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Kathrin Kopke* , Jeffrey Black and Amy Dozier

Centre for Marine and Renewable Energy (MaREI), Environmental Research Institute, University College Cork, Cork, Ireland

The Ocean Literacy movement is predominantly driven forward by scientists and
educators working in subject areas associated with ocean science. While some in the
scientific community have heeded the responsibility to communicate with the general
public to increase scientific literacy, reaching and engaging with diverse audiences
remains a challenge. Many academic institutions, research centers, and individual
scientists use social network sites (SNS) like Twitter to not only promote conferences,
journal publications, and scientific reports, but to disseminate resources and information
that have the potential to increase the scientific literacy of diverse audiences. As
more people turn to social media for news and information, SNSs like Twitter have
a great potential to increase ocean literacy, so long as disseminators understand the
best practices and limitations of SNS communication. This study analyzed the Twitter
account of MaREI – Ireland’s Centre for Marine and Renewable Energy – coordinated by
University College Cork Ireland, as a case study. We looked specifically at posts related
to ocean literacy to determine what types of audiences are being engaged and what
factors need to be considered to increase engagement with intended audiences. Two
main findings are presented in this paper. First, we present overall user retweet frequency
as a function of post characteristics, highlighting features significant in influencing
users’ retweet behavior. Second, we separate users into two types – INREACH and
OUTREACH – and identify post characteristics that are statistically relevant in increasing
the probability of engaging with an OUTREACH user. The results of this study provide
novel insight into the ways in which science-based Twitter users can better use the
platform as a vector for science communication and outreach.

Keywords: ocean literacy, science communication, public engagement, Twitter, social networking sites,
sentiment analysis

INTRODUCTION

Education is a fundamental pillar of environmental stewardship and a motivator of behavioral
change (Steel et al., 2005; Potts et al., 2016). An understanding of marine processes and issues is
necessary to effectively engage in discussions of marine policy and encourage adoption of pro-
environmental behaviors (Steel et al., 2005; McKinley and Fletcher, 2010; Chen and Tsai, 2016;
Easman et al., 2018). It is widely recognized that human activities are threatening the integrity of
the marine environment (Jefferson et al., 2015; Chen and Tsai, 2016; Easman et al., 2018; Lotze et al.,
2018). However, the most pressing threats to marine ecosystems are not always well understood by
the general public (Jefferson et al., 2014; Lotze et al., 2018). This lack of understanding presents a
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significant barrier to transforming scientific research into
positive social change, and demonstrates a need to work
toward improving the general public’s familiarity with ocean-
related issues.

Between 2002 and 2010, a group of educators and scientists
established a definition and framework for ocean literacy (OL)
(Schoedinger et al., 2010). The framework identifies an ocean
literate person as (1) knowledgeable about the ocean, (2)
able to communicate about the ocean in a meaningful way,
and (3) able to make informed and responsible decisions
regarding the ocean and its resources (Cava et al., 2005;
Santoro et al., 2017). The goal of improving the public’s
OL is to create societies that understand their interconnected
relationship with the ocean, enhancing their ability to make
informed and responsible decisions about marine resources
(Santoro et al., 2017). Therefore, it is imperative that OL
topics are communicated in a fashion that enables citizens
to both understand the information and apply it to make
environmentally friendly decisions (Figure 1).

Today’s educators have a wide variety of contemporary media
platforms to disseminate knowledge and increase public OL.
Social networking sites (SNSs) have become an increasingly
relied-upon source of information and news (Kwak et al.,
2010; Stieglitz and Dang-Xuan, 2013; López-Goñi and Sánchez-
Angulo, 2017). A 2017 PEW Research Center survey of
United States adults reported that 67% of Americans get at
least some of their news from SNSs like Twitter, Facebook,
and YouTube (Kane et al., 2012; Gottfried and Shearer, 2017).
In light of this, SNSs like Twitter can be powerful platforms
for communicating science, including OL topics. Using the
appropriate techniques, ocean scientists and research centers
should be able to harness the potential of SNSs to engage with
wider audiences (Fauville et al., 2015; López-Goñi and Sánchez-
Angulo, 2017).

In response to the increase in SNS popularity, individual
scientists, research centers, and academic institutions are now
frequently turning to Twitter to publicize scientific events and
journal publications (Eysenbach, 2011; Peoples et al., 2016), and
to communicate with their peers about science and research
(López-Goñi and Sánchez-Angulo, 2017; Didegah et al., 2018).
Twitter is also perceived by many scientists and research
centers as a platform that can support science communication
efforts with non-scientific audiences (López-Goñi and Sánchez-
Angulo, 2017; Côté and Darling, 2018b; Didegah et al., 2018).
As a result, scientists from diverse disciplines have analyzed
Twitter to better understand how users interact and exchange
information (Kwak et al., 2010; Stieglitz and Dang-Xuan, 2013;
Didegah et al., 2018). Twitter’s information-sharing process
of ‘retweeting,’ in addition to its ‘like,’ ‘tag’ and ‘hashtag’
features and the ‘comment’ function, provide quantifiable metrics
for investigating information diffusion on Twitter, which is
constantly and continuously collated. This information is readily
accessible via Twitter’s Application Programming Interface (API)
(Kwak et al., 2010; Stieglitz and Dang-Xuan, 2013; López-Goñi
and Sánchez-Angulo, 2017).

Twitter users can freely follow others and interact with
their posts. However, interpersonal networks on Twitter are

subject to homophily, a social phenomenon in which users limit
their associations to individuals with similar sociodemographics,
behaviors, and perspectives (McPherson et al., 2001; Aiello
et al., 2012; Fauville et al., 2015). Several studies have
highlighted that Twitter users preferentially follow those that
are perceived to have similar interests and shared views
(Yardi and Boyd, 2010; Conover et al., 2011; Faralli et al.,
2015; Šćepanović et al., 2017; Côté and Darling, 2018b) –
a tendency referred to as “in-group favoritism” (Everett
et al., 2015). Côté and Darling (2018b) analyzed the Twitter
networks of 110 scientists and found that scientists with
fewer followers were mainly followed by other scientists.
However, their results showed that the heterogeneity of
user types following a scientist – e.g., politicians, non-
profits, and journalists – drastically increased for scientists
with over 1000 followers. The study concluded that tweeting
scientists can indeed reach different and new audiences,
so long as they work to develop a large-enough network
(Côté and Darling, 2018b).

Twitter’s ‘retweet’ feature has been used in several studies
as a metric to gauge the extent of a post’s reach, particularly
in relation to post characteristics such as ‘hashtags,’ ‘mentions,’
photos, or online links that could potentially increase retweet
frequency (Nagarajan et al., 2010; Suh et al., 2010; Yang and
Counts, 2010; Macskassy and Michelson, 2011; Garimella
and Weber, 2017). Conover et al. (2011) demonstrated
that Twitter users predominantly retweet users with similar
views, reiterating the prevalence of homophily and in-group
favoritism in Twitter interactions. In addition, many studies
have investigated the degree to which language influences
a tweet’s engagement. For example, Stieglitz and Dang-
Xuan (2013) highlighted the relevance of sentiment in
Twitter posts and found that the use of emotional rather
than neutral language within tweets influenced the rate
of retweets.

Previous research substantiates the notion that Twitter
has great potential for science communication in support
of ocean literacy, while highlighting that tweeting itself
may not be enough to reach intended audiences. There
exists a gap in the literature concerning how often tweets
from scientists are engaged by different types of users
(Côté and Darling, 2018b). A better understanding of how
different Twitter users interact with science-based tweets could
increase scientists’ capacity to disseminate their work on
Twitter and proliferate scientific literacy. Here, we explore the
association between the characteristics of an OL-based tweet
and users’ engagement, measured in retweets, by analyzing
the Twitter account of Ireland’s Centre for Marine and
Renewable Energy (MaREI). The objectives of this study
are twofold:

(1) Determine if MaREI’s OL posts reach audiences
that may not already be familiar with the subject
matter and,

(2) Identify how MaREI’s OL posts could be adapted to
increase their reach and engagement with wider and more
diverse audiences.
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FIGURE 1 | Ocean Literacy Development Framework. The schematic demonstrates the three themes used to identify an ocean literacy post – Ocean Processes,
Conservation Issues, and Ocean Services – and highlights the three key principles that define an ocean literate person. Altogether, Figure 1 represents a conceptual
framework by which marine science communication results in an ocean literate person (Schoedinger et al., 2010).

MATERIALS AND METHODS

Case Study: MaREI Centre
MaREI is a research center focusing on the marine environment,
renewable energy, and climate action. The center combines
the expertise of a wide range of research groups and
industry partners with the shared mission of addressing
the main scientific, technical and socio-economic challenges
in the marine and renewable energy sectors. MaREI is a
Science Foundation Ireland research center coordinated by the
Environmental Research Institute (ERI) at University College
Cork, Ireland, and has over 200 researchers working across
6 academic institutions collaborating with more than 45
industry partners.

MaREI is well represented on Twitter (@MaREIcentre),
with just over 4,000 organically grown followers and almost
9,000 tweets to date, including 700 photos and videos (as
of December 2018). MaREI regularly uses social media to
promote research and to disseminate information, particularly
to support societal engagement on grand challenges relating
to energy, climate action and sustainable marine development.
The institute’s OL Twitter posts have the ultimate goal of
increasing awareness of the value of the world’s oceans and

the need to safeguard them for future generations through the
provision of accessible information. The center’s commitment to
scientific communication and the proliferation of OL, especially
on Twitter, makes it an ideal case study for the purposes of
this paper.

Twitter Analytics Data and User
Classification
To obtain a sufficient sample size, tweets were collated over
a 21-month period, January 05, 2017–September 13, 2018,
using administrative access to MaREI’s Twitter account. Our
analysis focused on original tweets that expressed educational
themes and analytical information associated with ocean
processes, functions, and urgent conservation issues – relating
to the definition of an individual that is ocean literate. Posts
about other topics, e.g., promoting conferences, talks, or job
opportunities, were manually filtered and omitted from final
analyses. Filtering irrelevant tweets ensured results reflected user
behavior associated with OL posts only. From the initial 1080
tweets collected over the defined study period, 257 demonstrated
OL themes. Relevant posts were considered direct attempts from
MaREI to promote OL via Twitter.
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A number of previous studies have demonstrated the influence
of post characteristics on retweet behavior (Stieglitz and Dang-
Xuan, 2013; Hales et al., 2014; Diug et al., 2016; Brady et al., 2017;
Wadhwa et al., 2017). Researchers have explored unique vectors
of impact variables, resulting in a diverse range of variables being
used across studies. Drawing from the literature (Suh et al., 2010;
Stieglitz and Dang-Xuan, 2013; Wadhwa et al., 2017), this study
selected five variables to explain users’ retweet behavior:

• Number of Photos
• Number of Mentions
• Number of Hashtags
• Number of URL links
• Semantic Orientation

In addition to demonstrating the relationship between post
characteristics and overall retweet frequency, this study looked
to understand how post characteristics influenced the likelihood
a tweet was retweeted by users dissimilar to MaREI. Representing
this relationship highlights variables important in reaching users
outside of MaREI’s immediate network. To test this, a binary
dependent variable, REACH, was defined by classifying users as
one of two types:

• INREACH (0)
• OUTREACH (1)

MaREI’s INREACH group was defined as users whose profiles
expressed similar interests (Weng et al., 2010; Hanusch and
Nölleke, 2018), and therefore most likely already have some
understanding of ocean-related issues, i.e., maintain a degree of
ocean literacy. Based on the identity of MaREI, we identified
three types of like-minded users, and then combined them
into one group to make up MaREI’s INREACH faction: marine
scientists, academics, and marine enthusiasts. Marine scientists
were identified as users that stated they were involved in
marine-related research, such as offshore wind energy, or marine
ecology. We identified academics as users – either individuals
or institutions of higher learning – that were associated with
some kind of science, tertiary education, or possessed advanced
degrees. Including academics in this way ensured our INREACH
group captured the tendency of scientists and academics to
operate within an “echo-chamber,” preferentially interacting with
others in the same discipline or within the realms of advanced
education (e.g., universities and research centers). Lastly, we
identified marine enthusiasts as users that operate outside the
confines of science and research, yet undoubtedly possess some
level of understanding of marine-related issues given their
careers, interests, and values. For example, a user whose profile
bio expresses a love for sailing catamarans may not be involved
in marine research or academia, yet their interest in marine
activities provides an indication that they are familiar with
ocean-related issues (Li et al., 2014). All users that did not
fit into our INREACH group were subsequently classified as
part of MaREI’s OUTREACH group (Figure 2). The binary
classification scheme captures the inherent tendencies of in-
group favoritism and homophily, where users implicitly favor
others with similar interests and predominantly interact with

FIGURE 2 | User classification scheme. An artistic visualization of the
INREACH–OUTREACH classification, emulating the tendency of marine
science communication to circulate within a defined, like-minded network
(represented by the lighthouse).

others within the same network. However, it is important to
note that in-group favoritism and homophily were not directly
quantified in this study- such measures are beyond the scope of
this paper’s objectives.

To separate MaREI’s INREACH-OUTREACH groups, we
obtained the biographical information publically available in the
Twitter bios, usernames, and handles of each user that retweeted
an OL themed post. Biographical user-related data provides
one of the most accurate depictions of a user’s true identity
(Wagner et al., 2012), and was therefore the primary basis for our
classification scheme. Rooted in previous methodologies (Barthel
et al., 2015; Priante et al., 2016; Côté and Darling, 2018a,b),
we built a pre-defined keyword and expression string list using
words that related to our INREACH classification group, and
were therefore likely to be mentioned in a user’s biographical
data (Table 1). The “stringr” package (Wickham, 2017) in R
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was used to filter user profiles that contained relevant keywords
and expressions. The most notable additions made to Côté and
Darling’s (2018a) search string were context-relevant words to
improve classification accuracy. For example, in addition to
including words such as ‘university’ and ‘college,’ the acronyms
of prevalent universities in Ireland were also included, such as
‘UCC,’ ‘CIT,’ and ‘NUIG.’

The accuracy of our keyword-based user classification
scheme was determined by manually checking the profiles of a
random subsample (∼10%) of users, from which the assigned
classification was either verified or not. In our subsample, the
classification scheme returned a precision rate of 85% – a
success rate in line or better than similar studies that conducted
user classification analysis on Twitter (Wagner et al., 2012;
Barthel et al., 2015; Priante et al., 2016; Côté and Darling,
2018b; Haustein, 2018). The simple dichotomous categorization
scheme greatly reduces the risk of misclassification, however,
the algorithm is not without limitations. Our consortium does
not account for profiles in languages other than English, nor
does it detect emoticons. The greatest challenge using the
keyword approach was identifying INREACH users that either
did not identify themselves as such in their bios, or whose bios
were left blank. We addressed this by further analyzing users’
usernames and handles, which provided a means to apply the
keyword search to classify profiles with blank bios. While this
method enabled the accurate classification of a number of profiles
(e.g., @tonyoceanork, @irelandocean, and @newtrients_ucc) it
is possible that certain OUTREACH users belonged with the
INREACH group. Without directly approaching and asking users
who they are, we have no means to calculate this error. That being
said, previous studies have shown that Twitter users, particularly
scholars, typically reveal their professional personas in their user-
related data (Chretien et al., 2011; Haustein, 2018). For example,
Bowman (2015) found that 87% of surveyed university professors
mentioned both their place of work and their professional title
in their Twitter profiles. This shows that, while imperfect, the
methodology used was the most appropriate for this study’s
purposes, and capitalizes on the limited information available on
users’ profiles.

Sentiment Analysis
The emotional orientation of the text in each tweet was analyzed
using computer-based sentiment analysis (SA). SA – also known
as opinion mining – provides insight to the semantic expression
of a string of words, and can be used to define the polarity
of a tweet, i.e., how positive or negative a tweet is given its
word choice (Medhat et al., 2014). The popularization of SNSs
as platforms for information diffusion has made Twitter a
common medium for the application of SA (Agarwal et al., 2011;
Bollen et al., 2011; Saif et al., 2012; Ferrara and Yang, 2015a,b;
Nakov et al., 2016).

There are two prominent automatic classification techniques
used to extract semantic expression in short text sequences:
lexicon-based analysis and machine learning analysis. Each
enables a respective degree of granularity, and varies in
performance given the context to which it is applied. Therefore,
it is important to account for circumstance and objective

TABLE 1 | Categorization of MaREI’s INREACH–OUTREACH groups using regular
expression searches.

Classification of INREACH–OUTREACH users

Network
category

Identity Example keywords

INREACH Marine Scientists – users involved in
marine-related research and science

Ocean + law,
ocean + literacy,
fisheries, hydro + energy

Academia – users associated with
science, universities, and
interdisciplinary research centers

STEM, researcher, Ph.d.,
university

Marine Enthusiast – users that
express an interest and/or familiarity
of marine activities

scuba, sail.∗, ∗ocean.∗,

OUTREACH All users outside of MaREI’s inreach
network, e.g., government officials,
and general public profiles

No keywords present in
the user’s biographical
data

The Table includes the common symbols and syntax used in regular expression,
e.g., ‘∗’ matches zero or more occurrences of any preceding character string.

when selecting the appropriate SA approach. This study
used a Lexicon-based classification technique, which extracts
semantic orientation using a pre-defined word list. Several
word list functions exist, including AFINN, SentiStrength, and
OpinionFinder (Bravo-Marquez et al., 2013). The words included
in each lexicon vary, most notably regarding strong obscene
words and common informal online slang, such as ‘lmao’ and
‘wtf.’ For the purposes of our analysis, AFINN was deemed the
most appropriate word list function.

The AFINN sentiment lexicon was developed by Finn Årup
Nielsen between 2009 and 2011, and is a manually constructed
list of English words that rate valence on an integer scale between
−5 (negative) and ++5 (positive). Nielsen (2011) built the
initial AFINN lexicon using topical tweets about the United
Nations Climate Conference (COP15) in 2009. The latest version
of the lexicon contains 2477 unique words and 15 phrases,
including informal Internet slang, and is currently one of the
most comprehensive lexicons for Twitter-based SA (Koto and
Adriani, 2015).

The polarity of a tweet was measured by summing the valence
of its linguistic structure, demonstrated by:

Pt =
∑

posw +
∑

negw,

where Pt is the overall polarity of a tweet as a function of the
summation of the degree of valence of each word in a tweet.
The result demonstrates the emotional orientation of a tweet, i.e.,
positive or negative, as well as the relative strength. Table 2 shows
examples of the AFINN lexicon as applied to OL tweets collected
from MaREI.

Regression Analysis
Regression analysis is the primary technique for identifying
variables associated with a tweet’s level of user engagement
(Suh et al., 2010; Hong et al., 2011; Wadhwa et al., 2017).
Regression models derive the degree of correlation between a set
of covariates and a dependent variable, highlighting instances of
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TABLE 2 | Sample tweets demonstrating the AFINN sentiment score
methodology.

Example tweets and corresponding sentiment scores

(Number.) Tweet text Words (valence) Aggregate
Polarity

(108) More than happy to support
such a great community-led initiative!
Delighted to see it take off with so
much support. . .hopefully it will be an
inspiration and model for other
communities. Check out this brilliant
new Plastic Free Festival Guide

Happy (3)
Support (2)∗

Great (3)
Delighted (3)
Hopefully (2)
Inspiration (2)
Brilliant (4)
Free (1)

20

(87) The record-breaking marine
heatwave in 2016 across the Great
Barrier Reef has left much of the coral
ecosystem at an “unprecedented” risk
of collapse according to a new study
published in Nature. 94% of reefs
surveyed were affected

Risk (−2)
Collapse (−2)

−4

(192) Sea strike! Light-hearted
animation reminding us to take better
care of our oceans #WorldOceansDay

Strike (−1)
Light-hearted (1)
Better (2)
Care (2)

4

∗ If a word was used twice in a tweet, AFINN only scores it once, e.g., ‘support’
in tweet 108 was counted only once. Bolded words represent that triggered
the AFINN lexicon. Corresponding valence scores are presented in the adjacent
column.

TABLE 3 | Variables included in each regression model.

Regression variables

Variable Description Measurement
form

User Behavior

Retweets Total number of retweets per tweet Positive integer

Reach Binary classification identifying posts
that were retweeted by outgroup user

1 = outreach post
0 = inreach post

Photos Total number of photos in the tweet Positive integer

Mentions Total number of users mentioned in the
tweet

Positive integer

Links Total number of links in the tweet Positive integer

Hashtags Total number of hashtags in the tweet Positive integer

Sentiment (AFINN) Aggregate sentiment score for tweet Integer

variable dependency. To improve the accuracy of predictions,
models must appropriately account for the types of variables
used and any sampling bias (McCullagh, 1980). In this study, the
RETWEET and REACH vectors differ in their dependent variable
structure, necessitating the application of a negative binomial
regression and a multivariate logistic regression, respectively.
The variables used in the regression analyses are explained
in Table 3.

Negative Binomial
Retweet frequency for OL posts, demonstrated by the dependent
variable RETWEET, represents true-event count data, where
an event is expressed only as a non-negative integer value.

For example, a post could not be retweeted half a number of
counts, nor could it be retweeted less than zero counts. As
typical with true-event count data, the RETWEET variable’s
conditional variance is greater than its mean, and therefore
requires an adjustment in analysis to account for over-dispersion
(Gardner et al., 1995; Ver Hoef and Boveng, 2007). For these
reasons, a negative binomial (NB) model was used to represent
the data’s distribution. Retweet behavior was defined by the
following regression:

log(E(Rn)) = β0 + β1photos+ β2mentions+ β3links

+ β4hashtags+ β5afinn,

where E(Rn) is the expected number of retweets for the study’s
vector of explanatory variables as defined by a set of explanatory
variables, βi.

Multivariate Logistic Regression
Multivariate logistic regression (MLR) is a robust technique for
understanding the relational strength of a set of explanatory
variables with a binary response (Pregibon, 1981). In this case,
our binary response variable, REACH, classified collated OL
themed posts based on whether or not at least one OUTREACH
user retweeted that post. After consulting our user classification
algorithm, which was run for every unique user that retweeted,
we assigned a “1” for posts that were retweeted by at least one
OUTREACH user, or a “0” for posts that were retweeted by
INREACH users only (Table 3). The resulting model estimates
the probability of an OL themed post being retweeted by
an OUTREACH user as a function of a set of specified
post characteristics.

Estimating a function’s coefficients, βj, is most commonly
done using the maximum likelihood method, which derives
parameter values by maximizing the probability of reproducing
the values of the observed data set given a selected model (Peng
et al., 2002). The following regression was used to define variables
associated with a tweet’s REACH:

logit(E(On)) = β0 + β1photos+ β2mentions+ β3links

+ β4hashtags+ β5afinn,

where E(On) is the estimated probability of reaching a user
outside of MaREI’s classified INREACH group.

RESULTS

User Classification
A total of 444 unique users retweeted OL posts from MaREI
over the defined study period. Using our pre-defined keyword
list, we identified 289 (65%) users as part of MaREI’s inreach
group, and 154 (35%) users as part of the outreach group. Table 4
provides examples of classified users, highlighting the words
in each profile that triggered the algorithm’s demarcation of
INREACH (TRUE). Profiles that did not contain a keyword were
labeled as OUTREACH (FALSE).
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TABLE 4 | Examples of the users and the classification scheme.

User classification

Handle Username Bio INREACH (T) or
OUTREACH (F)

@DesignProRenew DesignPro Renewables Developing a range of hydrokinetic turbines that can harness clean, renewable
energy from rivers and estuaries. Sister company to @DesignProLtd.

TRUE

@banksofmylee BanksOfMyOwnLovelyLee #CorkTidalBarrier badly needed. OPW Walls are destructive to heritage and wildlife,
too time consuming, and a waste of public money. Independent Review needed

FALSE

@OurOceanWealth Our Ocean Wealth IRL @OurOceanWealth provides information and updates on Ireland’s Integrated
Marine Plan – Harnessing Our Ocean Wealth. Visit ouroceanwealth.ie for details

TRUE

@LadyReverb Lady Reverb Artist, Writer, Activist, Leftist. Anti-Capitalist Bernie2020. RTs 6= endorsement. No
lists. No ’s. #IWW#DSA #MniWiconi #BlackLivesMatterMAHAFia

FALSE

Bolded words indicated words or phrases that triggered the algorithm.

TABLE 5 | Summary statistics of variables used in the regression analyses.

Summary statistics

Variable Mean Median Standard deviation

Retweets 3.71 2.00 4.52

Reach 0.40 0.00 0.49

Photos 0.37 0.00 0.74

Hashtags 1.03 1.00 1.38

Mentions 2.06 1.00 2.09

Links 0.49 0.00 0.53

Sentiment 1.58 0.00 2.88

Descriptive Statistics
Table 5 shows the descriptive statistics for the variables used
in the regression analyses. MaREI’s mean retweet frequency
per OL post from January 2017 to September 2018 was 3.71.
Outgroup members engaged with less than half (40%) of the
analyzed tweets, demonstrating that a majority of MaREI’s
Twitter engagement with OL themed posts came from like-
minded users. The typical OL tweet was comprised of 1.03
hashtags, 2.06 mentions, and used predominantly positive
language demonstrated by a mean sentiment score of 1.58.
A mean number of 0.37 photos and 0.49 links were posted across
all 257 tweets analyzed.

Table 6 presents the summary statistics for OL tweets as
related to the dependent variable REACH. The results show
substantial variation in post characteristics for tweets that were
retweeted by outreach users, versus tweets that were not. Overall,
OL posts that were retweeted by outreach users were retweeted on
average 6.76 times, while posts retweeted by only inreach users
were retweeted 1.76 times. We found the average numbers of
photos, mentions, links, and sentiment to be higher for posts
that were retweeted by outgroup users. Hashtags were the only
characteristic that did not exhibit this relationship; posts with
more hashtags were, on average, retweeted less frequently by
outreach users.

Regressions Results
Tables 7, 8 present the results of the regression analyses. Table 7
displays the results of the NB regression for RETWEETS, while

TABLE 6 | Summary statistics based on the dichotomous dependent variable
REACH used to understand tweet engagement by MaREI’s outgroup users.

Summary statistics for REACH

REACH

Ingroup, Reach = 0 Outgroup, Reach = 1

Standard Standard

Variable Mean Median deviation Mean Median deviation

Retweet 1.76 1.00 2.27 6.76 5.00 5.43

Photos 0.24 0.00 0.68 0.56 0.00 0.80

Hashtags 1.11 1.00 1.48 0.90 0.50 1.19

Mentions 1.89 1.00 1.95 2.32 2.00 2.28

Links 0.45 0.00 0.52 0.55 1.00 0.54

Sentiment 1.21 0.00 2.44 2.15 1.00 3.39

Table 8 displays the results of the MLR for REACH. The
estimated coefficients for variables, βj, are presented alongside
their z-value. Z-values were used to calculate corresponding
p-values, highlighting the relational significance of a predictor
variable to the outcome variable within statistically appropriate
confidence intervals. The validity of each model is presented
under Diagnostics.

Negative Binomial
All variables used to estimate E(Rn) were significant at or
above the 10% level. Coefficients for Photos (β = 0.50) and
Mentions (β = 0.15) were positive and statistically significant
at p < 0.01. Links (β = 0.30) and Sentiment (β = 0.04) also
demonstrated a positive relationship with RETWEET frequency,
with significance levels of p < 0.05 and p < 0.1, respectively. The
only negative coefficient estimated by the model was for Hashtags
(β =−0.13, p < 0.05).

The estimated coefficients allude to the magnitude of each
independent variable’s effect on the model’s outcome variable.
Interpreting this relationship first requires an exponential
transformation of the coefficients, exp(βi), given the log link
function used in the negative binomial model (Eq. 2). The exp(βi)
value demonstrates the relative percent increase in RETWEETS
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TABLE 7 | Predictor variables presented alongside their z-values and standard
errors (SE).

NB regression results for RETWEET

Variable β (z-value) SE Exp(βi)

Constant 0.602 (4.57)∗∗∗ 0.13

Photos 0.50 (6.23)∗∗∗ 0.08 1.65

Hashtags −0.13 (−2.53)∗∗ 0.05 0.88

Mentions 0.15 (5.15)∗∗∗ 0.03 1.16

Links 0.30 (2.45)∗∗ 0.12 1.35

Sentiment 0.04 (1.784)∗ 0.02 1.04

Diagnostics

α 2.94∗∗∗

N 255

Log-likelihood −589.185

Standard error 0.20

Chi-squared 69.92∗∗∗

The dispersion parameter, α, was found to be significant, validating the use of a NB
model. Significant p-values represented as: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10.

TABLE 8 | Logistic regression results for the dichotomous outcome variable
REACH.

Logistic regression results for REACH

Variable βj (z-value) SE Odds ratios (95% CI)

Intercept −0.97 (−3.47)∗∗∗ 0.28

Photos 0.58 (2.74)∗∗∗ 0.21 1.82 (1.24, 2.66)

Hashtags −0.18 (1.73)∗ 0.11 0.89 (0.73, 1.08)

Mentions 0.11 (−1.65)∗ 0.06 1.10 (0.98, 1.24)

Links 0.20 (0.73) 0.27 1.43 (0.89, 2.3)

Sentiment 0.10 (1.99)∗∗ 0.05 1.12 (1.02, 1.23)

Diagnostics

N 255

Null Deviance 342.54

Log-likelihood −160.22

Chi-squared 22.10∗∗∗

Hosmer–Lemeshow (GOF) 4.13

Significant p-values represented as: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10. The
Hosmer–Lemeshow goodness-of-fit (GOF) test was used to assess the fitted
model’s overall departure from the observed data, where test metrics with low
p-values suggest rejection of the model (Lemeshow and Hosmer, 1982; Archer
and Lemeshow, 2006). The metric was not statistically significant (p-value = 0.845),
suggesting that the model adequately fits the data.

for every incremental increase in the corresponding variable,
holding all other variables constant. For example, a one-unit
increase in the number of photos included in a tweet is expected
to increase RETWEETS by 65%. We found that a one-unit
increase for each predictor variable is expected to increase
RETWEETS, except, for Hashtags.

Multivariate Logistic Regression
The results of the logistic regression identify predictor variables
that significantly influenced the likelihood of a tweet being
retweeted by an outreach user. Photos (β = 0.58, p < 0.01),
Sentiment (β = 0.10, p < 0.05) and Mentions (β = 0.11, p < 0.1)
were found to positively influence the likelihood of a post being

retweeted by an outreach user. Our model estimated no statistical
influence from the number of Links present in a post (β = 0.20,
p > 0.1). We found that an increase in the number of Hashtags
(β =−0.18, p > 0.1) decreased the likelihood of an outreach user
retweeting an OL post.

Table 8 also displays the odds ratios for each predictor, and
were calculated by exponentiation estimates of βj. In this instance,
odds ratios represent how the odds of a post being retweeted by
an outreach user change for every incremental increase in a given
variable, holding all other variables constant. Odds ratios greater
than 1 describe positive relationships, while odds ratios less than
1 demonstrate negative relationships. Meaningful interpretations
of odds ratios require corresponding 95% confidence intervals
to be fully above or below one (Peng et al., 2002; O’Brien and
Dunson, 2004). Therefore, only variables found significant at
p < 0.05 – Photos and Sentiment – can be used to confidently
explain changes in the odds of a post being retweeted by an
outreach user.

The odds ratios calculated by the logistic regression model
show that for every incremental increase in the number of
photos added to a post, the probability of an outgroup user
retweeting a post from MaREI increased by approximately 82%.
The Sentiment predictor mirrored this positive relationship. For
every incremental increase in the positivity polarity of sentiment
added to a post, the probability of an outgroup user retweeting a
post from MaREI increased by 12%.

DISCUSSION

Online social media platforms like Twitter have redefined
communicative infrastructure. Over 500 million tweets are
sent every day (Newman, 2017), resulting in a prodigious
exchange of data between users at any given time. Twitter
is now a primary communication tool for businesses, news
outlets, celebrities, and heads of state. Despite Twitter’s growing
societal influence, academia has been slow to integrate this
novel communication technology. Initial reluctance stems from
many scientists’ views that Twitter is ‘a waste of time,’ provides
no professional benefits, and may in fact harm one’s scholarly
reputation (Collins et al., 2016). However, recent surveys show
that more and more academics are joining Twitter to engage
with diverse audiences (Collins et al., 2016). It is therefore
necessary for those in academia to understand how to utilize
the features of Twitter to communicate science to non-scientific
audiences, thereby harnessing Twitter’s capacity as a tool for
science outreach.

Our analysis of MaREI’s Twitter audience, or the users that
engagement with MaREI’s tweets, found that 65% of MaREI’s
OL post retweeters were INREACH users, while the remaining
35% of retweeters were OUTREACH users. These findings reflect
those of Côté and Darling (2018a), who found that, on average,
60% of scientists’ followers on Twitter were other scientists, while
the remaining 40% were non-academic scientists. Our results
indicate that MaREI’s Twitter account has the capacity to reach
beyond the ‘ivory tower,’ but the center’s OL posts may be subject
to a degree of network homophily, where posts predominantly
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reach audiences that may already be highly ocean literate. For OL
posts, retweet frequency with the outreach audience was indeed
less than half (40%) of overall retweets. This reiterates the finding
that a majority of MaREI OL posts predominantly reached the
center’s peers, and thereby remained in the ‘ivory tower’ with
audiences that were considered to be already familiar with the
subject matter.

RETWEETs
The literature substantiates that the characteristics of retweeted
posts are significantly different than posts that are not retweeted
(Suh et al., 2010). Our RETWEET results support these
studies, revealing similar trends in the relative influence of
post characteristics on users’ retweet behavior, while also
highlighting an irregular negative influence from Hashtags on
retweet frequency. By applying a zero-truncated NB model,
we found Photos [exp(β) = 1.65, p < 0.01], Mentions
[exp(β) = 1.16, p < 0.01], Links [exp(β) = 1.35 p < 0.05],
and Sentiment [exp(β) = 1.04, p < 0.10] to be significantly
and positively correlated with the number of times a post
was retweeted. A similar study by Wadhwa et al. (2017)
analyzed the Twitter account of the American Journal of
Neuroradiology (@TheAJNR) and found that the use of a
photo was the most influence tweet characteristic in increasing
user engagement (58.02% higher engagement rate than posts
without photos). Interestingly, very few studies have examined
the correlation between the number of photos in a tweet
and the frequency it is retweeted. To our knowledge, this
study is the first to demonstrate that an incremental increase
in the number of photos used in a post increases the
probability of that post being retweeted. As Twitter permits
a maximum number of four photos per post, the results
strongly suggest that using this feature to the allowed maximum
number for a post is worthwhile. The authors, however, would
admit that if there were no limit, we would not expect
this relationship to continue, and that the quality and type
of images posted most likely influences retweet behavior, as
demonstrated on other social media platforms like Instagram
(Hu et al., 2014).

A number of studies have focused on how the use of
Mentions, Links (sometimes measured as URLs), and Sentiment
affect retweets. For example, Suh et al. (2010) conducted an
extensive exploratory analysis of 10,000 random tweets to
understand features associated with posts’ “retweetability.” Using
logistic regression analysis, the study found higher retweet
probabilities for tweets containing URLs (β = 0.73, p < 0.01)
and Hashtags (β = 1.33, p < 0.01), yet a marginally lower
retweet probability for tweets containing Mentions (β = −0.29,
p < 0.10). Our results show a similar positive relationship with
URLs (Links), however, we identified the opposite relationship
between retweets, and Hashtags and Mentions. This may be a
result of our non-random collation of tweets, having focused
on a single Twitter account (@MaREIcentre), as well as a
specific type of tweet (OL themed posts). However, Suh et al.
(2010) note that, “not all popular hashtags in tweets are
popular in retweets,” suggesting that the type of hashtag used
matters for a tweet’s retweetability. This provides interesting

context regarding the negative correlation for Hashtags found
in our study. Hashtags are used to facilitate the categorization
of posts and effectively group tweets with similar content.
Therefore, posts with certain hashtags may be subject to in-
group favoritism, causing certain users disengage if too many
hashtags are included that are perceived as unfamiliar. Science
based accounts need to be aware of the hashtags they are
using, making sure not to alienate large populations with
technical jargon.

Our results also demonstrate that positive sentiment, or
positive emotional valence, has a significant positive influence
on retweet probability. The integer scale of the SA used in
this study allowed us to not only test the influence of overall
sentiment, but the polarity of a tweet as well, i.e., the positivity
or negativity of a tweet’s language. We found a moderately
significant positive relationship (β = 0.04, p < 0.10) between
a post’s sentiment score and its retweet frequency, indicating
that users were more likely to retweet OL posts if they used
positive language as opposed to negative language. Stieglitz
and Dang-Xuan (2013) found similar relationships concerning
emotions and political information diffusion on Twitter. The
study analyzed a set of tweets regarding German state parliament
elections in 2011, and found a positive correlation between
the amount of sentiment (positive or negative) in political
Twitter messages and the frequency and speed at which a
post was retweeted. Interestingly, the study found no support
for the notion of negativity bias (Baumeister et al., 2001;
Rozin and Royzman, 2001), regarding retweet quantity and
retweet speed, stating that posts with negative content were
not retweeted more frequently or more quickly than posts
with positive content. Negativity bias has been shown to
be particularly strong in the domain of news. Yet, outside
of that domain, findings from other studies show that the
opposite may hold true (Hansen et al., 2011). The integer
scale of the SA used in this study allowed us to not only
test the influence of overall sentiment, but the polarity of
a tweet as well, i.e., positivity or negativity of its language.
This allows us to extend similar claims refuting the notion of
negativity bias, specifically for science based tweets. We extend
our discussion of sentiment and science communication in
the following section, specifically as to how it relates to our
REACH variable.

REACH
In addition to analyzing users’ overall retweet behavior, we
analyzed the degree to which retweet behavior differed between
users inside and outside of MaREI’s immediate network.
This provided a means to investigate how post characteristics
influenced MaREI’s ability to use Twitter as a medium for
ocean literacy outreach. We found post characteristics differed
substantially for retweets by outreach audiences versus those
retweeted by the inreach group. The average number of photos,
mentions, links, and positive sentiment was higher for retweets
by the outreach audience. In addition, the OL posts retweeted by
outreach audience members gained more momentum within the
wider Twitter network, with an average retweet rate of 6.76 times;
the average retweet rate resulting from inreach interaction was
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only 1.76 times. This suggests not only that the center can indeed
tweet with purpose to reach outreach audiences by adjusting
future OL post characteristics accordingly, but that if OL posts
initially reach the intended audiences, the posts have a greater
chance to spread to wider audiences. The analyses revealed
that the inclusion of photos and positive sentiment significantly
increased the probability that outreach audiences would retweet
a post.

Using logistic regression analysis, we found Photos and
Sentiment significantly increased the probability of an OL
themed post being retweeted by an OUTREACH user. Photos
increased the probability of a retweet from an outreach user by
82% (p < 0.01) for every additional photo added to a post, holding
all other variables constant. This finding supports the current
literature on the positive relationship between the presence of
a photo and retweet frequency (Wadhwa et al., 2017, 2018),
however, sheds new light on the ability of photos to increase
Twitter engagement with outreach users.

A similar positive relationship was found for the inclusion
of positive sentiment, independently increasing the probability
of a retweet by 12% (p < 0.05) for every incremental unit
increase. As discussed above, our results support the findings
of a number of previous studies (Bravo-Marquez et al., 2013;
Stieglitz and Dang-Xuan, 2013; Hales et al., 2014; Ferrara and
Yang, 2015a,b; Brady et al., 2017; Garimella and Weber, 2017),
demonstrating that emotions play a key role in retweet behavior.
In addition, this study presents novel insight into how positive
language can increase the probability of a tweet being retweeted
by outreach users, extending the knowledge base related to
the use of SNSs as a tool for science communication, public
engagement, and outreach.

Given the increasing influence of social media as a vector
for information diffusion, our analyses have far reaching
implications for improving the public’s engagement with
environmental issues, such as marine pollution and climate
change. Most notably, our results demonstrate that Twitter
posts using positive language are more likely to be retweeted,
as well as more likely to be retweeted by outreach users. Our
findings support multiple studies concerning pro-environmental
behavior, indicating that people are more likely to respond to
positive language than negative language. Media representations
of environmental issues like climate change are overwhelmingly
discussed using fear appeals and alarmism (O’Neill and
Nicholson-Cole, 2009), often communicated in the context of
punctuated dramatic events. As discussed above, several studies
have found that using negative sentiment, such as fear appeals
and apocalyptic dialog, is unlikely to influence environmental
behavior long-term (Lowe et al., 2006). Rather, individuals are
more likely to respond with increasing dissonance, rationalizing
such issues as impersonal and distant in both time and
space (O’Neill and Nicholson-Cole, 2009). Furthermore,
Hastings et al. (2004) found that excessive fear appeals
may be suspect to a law of diminishing returns, sometimes
referred to as apocalypse fatigue (Nordhaus and Shellenberger,
2009), where individuals become desensitized to the severity
of an issue.

CONCLUSION

The integration of Twitter in academia is beneficial for scientists’
careers (Eysenbach, 2011), and provides a unique platform
for two-way interactions between researchers and the general
public (Smith, 2015; Ke et al., 2017). Scientists that harness the
networking power of Twitter have the potential to proliferate
science literacy with a unique degree of accessibility. However,
to our knowledge, no studies have looked to understand how the
attributes of science-based tweets influence scientists’ ability to
engage with diverse audiences. This study provides a foundation
for understanding how to facilitate effective communication
between academia and the general public on Twitter. By looking
only at posts related to Ocean Literacy, our results capture
the general public’s behavioral responses on social media to
science-based tweets. Using the MaREI Twitter account as a case
study, we demonstrate that the inclusion of photos and positive
sentiment independently increase the likelihood of engaging with
an outreach user by 82 and 12%, respectively. These results imply
that simply tweeting scientific information does not necessarily
constitute effective communication, and that the attributes of
a post significantly impact scientists’ ability to engage with
individuals outside of their immediate network.

As discussed, our results have several implications concerning
the use of Twitter for ocean literacy, science communication,
and academia’s overall engagement with different user types on
social media. Previous studies have looked to classifying types
of users on twitter, and have looked to identifying what types of
posts users interact with. However, no studies, to our knowledge,
have combined these approaches to understand how different
Twitter user types respond to different types of posts on twitter,
particularly concerning posts with science based content. This is
especially important for academic users on twitter that want to
engage with wider audiences.

Furthermore, the authors cannot overstate the significance
of this study’s results relating to the importance of using
photos and positive sentiment in communicating science with
the intention of engaging outreach users. Scientific literacy is
a necessary component of a just, functional, and democratic
society (Lehr, 2007), yet, historically, science communication
avenues have been relatively inaccessible – often confined to the
upper echelons of academia. For these reasons, the importance
of studies that focus on improving science communication,
such as ours, transcends disciplines, maintaining the notion that
informed citizens ‘make democracy work (Milner, 2002).’ The
mass communicative integration of SNSs like Twitter provides a
fast, easy, and widely accessible platform for academics to engage
with members of the public. Many researchers advocate for the
use of Twitter in academic environments, especially as a means
for science communication (Kassens-Noor, 2012; Shiffman, 2012;
Mckay et al., 2014; López-Goñi and Sánchez-Angulo, 2017), yet
there are few examples of its use in the literature, and little to no
peer-reviewed information on how to improve science outreach
on Twitter. Here, we present novel information regarding the
ways science outreach on Twitter can be improved through the
use of photos and positive language.
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As environmental issues continue to move to the forefront
of societal discourse, scientists, now more than ever, must
communicate their research in ways that produce palpable
change. This study provides the first analysis of scientists’ ability
to communicate ocean literacy themes to different user types on
Twitter. Further research is needed to better understand how,
or if, interactions on Twitter correspond to behavioral changes
in real life. For example, what evidence is there to suggest that
interactions on Twitter concerning environmental issues, such
as marine litter, actually increase pro-environmental behaviors
in real life? This should be further supplemented by examining
the effectiveness of different SNSs, e.g., Twitter vs. Facebook,
in disseminating scientific information to different audiences.
Lastly, our results concerning hashtags and outreach user
engagement do not support previous findings, and merit further
investigation, specifically regarding the ways in which the use of
Hashtags may facilitate in-group favoritism and homophily.

Limitations
While the authors attempted to optimize this study’s
methodology, there are nevertheless limitations worth
recognizing. Firstly, the study’s focus on a single user’s profile
(@MaREIcentre), along with a single topic (ocean literacy) may
limit the generalizability of our results. We highly recommend
further research be done to improve the overall understanding of
how science-based Twitter accounts engage with members of the
wider public.

Secondly, our binary INREACH–OUTREACH classification
system relied solely on information available in users’ bio, handle,
and username. While we addressed these issues as best we
could, misclassification remained an issue. Therefore, we highly
recommend future research employ machine learning techniques
to more accurately identify scientists on twitter. Such methods
incorporate latent user attributes – including post behavior –
that would likely improve the accuracy of user classification, and

provide further insight into how certain user groups interact with
one another on Twitter.
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