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The timing of pelagic spring blooms has received attention to understand controls
on open ocean productivity and its potential responses to climate change. Many
studies have relied on surface chlorophyll (Chl) to define bloom initiation because of its
availability from satellite observations, but this has limited utility because it ignores the
full water column budget and because biomass represents only the small residual term
in the balance between production and loss. Additional important measures include
net community production (NCP) which determines maximal energy available to fuel
phytoplankton and higher trophic level biomass accumulations, and particulate organic
carbon export (POC flux) which determines the distribution of this energy across pelagic,
mesopelagic and benthic communities. Here, we present high temporal resolution
records for the winter to spring transition (July–December 2012) obtained from moored
sensors at SOTS in the Subantarctic Zone (SAZ) south of Australia. Measurements
included physical drivers (temperature, salinity, surface mixed layer depth, currents,
wind speeds, insolation, and air-sea heat fluxes) and biological responses (Chl from
fluorescence and light attenuation, NCP from O2/N2 ratios and nutrient concentrations
from an autonomous water sampler, POC flux from sediment traps, and zooplankton
abundances from four-frequency acoustic backscatter profiles). These observations
provide a phenology across the four trophic levels (NPZD) commonly used in ocean
biogeochemical models. Chl column inventories began to increase in early winter while
mixed layers were still deepening, and were accompanied by increases in NCP. Acoustic
metrics for grazing pressure were very low at this time. In contrast, surface Chl did not
increase until later when stratification developed. The levels of spring NCP were relatively
high and balanced by sinking particle fluxes close to global median values, despite the
relatively low surface biomass levels. Overall this phenology suggests that the extent
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of exchange with SAMW waters via deep mixing is a key driver of the seasonality
of production, support of higher trophic levels, and the mediation of pelagic-benthic
coupling, and occurs sequentially via trophodynamic (de-coupling of production and
grazing) and physical (stratification) mechanisms.

Keywords: Southern Ocean, autonomous observations, time series, seasonality, productivity, export, physical-
biological coupling

INTRODUCTION

Rapid accumulation of phytoplankton biomass is commonly
referred to as a bloom. Early observations in the North
Atlantic over 60 years ago identified a rapid bloom occurring
reproducibly in spring, and demonstrated that this behavior
could be reproduced with a simple model relating it to the relief
of light limitation of phytoplankton growth rates by the onset
of water column stratification as measured by the depth of the
surface mixed layer (Sverdrup, 1953). This insight has been a
major influence on the understanding of seasonal blooms, in
particular among physical oceanographers, who have recognized
additional processes involved in stratification (Mahadevan and
Archer, 2000; Taylor and Ferrari, 2011a; Mahadevan et al., 2012)
and proposed the seasonal transition from cooling to warming
(i.e., the change in the sign of the surface heat flux) as an
improved metric for the timing of stratification (Taylor and
Ferrari, 2011b). Because phytoplankton biomass accumulation
originates as a small imbalance between relatively large terms for
its production and loss (typically more than 90% of production is
removed daily by grazing), ecologists focused additional attention
on the influence of the loss term. A simple model was also
instrumental in the development and spread of this insight
and showed that seasonal changes in zooplankton grazing rates
could simulate both the large spring and smaller autumn blooms
observed in temperate waters (Evans and Parslow, 1985). In this
initial model, seasonal grazing efficiency was modulated by mixed
layer depth via its dilution of phytoplankton but not mobile
zooplankton, but additional aspects of zooplankton seasonal
life cycles may be involved, such as egg maturation rates and
diapausal migrations (Lindemann and St. John, 2014).

Recent comparison of physical and biological controls has
noted that the ecological control of loss by grazing would be
expected to lead to an earlier seasonal bloom (possibly in winter
rather than in spring) than would the control of production by
stratification (Behrenfeld, 2010). Of course, both processes are
likely to be involved, and thus the eventual response of blooms
to evolving climate is likely to be mediated by a multitude of
linkages (Lindemann and St. John, 2014), which may well vary
regionally. This is an important perspective for our study, in
that the Southern Ocean has been suggested to be a place in
which physical stratification controls of light availability appear
insufficient to explain seasonal biomass variations (Obata et al.,
1996), and the timing of biomass accumulation is known to vary
spatially based on satellite observations (Thomalla et al., 2011).

In this paper we examine the seasonality of biomass
production, accumulation, and loss for the Subantarctic Zone
(SAZ), using results obtained at the Australian Southern Ocean

Time Series southwest of Tasmania. The SAZ is a region of
particular importance for the marine biological carbon pump
because it lies at the interface between the nutrient rich polar
seas and the nutrient poor subtropical gyres, and changes in the
efficiency of its nutrient consumption appear to have modulated
atmospheric CO2 levels (Sigman and Boyle, 2000), a process
that also strongly influences modern ocean productivity outside
the Southern Ocean, via the control of nutrient delivery in the
upper limb of the overturning circulation (Sarmiento et al.,
2004). Notably, the SAZ south of Australia differs significantly
from the North Atlantic where the concepts of spring bloom
formation were initially investigated and defined. In particular,
SAZ chlorophyll biomass accumulation is only moderate (never
exceeding 1 mg m−3 and generally less than 0.6 mg m−3 (Trull
et al., 2001a,c; Mongin et al., 2011), in contrast to values of
>2.5 mg m−3 in the North Atlantic (Yoder et al., 1993). This
reflects both iron and light limitation in this region of the
SAZ (Sedwick et al., 1999; Boyd et al., 2001). Relief of the
iron limitation can occur by aerosol iron supply in summer; a
mechanism for primary production control that differs from the
seasonality of deep mixing that provides an initial winter reserve
of iron (Bowie et al., 2009). Nearly complete silicic acid depletion
occurs in surface waters in summer (Bowie et al., 2011a,b),
potentially influencing phytoplankton community composition,
although nitrate concentrations remain high (Lourey and Trull,
2001). This contrasts with nearly complete depletion of both
nutrients by the North Atlantic bloom (Altabet et al., 1991;
Sieracki et al., 1993).

The structure of the paper is as follows. Firstly, we present
detailed physical conditions for the water column during the
winter to summer transition, including measures of stratification
and energy available for mixing from winds and waves. Secondly,
we present multi-trophic ecosystem response variables, including
phytoplankton chlorophyll (Chla), net community production
(NCP), particulate organic carbon export to the ocean interior
(POC flux), and an indication of the development of higher
trophic levels from acoustic scattering measurements. NCP
is defined as the fraction of gross primary production (i.e.,
photosynthetic reduction of CO2 to organic matter) which
is not respired back to CO2 by either phytoplankton or
other trophic levels in the pelagic community. It is thus a
measure of the material available to expand the ecosystem.
The POC flux determines the distribution of this energy
across pelagic, mesopelagic and benthic communities, with
concomitant influences on fisheries (Legendre, 1990). Finally,
we examine the relative timing of the biological events with
respect to physical drivers, for the overall seasonal transition
from winter to summer. In order to maintain a manageable
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scope, we leave interpretation of shorter duration events
to future study.

MATERIALS AND METHODS

Regional Characteristics of the SOTS
Site
The SOTS location in the SAZ (at ∼ 47◦S, 142◦E) makes
it ideal for examination of the role of the upper limb of
the Southern Ocean overturning circulation in global climate,
CO2 uptake, oxygen ventilation of mode waters, and nutrient
supply to the subtropical gyres. The site is also representative
of temperate southern hemisphere pelagic productivity and
ecology; SOTS conditions are typical of a large portion of the
Indian sector SAZ, from ∼90 to 145◦E (Trull et al., 2001a,c;
Mongin et al., 2011). Detailed descriptions of the oceanographic
properties and circulation, biogeochemical conditions, carbon
fluxes, productivity, and plankton ecology are available from
previous moored observations, two multi-disciplinary process
studies, and two decades of WOCE/CLIVAR occupations of the
SR3 hydrographic section from Tasmania to Antarctica (Rintoul
and Trull, 2001; Bowie et al., 2011a,b; Weeding and Trull, 2014;
Shadwick et al., 2015).

SOTS is located in the middle of a gyre in the SAZ (Herraiz-
Borreguero and Rintoul, 2011) between westward flowing
subtropical waters to the north (∼ 43–45◦S) that include leakage
from the Tasman Sea as part of the Southern Hemisphere super-
gyre (Ridgeway and Dunn, 2007), and the eastward flowing
Antarctic Circumpolar Current (ACC) to the south near 50–
51◦S (Trull et al., 2001a). Occasionally, parcels of warmer, saltier,
and sub-tropical waters pass from the north, and colder, fresher
polar waters from the south, but these do not dominate the
seasonal thermal cycle (small at∼3◦C) which is largely explained
by local air-sea fluxes (Schulz et al., 2012). The passage of these
parcels may also contribute to variability in biomass levels at
SOTS, through several mechanisms, e.g., delivery of iron and
or biomass from Tasmanian shelf waters, arrival of macro-
nutrient poor subtropical waters, or arrival of silicate rich polar
waters (Sedwick et al., 1997; Bowie et al., 2009). Although, as
with the thermal cycle, these impacts are small in comparison
to the locally driven seasonal cycle (Weeding and Trull, 2014;
Shadwick et al., 2015). These thermal and phytoplankton biomass
variations are illustrated in monthly satellite estimates of sea
surface temperature (SST) and chlorophyll (SChl) around the
SAZ site to provide spatial context over the winter to summer
transition period studied in this paper (Figure 1). The SST
images illustrate clearly meanders of the SAF to the south of
SOTS (cold SST in blue) and sub-tropical eddies to the north
(warm SST in yellow). The chlorophyll images show the overall
southward seasonal progression of biomass accumulation, as well
as the occasional offshore transfer of biomass rich waters from
the Tasmanian shelf to the northeast of SOTS. In contrast, no
enhancement of biomass occurs over the Tasman Rise to the
east of SOTS or the Mid-ocean Ridge to its south (these seafloor
features are shown in Figure 2), although it is possible that they
could serve as sources of resuspended sediments.

Seasonally, SOTS exhibits deep winter mixing (to more than
500 m) accompanying SAMW formation, followed by spring
stratification to yield mixed layers of ∼60–100 m depth that
persist until autumn and are maintained by persistently high
winds of ∼10 m s−1 and waves of ∼5 m significant height
(Rintoul and Trull, 2001; Weeding and Trull, 2014). Seasonal
chlorophyll accumulation is low (typically less than 0.6 µg L−1)
and almost always homogeneously distributed through the mixed
layer without a subsurface chlorophyll maximum, in contrast
to conditions south of the Subantarctic Front (Parslow et al.,
2001; Bowie et al., 2011b). Mixed layer oxygen and nitrate
budgets suggest NCP is approximately 3–6 mol C m−2 year−1

(Lourey and Trull, 2001; Weeding and Trull, 2014; Cassar
et al., 2015) and sinking POC export to depth as estimated
from deep ocean sediment traps (deployed over full annual
cycles at nominal depths of 1000, 2000, and 3800 m in the
4500 m deep water column) varies from values as low 0.13 mol
POC m−2 year−1, i.e., equivalent to the global median value
of ∼1 g POC m−2 year−1 (Trull et al., 2001a) to ∼10 times
higher (unpublished SOTS data available on-line via IMOS),
and specifically for the year examined here was ∼ 0.5 mol
POC m−2 year−1 (as presented below). Shallow short-term free-
drifting sediment trap deployments and 234Th surface water
deficits measurements, both carried out in March 2007, suggest
export production rates of 3–6 mmol POC m−2 day−1 from
traps (Ebersbach et al., 2011) to 12 mmol POC m−2 day−1 from
234Th (Jacquet et al., 2011) and assuming these rates apply for the
spring, summer, and autumn 9 months suggests export of 0.8 to
3.2 mol C m−2 year−1, i.e., at the lower range of the mixed layer
gas and nutrient budget estimates.

As is typical of the SAZ (Lourey and Trull, 2001), nitrate
remains high year round, but is accompanied by depletion of
silicate to below 1 µmol L−1 (Bowie et al., 2011a,b; Eriksen
et al., 2018). Iron limitation appears to be the major control
on productivity (Sedwick et al., 1997, 1999; Bowie et al.,
2009; Cassar et al., 2011). The phytoplankton community is
diverse, with major contributions from diatoms, haptophytes,
and flagellates (Kopczynska et al., 2001; de Salas et al., 2011;
Cassar et al., 2015; Eriksen et al., 2018). Export fluxes to
deep sediment traps are dominated by carbonates (Trull et al.,
2001b) derived approximately equally from coccolithophore
phytoplankton and foraminifera zooplankton (King and Howard,
2003) with significant additional contributions of biogenic
silicates from diatoms (Rigual-Hernández et al., 2015) but
negligible lithogenic materials.

SOTS Automated Observatory Platforms
SOTS has been based around three annually serviced moorings:
(i) the Southern Ocean Flux Station (SOFS) which has a large
surface float equipped with a tower and provides meteorological
measurements, (ii) the Pulse biogeochemistry mooring which
elastically suspends a large instrument package at 30 m depth
to measure biogeochemical properties and also collects water
samples, and (iii) the SAZ sediment trap mooring which
collects sinking particles using conical sediment traps (Parflux-
21, McLane Inc., Falmouth, MA, United States) at nominal
depths of 1000, 2000, and 3800 m, and has co-located current
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FIGURE 1 | Maps of sea surface temperature (SST) and surface currents (left panels), and surface chlorophyll (Chla) (right panels) at approximately monthly
intervals. The specific dates (20 August, 21 September, 15 October, and 8 November 2012) were selected for image quality (cloud cover precluded any clear images
in December). The SOTS site is indicated by the red dots. In the SST images (left panels), the black line around Tasmania indicates the 200 m depth contour.
Images produced by the IMOS Ocean Currents Facility (www.imos.org.au).
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FIGURE 2 | Bathymetric map of seafloor features near the Southern Ocean Time Series (SOTS). Image produced by the IMOS Ocean Currents Facility
(www.imos.org.au).

meters. The SOFS and Pulse moorings also have temperature,
salinity, and oxygen sensors distributed along their mooring
lines, and the SOFS mooring supports a seawater pCO2 system
in its surface float and a multi-frequency acoustic water column
profiler at 30 m depth. The mooring deployments are numbered
sequentially. For the July to December 2012 period studied
here, the data were from SOFS-3, Pulse-9, and SAZ-15. In later
years, from 2016 onward, the Pulse and SOFS capabilities were
combined into a single platform.

All three platforms and most associated sensors have been
described in detail previously (Trull et al., 2010; Schulz
et al., 2011, 2012; Weeding and Trull, 2014; Shadwick et al.,
2015). These references provide methodological details for
determinations of salinity, temperature, and mixed layer depth
(selected as the shallowest depth from 3 algorithms based on
a temperature threshold of 0.3◦C, a maximum temperature
gradient, and a temperature gradient threshold of 0.005◦C m−1)
from sensors distributed along the Pulse and SOFS mooring lines
(Weeding and Trull, 2014), heat fluxes from the SOFS mooring

(Schulz et al., 2012), wave heights from accelerometers on both
the Pulse and SOFS platforms (Schulz et al., 2011), and mass and
POC (and other component) fluxes from the SAZ sediment traps
(Trull et al., 2001b).

Automated Nutrient Sample Collections
and uv-Spectrometric Nitrate Analyses
In addition to the sensor observations, autonomous samplers
are used at SOTS. Specifically, the Pulse instrument pack is
built around a water sampler that collects 48 × 500 mL water
samples (RAS-500, McLane Inc., Falmouth, MA, United States),
mounted inside a protective black plastic shroud to exclude
light (Pender et al., 2010; Trull et al., 2010). The water samples
were collected from a copper-screened inlet outside the shroud,
in pairs, to yield approximately fortnightly resolution over
the annual deployment. Nitrate and silicic acid concentrations
were determined on water samples collected into 500 mL
Tedlar polymer bags pre-filled with mercuric chloride to
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achieve a final poison concentration of 80 µM. The poisoned
samples were analyzed using a continuous segmented-flow
multi-channel spectrometer (Lachat, Inc.) against gravimetric
seawater standards following WOCE protocols in the CSIRO
Hydrochemistry Facility. Precision was ∼2% for silicate and
1% for nitrate. Comparison of nutrients to ship collected water
samples suggest no biases; additional details of the processing
of the RAS-500 samples are available, including protocols for
phytoplankton identification from the second sample in each pair
(Eriksen et al., 2018). Nitrate was also measured using a ISUS
UV-spectrometric sensor (Satlantic, Inc.) operated with default
factory settings and nitrate calculated using separate temperature
and salinity measurements from the SBE16+ CTD following
published methods (Sakamoto et al., 2009).

Chlorophyll Estimates From
Fluorescence
In situ estimates of chlorophyll were obtained from
measurements of chlorophyll fluorescence (stimulation at
470 nm, emission at 695 nm) using a downward facing
fluorometer with a shutter (FLNTUS, Wetlabs Inc., Philomath,
OR, United States) mounted on a copper plate to further inhibit
bio-fouling beneath the large shrouded RAS instrument package
at 30 m depth on the Pulse mooring. Sampling occurred once per
hour, consisting of 5 packets of 31 flashes. Calibration prior to
the deployment in February 2011 was done by the manufacturer
against fluorescent solutions to determine the linear response
sensitivity, with conversion to chlorophyll units based on a
Thalassiosira weissflogii phytoplankton culture. Characterization
of the response after the deployment in March 2016 at CSIRO
using a 5-point fluorescein dilution sequence in deionized water
(0 to 210 µg L−1) suggested a 7.5% decrease in sensitivity, and
a dark count increase of 0.8%. Because these were within the
manufacturer specified precision of 10%, we made no temporal
drift correction and used the February 2011 manufacturer
calibration. We found no evidence for bio-fouling during this
winter through spring deployment, in either the conditions
of the instruments on recovery (free of exterior surface films,
but with sparse attachments of gooseneck barnacles to crevices
in the shroud) or the data. In particular, the FLNTUS 700 nm
backscatter channel did not exhibit high values (above 2000 m−1)
that we have found are a good indicator of biofouling (Figure 3).

Use of the manufacturer’s fluorescence calibration does not
address the significant variations in fluorescence per quantity
of chlorophyll that occur among different phytoplankton taxa
(Proctor and Roesler, 2010). We do not have paired night
time surface water moored fluorometer and pigment analyses
at the SOTS site for 2012, but limited subsequent work in
March 2015 (4 samples) and March 2016 (2 samples) suggests
the manufacturer’s calibration over-estimates SOTS regional
chlorophyll values by a factor of 2.31 ± 0.35 (unpublished data),
and we have adjusted our chlorophyll estimates on this basis.
This is less than the average over-estimation factor of 4 which
we previously used for SOTS fluorometer results (Eriksen et al.,
2018), based on comparison of radiometric and fluorescence
estimates from autonomous profiling floats for the Indian sector

of the Southern Ocean (Roesler et al., 2017). Clearly, these
levels of characterization are insufficient to fully calibrate the
fluorescence signal over the seasonal cycle. For this reason, we
consider our estimates of chlorophyll concentrations as indicative
only and focus our interpretation on large seasonal variations,
rather than the absolute values.

Insolation and Light Attenuation
Photosynthetically active radiation (PAR) was measured in
the air on the Pulse surface float using a spherical detector
(MDS-MkVl, Alec Electronics Inc., Kobe, Japan), and in the
ocean at the top of the RAS instrument with an upward-
facing copper-shuttered planar detector (EcoPAR, Wetlabs Inc.,
Philomath, OR, United States). For both instruments we
relied on the manufacturers’ calibrations. Quality control was
assessed using syntax, range, and climatology tests following
a QARTOD approach suggesting precision to a few percent
but accuracies of only ∼20% (Harley et al., 2019). Therefore,
as with the fluorescence chlorophyll values, we focus on large
seasonal changes.

Net Community Production From
Dissolved Gas Measurements
The Pulse instrument pack includes a CTD (SBE16, Seabird Inc.,
Seattle WA, United States) that logs two oxygen sensors (SBE
43 electrode on a pumped circuit and Aanderaa 3835 optode
(Bergen, Norway) mounted to protrude into the sea beneath
the shroud) and a gas tension device (GTD, Pro-Oceanus, Inc.,
Bridgewater, Nova Scotia, Canada). Estimation of NCP from
these oxygen and total gas tension measurements on the Pulse
mooring coupled with winds and atmospheric pressure data
from the SOFS mooring follows the approach of Emerson et al.
(2008) as used previously for SOTS observations from the 2010–
2011 season (Weeding and Trull, 2014). There are many steps
in this method. To provide perspective on their importance for
our 2012 period we show intermediate results in Figure 4. The
top panel (Figure 4A) shows the estimate of N2 saturation as
derived from the gas tension device, used as a constraint on the
thermal contribution to O2 saturation (Figure 4B). This allows
the sum of diffusive and bubble injection contributions to the
mixed layer oxygen budget to be determined from bulk air-sea
gas exchange parameterizations, yielding the net biological O2 for
the surface mixed layer to be obtained as a residual (Figure 4C).
This budget uses the conventional assumption of negligible
entrainment of oxygen poor subsurface waters from below the
mixed layer, as is also generally applied to O2/Ar based NCP
estimates (Cassar et al., 2007; Reuer et al., 2007; Castro-Morales
et al., 2013). Unfortunately, that is a very poor assumption in the
SAZ in winter when mixed layers deepen and in spring when
mixed layer depth variability is large. Including entrainment
estimated from mixed layer depth variations and oxygen depth
profiles greatly increases the NCP estimates (Figure 4D). Thus
uncertainty in the extent of entrainment dominates the NCP
uncertainty estimates (Weeding and Trull, 2014), and also means
that their seasonal timing is not fully independent of the
stratification observations.
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FIGURE 3 | Seasonal records of chlorophyll fluorescence and total red light (700 nm) backscatter from the FLNTUS instrument deployed at 30 m depth on the
Pulse-9 mooring. The low values of backscatter and absence of spikes are consistent with negligible bio-fouling.

Zooplankton and Higher Trophic Levels
From Active Acoustics
A four-frequency (38, 125, 200, and 455 kHz) acoustic
backscatter instrument (AZFP, ASL Environmental Sciences,
Inc., Victoria, BC, Canada) mounted in a downward-looking
configuration at 30 m depth on the SOFS platform was used
to provide depth resolved estimates of the volume scattering
function (Sv) as a proxy for zooplankton abundances. No
evaluation of target strengths or numbers was carried out,
and thus no attempt at classification of the organisms. The
battery power limited sampling to a burst of 20 sound
pulses every 30 min. This was just sufficient to resolve
diel migration of the bulk population, but not to trace
migration of individual targets. Calculation of Sv followed
the procedures outlined in Deines (1999) using the beam
spreading, sensitivity, and noise background recommendations
from the manufacturer. Based on calibrations at 19◦C
versus a reference hydrophone at 1 m range and a target
sphere at 4.4 m range, the manufacturer estimates an
overall accuracy of ±2 dB. In producing water column
maps of Sv we have retained only those Sv values more
than 6 dB above the depth varying noise background.
Emission off the back of the instrument and its reflection
from the surface ∼30 m above produces artifacts of

high scatter at ∼60 m depth, which were removed from
the Sv time series.

Satellite Observations
The satellite SST observations and altimetry based estimates
of currents (Figure 1) were produced by CSIRO and
provided by the Australian Integrated Marine Observing
System Ocean Currents Facility (technical details are
available on-line: oceancurrent.imos.org.au/sourcedata/).
In brief, the geostrophic currents are derived from
radar altimetry using observations merged from multiple
satellites, as provided by the Radar Altimetry Data Service
(rads.tudelft.nl/rads/rads.shtml). The SST images are based
on the L3U product from Group for High Resolution Sea
Surface Temperature. The SST time series shown in Figure 5
are weekly mean values for the region 46–48◦S, 140.5–142.5◦E
based on the NOAA optimal interpolation of in situ and
satellite observations, as described and available on-line:
www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html.

The images of satellite surface chlorophyll (SChl)
concentrations shown in Figure 1 are based on the MODIS Aqua,
8-day, 9 km product retrieved from the NASA Giovanni interface
(Acker and Leptoukh, 2007). This provides for easy comparison
to other regions of the global ocean. Comparison to pigment
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FIGURE 4 | Intermediate steps in the derivation of net community production (NCP) from dissolved gas measurements: (A) N2 gas concentration and saturation
state, (B) measured O2 concentration compared to its solubility and an expected seasonal cycle based on warming and gas exchange. Note the transition from
undersaturation in winter when oxygen poor subsurface SAMW is entrained and ventilated, to supersaturation in summer that exceeds expectations from warming
and gas exchange and thus indicates biological production. (C) partitioning of the oxygen inputs into contributions from diffusive gas exchange, bubble injection
components, and biological processes assuming no entrainment into the mixed layer. Note the small amount of net respiration in winter and larger net production in
summer. (D) cumulative net community production with and without accounting for entrainment.

analyses suggests it underestimates Chl south of Australia by an
average factor of 1.74 (mode of 95% range from 0.4 to 4) (Johnson
et al., 2013) and accordingly we have multiplied the SChl values
by this factor for comparison to the SOTS fluorescence and PAR
based chlorophyll estimates in Figure 6.

RESULTS AND DISCUSSION

We focus on the timing of physical, biogeochemical, and
biological events over the transition from austral winter to
summer, from late July to end December 2012. We first discuss
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FIGURE 5 | Seasonal physical evolution of SOTS surface waters: (A) temperature and salinity in the mixed layer at 30 m depth, and an envelope of maximum and
minimum satellite SST, (B) cumulative downwards heat flux and mixed layer depth, (C) wind speed and wind stress (hourly data and 8 day smoothing), (D) significant
wave height (hourly data and 8 day smoothing).

the seasonal evolution of the water column structure, then the
lower trophic levels (macro-nutrients and phytoplankton), and
finally zooplankton abundances and sinking particle export.

Stability and Seasonality of the Physical
Environment
In general, the temporal variations in physical conditions in
the SAZ were small. Salinity variations were <0.4 and seasonal
warming less than 3.5◦C (Figure 5A). These are typical results,
as also revealed in decadal SST records (Trull et al., 2001b)
and repeat WOCE/CLIVAR hydrography along 140◦E south of
Tasmania (Trull et al., 2001b). Winds were high on average,

near 10 m s−1 (20 knots), modulated mainly on the ∼5–
10 day timescales of the passage of circumpolar low pressure
weather systems, with lesser seasonal variation (Figure 5C).
There was a small ∼20% decrease in average wind speed in
spring compared to winter, but no significant change in wind
stress because the spring weather systems have higher peak wind
speeds that compensate via the quadratic relationship between
speed and stress. Wave contributions were also rather invariant
seasonally (Figure 5D). Thus, local dynamical forcing of mixed
layer depth had little seasonality, yet mixed layer depths showed
extreme variation between 450 m in winter and 50 m in summer
(Figure 5B), and can reach 600m in some years, as a result of
both local heat fluxes (Figure 5B; Schulz et al., 2012) and Ekman
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transport of colder waters northward (Rintoul and Trull, 2001;
Rintoul and England, 2002). Heat flux was out of the ocean
until approximately 9 September (Figure 5B), and temperatures
remained very close to their winter minimum of 9.1◦C until the
second week of October, when the first shallowing of the mixed
layer began achieving depths of <100 m.

The shallow seasonal stratification was interrupted in late
October when a mixed layer >400 m was again observed, but this
was most likely advective in nature, rather than the result of local
surface forced convection or mixing. This conclusion is based on
modeling of the upper 500 m of the ocean with the Price, Weller
and Pinkel one-dimensional upper ocean model (Price et al.,
1986) using mooring observations for the initial ocean structure,
which verified that the observed surface fluxes were insufficient to
produce such a deep mixed layer. In the model this required the
latent and sensible heat flux loss and wind stresses to be increased
to 300 Wm−2, 200 Wm−2 and 1 Nm−2, respectively, for the
two-week period, which far exceeded those observed during the
November 2012 period (although equivalent fluxes have been
observed in extreme winter-time cooling events when cool and
dry air masses pass over the site (Schulz et al., 2012).

Seasonal Light Availability and Autotroph
Responses
Daily averages of the light available for photosynthesis (PAR)
measured at the surface and in the mixed layer at 30 m depth
show that throughout winter these measures track each other
and both slowly increase (Figure 6A). Then, from mid-October
onward, while the surface PAR continues to rise, the 30 m PAR
levels begin to decrease indicating additional attenuation by
increasing biomass.

Exponential attenuation coefficients calculated from daily
daytime average PAR values at these two depths increased
seasonally from 0.08 to 0.13 m−1, i.e., even in winter there are
sufficient absorbers to approximately double attenuation above
that of pure seawater. The daytime PAR level averaged over the
mixed layer provides one measure of light availability to fuel
autotroph growth and ranged 10-fold from ∼20 to ∼200 µmol
m−2 s−1 from winter into summer (Figure 6A), with primary
control by mixed layer depth and only secondary influence from
increasing attenuation (i.e., self-shading), which reduced mixed
layer summer daytime average PAR by at most 40% (not shown).

Autotroph seasonal abundance estimates are shown in
Figure 6B. Satellite Chl estimates increased ∼ 3-fold from 0.25
to 0.75 µg L−1. Similar estimates were obtained from the depth
attenuation of PAR using a model that assumes it derives solely
from water and chlorophyll (Morel and Maritorena, 2001). Our
local calibration of fluorescence from limited pigment analyses
on two voyages in autumn (see section “Materials and Methods”)
agreed with these estimates in summer, but suggested lower
biomass in winter, possibly as a result of lower fluorescence
yield in winter when iron sufficiency is higher (Behrenfeld et al.,
2009; Schallenberg et al., unpublished). Most importantly for
the assessment of overall productivity, the mixed layer inventory
of chlorophyll biomass showed much less seasonality, with
significant inventories throughout winter and highest values in

spring before stratification developed. This result adds to other
recent evidence, from autonomous profiling floats equipped with
fluorometers and optical back scatter sensors in both northern
and southern high latitude seas (Grenier et al., 2015; Lacour
et al., 2017), that satellite and in situ surface measurements are
poor guides to total biomass levels, especially in winter. Biomass
production in winter is also indicated by our O2/N2 based
NCP estimates (Figure 6C) and by mid-winter increases in the
ratio of chlorophyll fluorescence to 700 nm optical backscatter
(Schallenberg et al., unpublished). Because the mean daytime
light levels in the deep mixed layers in winter are quite low
(∼10 µmol m−2 s−1 equating to ∼1 µmol m−2 d−1) and thus
likely to be insufficient to drive production even in winter when
Fe levels increase (Blain et al., 2013), it seems likely that the
production occurs near the surface in periods in which the actual
mixing depth is shallower than our temperature derived mixed
layer depth estimates (Lindemann and St. John, 2014).

The seasonal increases in chlorophyll fluorescence in the
in situ sensor record (red line in Figure 6B) included interesting
shorter duration variations, such as the small peak in late
September, rapid rise followed by a plateau in mid-October,
narrow peak in late November, and stronger and longer peak
in the first third of December. These events could arise in a
multitude of ways, including resupply of iron from aerosols
or deeper mixing (whether or not captured by the imperfect
lens of mixed layer depth), changes in fluorescence per unit
cell in response to light level variations from cloudiness or
mixing or both, or the passage of parcels of water with differing
autotrophic to heterotrophic activities resulting from their over-
wintering histories. Their interpretation is well beyond the scope
of this paper, and the complexities of separating Eulerian and
Lagrangian contributions suggests progress is likely to require a
statistical approach applied to the growing multi-annual records
at SOTS. In this paper, we remain focused on the broad seasonal
variations, and note that examination of 6 years of fluorescence
records confirms that the overall seasonality described here is
persistent (Schallenberg et al., unpublished).

The estimated magnitude of NCP in winter from the O2/N2
technique is very much controlled by the estimated entrainment
of low oxygen deep waters, a difficult quantity to constrain
(see section “Materials and Methods” and Figure 4). During
the period of July to early October when mixed layers were
still deepening the inferred cumulative NCP was ∼20 g m−2

(Figure 6C) equating to ∼50 mg m−3 over the 400 m deep
mixed layer, and thus to ∼0.5 to 1 mg m−3 Chla, assuming
phytoplankton C/Chl ratios in the range of 50 to 100 (Cloern
et al., 1995); and references therein. This biomass production
exceeds the winter time standing stock of ∼ 0.2 to 0.3 mg m−3

Chl (Figure 6B), and thus suggests significant transfer of carbon
∼40 to 80% of the NCP, i.e., 8 to 16 g C m−2 either to higher
trophic levels or to the deep sea in the form of sinking particles
(further evaluation of these possibilities is provided below in
sections “Higher Trophic Level Responses” and “Pelagic-Benthic
Coupling”). An alternate fate for the NCP is accumulation as
dissolved organic carbon (DOC). We do not have seasonally
resolved DOC data to address this, but results from the late
summer SAZ Project voyage in March 1998 suggest labile surface
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FIGURE 6 | Seasonal response of autotrophs and their impacts on nutrients: (A) PAR at the surface, 30 m depth, and averaged over the surface mixed layer depth
using the attenuation observed between 0 and 30 m depth, (B) chlorophyll estimates from satellite ocean color, PAR attenuation, the fluorometer at 30 m depth, and
its integration to the mixed layer depth, (C) nitrate and silicate concentrations in the surface mixed layer at 30 m depth from the RAS water sampler, nitrate from the
ISUS UV-spectrometer, and cumulative NCP from the O2-optode/N2-gas-tension-device mixed layer oxygen budget technique, after accounting for entrainment.

mixed layer accumulations can reach 15–20 µmol kg−1 above
deep water recalcitrant values near 45 µmol kg−1 (T. Trull and D.
Davies, unpublished), equivalent over the typical 50 m summer
mixed layer depth to 9–12 g C m−2, and thus 20–30% of the
total seasonal NCP.

Throughout the austral winter, surface water nitrate and
silicate concentrations measured in the RAS autonomous water
samples (from 30 m depth) steadily increased, consistent with
dominance of the system by entrainment and precluding an
independent measure of NCP from nutrient drawdown. After
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water column stratification was complete in November, the
O2/N2 mixed layer mass balance technique is more reliable (see
Weeding and Trull, 2014 and Shadwick et al., 2015 and references
therein for discussion), and the implied NCP between then
and the end of December was relatively small ∼12 g C m−2.
During this same period, the nitrate concentration decreased
by ∼5 mmol m−3, equating at Redfield stoichiometry (C/N
of 6.7) and integrated over the 50 m deep mixed layer to
∼20 g C m−2. This value is likely to be over-estimated because
of the concomitant ∼0.1 salinity increase in this period from
the summertime increase in supply of low nutrient subtropical
waters. Correcting for this using typical nitrate versus salinity
gradients for SAZ surface waters (Lourey and Trull, 2001)
suggests nitrate consumption closer to 16 g C m−2. Given the
uncertainties in the O2/N2 technique of order 50% (Weeding and
Trull, 2014), these two estimates are in accord. By mid-December,
the silicic acid concentration has decreased to ∼1.3 µM, and
linearly extrapolating to the end of the record suggests complete
depletion. This is consistent with the longer record of RAS
samples from the previous year (Eriksen et al., 2018).

Higher Trophic Level Responses
The four-frequency acoustic profiler data contain a wealth of
information about the abundance, water column distribution,
diel cycling, and size distributions of grazing organisms and
their predators. We focus on two aspects: seasonal variations
in the total volume scattering above 100 m (Figure 7), and
representative diel cycles from each month (Figure 8). The top
100 m volume scattering signals show similar seasonality at the
three frequencies (38, 125, and 200 kHz in Figure 7; the 455 kHz
signal was unable to image the full top 100 m and is not shown).
Their volume scattering values decreased in July and August
to minima in September and then increased 10-fold by late
December. Throughout the record, volume scattering at 200 kHz
was more than 10-fold greater than the lower frequency signals,
consistent with dominance by smaller organisms (zooplankton)
relative to larger organisms (fish). During the month of October,
as water column stratification developed (Figure 7B) the lower
frequency scattering increased particularly strongly. Overall, the
acoustic signals suggest that the upper trophic levels disappear
from surface waters in autumn and throughout the winter,
and then begin to increase in early October when the mixed
layer shallows and Chl concentrations increase, and thus later
than the beginning of the seasonal increase in total chlorophyll
inventories (Figure 6B). Unfortunately, it is not yet possible
to express the acoustic signals in terms of metabolic demand,
owing to insufficient information regarding the conversion of
the acoustic signals into specific organism abundances (a gap
we are working to fill via targeting netting and optical imaging
techniques). According, we cannot yet evaluate whether the
winter populations are low enough to free phytoplankton from
grazing pressure and can only say that this pressure does
diminish in winter.

In addition to the overall seasonal increases in volume
scattering amplitudes, there were marked changes in their diel
cycles as shown for the 38 and 200 kHz signals in Figure 8
(the 125 kHz signal showed characteristics intermediate to these

frequencies). In July, August, and September the diel cycle
was very sharp, with almost no scatterers present except at
night and the day-night transition occurring in less than an
hour (close to the 30’ acoustic sampling resolution). The night
time scatterer distribution showed only weak concentration
toward the surface. These characteristics applied to both the
38 and 200 kHz channels. In October, the night time increase
in scatterers continued but started to be more concentrated
toward the surface and was accompanied by persistence within
the top ∼70 m throughout the day. This persistence was
stronger for the 200 kHz channel that more effectively images
small scatterers. In November, these trends intensified so that
by December the 200 kHz signals showed little day-night
variations within the now shallow (∼50 m) mixed layers,
although night time scattering remained elevated in the 38 kHz
signal. The 38 kHz signal also suggests that these larger
organisms migrated to only ∼100 m depth after the water
column was stratified.

Pelagic-Benthic Coupling
The coupling of upper ocean productivity to mesopelagic and
benthic ecosystems is complex (Boyd and Newton, 1999; Boyd
et al., 1999). In general higher productivity leads to greater
particle export (Suess, 1980; Bishop, 1989), but in addition,
in global comparisons, systems with strong seasonality appear
to transfer a larger fraction of their production and this
can be the dominant influence on POC fluxes arriving in
the deep sea (Lampitt and Antia, 1997; Lutz et al., 2007).
Particle export at the SOTS site as measured by deep ocean
sediment traps has been previously described from an initial
October to March deployment (Trull et al., 2001a) and for
the slightly greater than 2 year period from July 1999 to
October 2001 (Rigual-Hernández et al., 2015). These (and
subsequent full annual records available on-line) show seasonal
POC flux amplitudes ranging approximately 10-fold (i.e., not
as peaked as in polar waters yet more strongly seasonal than
in oligotrophic gyres) and also that the POC flux seasonality
often includes two periods of higher flux. These are generally
in spring and autumn, but sometimes merge into a broad
period of higher flux that lasts throughout the summer. The
timing of the spring export event varies considerably inter-
annually. In the 1999–2000 year it began in July, reached
a maximum in late October and was followed by very low
fluxes in November (as low as those of the subsequent winter).
In contrast, in the 2000–2001 record the August flux was
very low; the spring peak did not start until October and
reached its maximum in early December. These seasonal
export records are obtained at only low temporal resolution,
precluding detailed evaluation of their timing relative to features
in the sensor records, and are also affected by the nature
of sediment trap particle collections, which show important
variations derived from the limited averaging of mesoscale spatial
variability, i.e., the “statistical funnel effect” (Siegel et al., 1990;
Siegel and Deuser, 1997).

In the 2011–2012 year examined here, POC fluxes were
moderate in August and decreased to a seasonal low in September
before increasing again in October to a spring high that peaked
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FIGURE 7 | Seasonal responses of heterotrophs and POC fluxes to the ocean interior: (A) total volume scattering (Sv) in the top 100 m at 38, 125, and 200 kHz, (B)
mixed layer depth, (C) POC fluxes at ∼1000, 2000, and 3800 m depth measured by sediment traps.

by late November in traps at ∼1000, 2000, and 3800 m depth
(Figure 7C). It is possible that the August winter export is
a remnant driven by slow sinking particles left over from
production in the previous summer and autumn – a possibility
suggested from silicon isotope analyses of diatoms in traps in
the Polar Frontal Zone further south (Closset et al., 2015).

The October increase in flux which declines again by early
December is more in keeping with the seasonal timing of the
mixed layer chlorophyll inventory (which peaks while mixed
layers are still deep in spring) than with the surface chlorophyll
concentrations (which continue to rise through December;
Figure 6B). However, this correlative assessment of the phasing
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FIGURE 8 | Seasonal evolution of heterotrophic diel migrations as revealed by the distribution of volume scattering (Sv) for 5 representative days in each of the
months of July through December (left to right) at 38 and 200 kHz. The line of high-scattering at ∼60 m depth is and artifact from reflection off the surface ∼30 m
above the instrument (and was removed from the total Sv time series shown in Figure 6).

of production, mixed layer biomass accumulation, and export
to the deep sea does not address possible seasonal variations
in attenuation in the intervening mesopelagic realm, and thus
further work is needed to understand the full seasonal dynamics
of biological carbon pump efficiency. The apparent increase of
POC fluxes with depth in Figure 7 provides another cautionary
note. Multi-year records (as yet unpublished but available on-
line via IMOS as detailed above) exhibit this feature in some
years and not in others. Under-collection at the shallowest
depth as a result of greater mooring motions coupled with less-
consolidated particle structures is one possible explanation (Yu
et al., 2001), which we favor over the possibility of advective
supply to only the deeper traps from resuspended sediments
(because there is little compositional change with depth across
the major measured components of POC, biogenic silica and
biogenic carbonates).

CONCLUSION

The SAZ south of Australia has one of the largest annual
variations in mixed layer depth in the global ocean (Rintoul and
Trull, 2001), but all other physical forcing displays only low to
moderate seasonal amplitudes. Surface biomass accumulations
are also relatively small, rarely exceeding 0.5 µg Chl L−1 and
thus much less than classical spring blooms such as those in
the North Atlantic (see section “Introduction” for citations). The

autonomous observations at SOTS show that the limited biomass
accumulation begins in winter, well before the establishment
of warming and stratification. Moreover, when integrated over
the mixed layer, biomass and NCP are similar in winter and in
summer and reach their maxima in spring. The low overall, and
especially daytime, acoustic volume scattering signals in winter
suggest that escape from grazing pressure is a likely explanation
for production initiation, i.e., tropho-dynamic decoupling as
envisioned by Evans and Parslow (1985) and championed by
Behrenfeld (2010). Other processes may also contribute. For
example, the deepening of the mixed layer in winter entrains
dissolved iron from below and this may allow phytoplankton
to function at lower light levels and increase their growth rates.
Observations from the SOTS region suggest this will occur when
mixed layers reach the deep regional ferricline near 400–600 m
depth (Sedwick et al., 1997, 2008; Lannuzel et al., 2011), and
thus the timing is approximately correct (although no Fe data
is available from winter or the year studied here). This effect
will of course operate in concert with tropho-dynamics, and
thus this view of SAZ seasonality is in essence a natural analog
of the “ecumenical hypothesis” for the tropho-dynamic pre-
requisites necessary for a significant response to artificial iron
fertilization (Morel et al., 1991). Moreover, this winter period
of production is followed by a further increase in biomass as
stratification develops later in spring, presumably following the
tenets regarding growth rate responses as laid out by Sverdrup
(1953). Thus it seems there are multiple drivers for the initiation
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and development of seasonal production in the SAZ, a point
recently and beautifully made for the North Atlantic (Lindemann
and St. John, 2014). In this context, our most important results
are the extension of the assessment of seasonal production from a
traditional focus on surface phytoplankton biomass to measures
of its total water column inventory, level of NCP, and coupling to
trophic responses. These observations show that despite the lower
biomass and lack of a marked spring bloom, the productivity
and transfer of organic carbon to the ocean interior in the
SAZ operates at rates close to the global median of ∼1 mg
C m−2 year−1 (Trull et al., 2001a) in large part because of
under-recognized winter and early spring activity.
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