
Chinese tongue sole Ch25h shared moderate identity to its known
orthologs of other teleost (63–76% for the listed species in
Figure 1) and lower identity to human Ch25h (54.6%).

The phylogenetic analysis showed that Chinese tongue
sole Ch25h clusters closer to Ch25h subtype B of zebrafish,
compared to other subtypes of zebrafish Ch25h, Ch25hA,
Ch25hC1, Ch25hC2, and Ch25hD (Figure 2). The zebrafish
Ch25hB showed synteny conservation with its human homolog,
highlighting that this gene copy is probably the original gene
of the Ch25h teleost repertoire (Pereiro et al., 2017). In
contrast to fish, the mammalian genomes only possess one copy
of the CH25H gene.

Chinese tongue sole Ch25h clusters to Ch25h of other fish
species such as Nile tilapia, large yellow croaker, and gilthead
seabream, distant from Ch25h of frog, and further distant
from Ch25h of mammals (Figure 2). However, Chinese tongue
sole Ch25h clusters closer to human Ch25h than to other
Ch25h subtypes of zebrafish. This indicated that Ch25h subtypes
may have diverged from a common progenitor before the
fish/mammalian divergence.

FIGURE 1 | Comparison of the deduced Ch25h amino acid sequences from Chinese tongue sole, other fish, and human. The amino acid sequences were aligned
using ClustalX. Identical residues are shaded black and similar residues are shaded gray. Gaps (-) were introduced to maximize the alignment. Asterisk indicates
conserved clusters of histidine residues.
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FIGURE 2 | Phylogenetic tree of Chinese tongue sole Ch25h. The amino acid
sequences used in the phylogenetic tree included those from other teleost
and other animals: human (Homo sapiens) (NP_067065.1), mouse (Mus
musculus) (NP_034020.1), chicken (Gallus gallus) (NP_001264283.1), frog
(Xenopus tropicalis) (XP_002935478.1), zebrafish (Danio rerio) (subtype A,
ASU11038.1; subtype B, ASU11039.1; subtype C1, ASU11040.1; subtype
C2, ASU11041.1; subtype D, ASU11042.1), channel catfish (Ictalurus
punctatus) (NP_001188084.1), Nile tilapia (Oreochromis niloticus)
(XP_003449518.2), medaka (Oryzias latipes) (XP_004084712.1), large yellow
croaker (Larimichthys crocea) (XP_010750904.1), Atlantic cod (Gadus
morhua) (XP_030195643.1), and gilthead seabream (Sparus aurata)
(XP_030255276.1). The horizontal branch length is proportional to amino acid
substitution rate per site. The numbers represent the frequencies with which
the tree topology presented here was replicated after 1000 bootstrap
iterations.

Tissue Distribution of ch25h in Chinese
Tongue Sole
In mice, expression of ch25h is high in the lung, heart, and kidney
(Lund et al., 1998). Another study in mice showed that ch25h is
highly expressed in the liver and peritoneal macrophages (Liu
et al., 2018). In Chinese tongue sole, however, ch25h is highly
expressed in gonad, followed by skin and muscle, but is lowly
expressed in the intestine, spleen, and kidney (Figures 3, 4).

FIGURE 3 | Tissue distribution of ch25h in male Chinese tongue sole. Results
were expressed as relative mRNA expressions to the lowest expression
(means ± standard error, n = 6).

FIGURE 4 | Tissue distribution of ch25h in female Chinese tongue sole.
Results were expressed as relative mRNA expressions to the lowest
expression (means ± standard error, n = 4).

There is minor difference in tissue expression pattern of ch25h
between male and female Chinese tongue sole. It seemed that
the females have relatively higher ch25h expression in the brain
compared to males.

High expression of ch25h in the gonads indicated that Ch25h
may have important roles in reproductive physiology of Chinese
tongue sole. Recent data obtained in bovine sperm showed
that sperm capacitation is associated with the formation of
oxysterols (Brouwers et al., 2011). Another recent study with
human semen also supports a role for 25HC in sperm function
(Zerbinati et al., 2017). Results of that study showed that CH25H
was detected in human spermatozoa at the neck and the post
acrosomal area, and that the 25HC concentration positively
correlated with spermatozoa number (Zerbinati et al., 2017).
High expression of ch25h in both testis and ovary of Chinese
tongue sole indicated that Ch25h may have important functions
in genesis of both sperm and egg.

Unexpectedly, the liver of Chinese tongue sole only has a
moderate level of ch25h transcription, lower than skin and
muscle, irrespective of fish gender. Liver is a very important
organ for lipid and cholesterol metabolism. The present results
indicate that Ch25h or 25HC may have special functions in skin
and muscle of flatfish, but this speculation needs to be validated
by future studies.

The Chinese Tongue Sole ch25h mRNA
Expression in Response to Dietary ARA
In the present study, we analyzed the ch25h mRNA expression in
the gonad, liver and brain of Chinese tongue sole fed diets with
different ARA levels. We analyzed the ch25h mRNA expression
in the gonads for two reasons: (1) As mentioned above, ch25h is
highly expressed in the gonads; (2) Reproductive physiology is
a focus of this study and its previous studies. A very interesting
result of this study was that ch25h responded to dietary ARA
differently between the testes and ovaries. The relative mRNA
expression of ch25h in the testes significantly (P < 0.05) increased
with increasing dietary ARA levels, but the transcription in the
ovaries was not affected by dietary ARA (Figure 5).
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FIGURE 5 | Effects of experimental diets on mRNA expression of ch25h in the
gonad of Chinese tongue sole. Results are expressed as means ± standard
error. Different letters above the bars denote significant (P < 0.05) differences
among dietary groups.

FIGURE 6 | Effects of experimental diets on mRNA expression of ch25h in the
brain of Chinese tongue sole. Results are expressed as means ± standard
error. Different letters above the bars denote significant (P < 0.05) differences
among dietary groups.

This result was similar to the ch25h transcription in the
brain in response to dietary ARA (Figure 6). The brain ch25h
expression was significantly (P < 0.05) higher in male fish
fed the high-ARA diet compared to fish fed the low-ARA diet
or the control diet. However, the brain ch25h transcription in
female fish was not affected by dietary ARA. This result validated
the previous transcriptomic results which indicated the gender-
difference in brain ch25h transcription in response to dietary
ARA and inspired the current study.

The differential regulation of gonadal steroidogenesis and
brain GnRH synthesis by dietary ARA between male and female
Chinese tongue sole has been shown in our previous studies
(Xu et al., 2017a, 2019). Those results showed that dietary
ARA supplementation stimulated the testosterone and GnRH
production in males, but reduced the estradiol production in the
females. ARA supplementation significantly reduced the mRNA
expression of aromatase in ovaries but significantly increased the
gene expression of 3β-hydroxysteroid dehydrogenase (3β-HSD)
in testes. Moreover, this gender-dependent differential regulation

was in accord with the different ARA abundance in testes and
ovaries (Xu et al., 2017a,b).

In the present study, it is interesting to validate another
target gene, ch25h, for the differential ARA action between
male and female Chinese tongue sole. The present results
indicated that ch25h may have more active function in male fish.
Considering the roles of ch25h in sperm mentioned previously
(Brouwers et al., 2011; Zerbinati et al., 2017), the more positive
roles of ARA in male Chinese tongue sole may stimulate
the gene expression of ch25h in male fish by accelerating the
overall reproductive performance. Also, mammal studies showed
that Leydig cells can directly metabolized 25HC enzymatically
produced by testicular macrophages to testosterone (Lukyanenko
et al., 2001, 2002). Moreover, liver X receptors (LXRα and LXRβ),
receptors of oxysterols, have been shown to present crucial
activities in reproductive organs of male animals such as testis
and epididymis, as well as prostate [well-reviewed by El-Hajjaji
et al. (2011)]. 25HC, the product of Ch25h, may function in the
testis and brain of male animals in LXR-dependent mechanisms
(Liu et al., 2018).

In spite of the potential different functions of Ch25h between
male and female animals, another important factor contributing
to the current gender-difference in Ch25h transcription in
Chinese tongue sole was the asynchronous gonadal development.
In the present study, most of the male fish was mature but the
females were immature. However, whether this asynchronous
gonadal development resulted in gender-difference in Ch25h
transcription or vice versa cannot be concluded based on the
current information. In addition, considering that both ARA and
Ch25h are involved in immunity (McDonald and Russell, 2010;
Xu et al., 2010; Li et al., 2012; Cyster et al., 2014; Shahkar et al.,
2016; Adam et al., 2017; Nayak et al., 2017; Wu et al., 2018),
Ch25h-mediated immune response could be another process
differently responding to dietary ARA between male and female
Chinese tongue sole.

In the liver of Chinese tongue sole, a more interesting result
was that the response of ch25h transcription to dietary ARA
was obviously different from those in the gonad and brain.

FIGURE 7 | Effects of experimental diets on mRNA expression of ch25h in the
liver of Chinese tongue sole. Results are expressed as means ± standard
error. Different letters above the bars denote significant (P < 0.05) differences
among dietary groups.
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The ch25h expression in the liver of male fish was not significantly
affected by dietary ARA (Figure 7). However, the hepatic ch25h
expression in female fish was significantly (P < 0.05) higher in the
low-ARA group compared to the control group, while the high-
ARA group had an intermediate expression level (Figure 7). This
result indicated that Ch25h may function differently between
liver and gonad/brain of Chinese tongue sole. Liver plays a
crucial role in maintaining cholesterol homeostasis by regulating
absorption and synthesis (Goldstein and Brown, 1990; Goldstein
and DeBose-Boyd, 2006; Lu et al., 2017). Due to the lipid nature
of the ligands (oxysterol), the physiological roles of LXRs have
been extensively detailed in the homeostasis of cholesterol in
the gut-liver axis (D’Errico and Moschetta, 2008). However,
no information is available about the difference between males
and females in Ch25h-mediated hepatic cholesterol metabolism,
neither in mammals nor in fish. Gender-difference in correlation
between cholesterol level and liver inflammation (Comhair
et al., 2011) or response of hepatic cholesterol level to dietary
nutrients (Kishida et al., 2006) has been reported in rodents,
but no results can be used to explain the present results.
In fish, studies in freshwater fish Notopterus notopterus have
shown that the hepatic cholesterol content changes differently
between males and females during the gonadal development
and reproductive process (Shankar and Kulkarni, 2005, 2007).
Therefore, a possible explanation of the current result could be
the different reproductive phases the male and female Chinese
tongue sole stayed when sampled.

CONCLUSION

In conclusion, as a following-up study of previous studies which
showed the differential function of ARA between male and female
Chinese tongue sole, the current study cloned and characterized
a gene responding to ARA in a gender-dependent manner, ch25h.

This gene was highly expressed in gonads, followed by skin and
muscle. Its mRNA expression in the gonad and brain of male fish
was significantly increased by high dietary ARA levels, but the
transcription in female fish was not affected by dietary ARA. The
ch25h expression in the liver in response to dietary ARA showed
an opposite gender-difference pattern to those in the gonad and
brain. The interaction among Ch25h, ARA, and sex dimorphism
of Chinese tongue sole warrants further studies.
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