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The aragonite saturation state (�Ar) in the subpolar North Atlantic was derived using

new regional empirical algorithms. These multiple regression algorithms were developed

using the bin-averagedGLODAPv2 data of commonly observed oceanographic variables

[temperature (T), salinity (S), pressure (P), oxygen (O2), nitrate (NO−

3 ), phosphate (PO3−
4 ),

silicate (Si(OH)4), and pH]. Five of these variables are also frequently observed using

autonomous platforms, which means they are widely available. The algorithms were

validated against independent shipboard data from the OVIDE2012 cruise. It was also

applied to time series observations of T, S, P, and O2 from the K1 mooring (56.5◦N,

52.6◦W) to reconstruct for the first time the seasonal variability of �Ar. Our study

suggests: (i) linear regression algorithms based on bin-averaged carbonate system data

can successfully estimate �Ar in our study domain over the 0–3,500m depth range

(R2 = 0.985, RMSE = 0.044); (ii) that �Ar also can be adequately estimated from

solely non-carbonate observations (R2 = 0.969, RMSE = 0.063) and autonomous

sensor variables (R2 = 0.978, RMSE = 0.053). Validation with independent OVIDE2012

data further suggests that; (iii) both algorithms, non-carbonate (MEF = 0.929) and

autonomous sensors (MEF = 0.995) have excellent predictive skill over the 0–3,500

depth range; (iv) that in deep waters (>500m) observations of T, S, and O2 may

be sufficient predictors of �Ar (MEF = 0.913); and (iv) the importance of adding pH

sensors on autonomous platforms in the euphotic and remineralization zone (<500m).

Reconstructed �Ar at Irminger Sea site, and the K1 mooring in Labrador Sea show high

seasonal variability at the surface due to biological drawdown of inorganic carbon during

the summer, and fairly uniform �Ar values in the water column during winter convection.

Application to time series sites shows the potential for regionally tuned algorithms, but

they need to be further compared against �Ar calculated by conventional means to fully

assess their validity and performance.

Keywords: aragonite saturation state, empirical algorithms, autonomous sensors, commonly observed oceanic

variables, GLODAPv2, subpolar North Atlantic
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INTRODUCTION

Complex horizontal and vertical circulation in the subpolar
North Atlantic has the potential to influence global ocean
circulation and climate patterns. Deep water formation coupled
with strong winds, and high rates of primary production in
spring and summer result in this region of the subpolar North
Atlantic acting as a strong sink for atmospheric carbon dioxide
(DeGrandpre et al., 2006; Pérez et al., 2008). Over the past two
decades an increase in surface water pCO2 at a rate greater
than that of the atmosphere has been observed in the Irminger
Sea (Olafsson et al., 2009; Bates et al., 2014). In response to
this increasing pCO2, the surface water pH and the aragonite
saturation states (�Ar) show a decreasing trend (Vazquez-
Rodriguez et al., 2012; García-Ibáñez et al., 2016). Pérez (2016),
using the RCP8.5 scenario of the IPCC (2013), predicted that
aragonite undersaturation (�Ar < 1) in the Irminger basin would
likely occur between 2050 and 2065, at atmospheric CO2 levels
between 510 and 640 ppm.

Most of the historical measurements of inorganic carbon
(García-Ibáñez et al., 2016; Olsen et al., 2016) in the Irminger and
Labrador basins have occurred on a few repeated transects over
time, or at specific locations (Olafsson et al., 2009; Azetsu-Scott
et al., 2010). The subpolar North Atlantic remains undersampled
with respect to its scales of variability (Fröb et al., accepted),
but novel sensor packages now being deployed on autonomous
platforms (e.g., profiling floats, gliders, moorings) have the
potential to dramatically increase observational coverage in
time and space. Unfortunately, most of these platforms do not
directly provide the set of two inorganic carbon measurements
commonly used to derive �Ar. This argues for a need to
develop regional predictive algorithms to determine estimates of
key water chemistry variables, such as �Ar, from information
contained in the measurements of commonly observed oceanic
non-carbonate variables such as temperature (T), salinity (S),
pressure (P), oxygen (O2), and nutrients and/or variables that can
be measured by autonomous sensors.

Previous studies have used multiple linear regression models
(MLR) to estimate inorganic carbon variables from hydrographic
measurements (Juranek et al., 2009, 2011; Kim et al., 2010;
Alin et al., 2012; Bostock et al., 2013; Williams et al., 2016;
Carter et al., 2017). These were applied to different data sets
(hydrographic surveys, time-series, profiling floats, climatology)
in order to reconstruct estimates of the natural variability of
carbon variables. Juranek et al. (2009, 2011) used hydrographic
surveys of T and O2 to estimate �Ar off the Oregon coast, and
Argo profiling float T and O2 profiles to estimate pH and �Ar

in the northeastern subarctic Pacific Ocean. Alin et al. (2012)
reconstructed pH, carbonate saturation states, carbonate ion
concentration, total dissolved inorganic carbon (TCO2), and total
alkalinity (TAlk) in the California Current System from T, O2, S,
and density. Williams et al. (2016) estimated pH in the Pacific
sector of Southern Ocean from T, S, O2, P, and nitrate (NO−

3 ).
Furthermore, Bostock et al. (2013) used T, S, and O2 to estimate
TAlk and TCO2 in the intermediate and deep waters of the
Southern Hemisphere, while Kim et al. (2010) used T, P, and O2

to estimate �Ar in the Sea of Japan.

All these studies demonstrated that �Ar can be robustly
determined from measurements of commonly observed and/or
non-carbonate oceanic variables and that MLR models provide a
valuable tool for reconstructing �Ar where direct observations of
carbonate variables are not available. It is, however, expected that
relationships between �Ar and other variables will vary among
different parts of the ocean suggesting a need for development
of regional models. To our knowledge, such regional models
have not been developed in the subpolar North Atlantic. While
clearly not replacing direct measurements of inorganic carbon
variables, these approaches produce estimates of �Ar, including
calculations of error, which can greatly expand the information in
both space (e.g., in undersampled areas), and in time (e.g., during
the wintertime where almost no inorganic carbon measurements
are available). This will allow for better detection and attribution
of ocean acidification (OA) related processes to anthropogenic
CO2 and identification of potential OA “hot spots,” while
also improving the understanding of complex patterns and
relationships between physical and chemical changes (e.g., during
deep water convection, extreme wind events or fresh water input,
and eddy activity) and the marine communities affected by OA.
Regionally tuned empirical algorithms can also provide guidance
for optimal placement (horizontal and depth) of additional
autonomous platforms in the subpolar North Atlantic that
augment current and planned ship surveys [e.g., Observatoire
de la variabilité interannuelle et décennale en Atlantique Nord
(OVIDE), AR7W, RedFish] and existing time-series [e.g., K1
mooring, Central Irminger Sea mooring (CIS), Overturning in
the Subpolar North Atlantic Program (OSNAP)].

Quantifying predictive skill is key to assessing the effectiveness
of any empirical algorithm. This includes the goodness of fit
for the regressions of �Ar on oceanographic variables and skill
assessment metrics (Stow et al., 2009). These can help guide
improvements in model structure, as well as aid in recognizing
model limitations. Another important aspect of predictive skill
is an empirical algorithm’s ability to successfully predict “out
of sample” (i.e., validation of the algorithm on an independent
data not used in building the original regression model). This is
particularly important when models are used as tools to support
decision-making.While common in the statistical literature, such
independent validation has not been adequately addressed by
most of the previous studies in oceanography.

The goal of this study is to investigate the predictive skill
of commonly observed non-carbonate and autonomous sensor
oceanographic variables [T, S, P, O2, NO

−

3 , phosphate (PO3−
4 ),

and silicate (Si(OH)4), pH] in determining a key water chemistry
variable (�Ar) in the subpolar North Atlantic. This region is of
high oceanographic interest due to its role in Atlantic Meridional
Overturning (Jackson et al., 2016) and a major carbon dioxide
sink (Sabine et al., 2004). The rationale for this work is to
assess the potential for autonomous sensors and biogeochemical
models to monitor �Ar in undersampled regions of the ocean
and to provide information to the research community for cost
and benefit analysis to support decisions on selection of optimal
sets of shipboard measurements and set of sensors for outfitting
autonomous platforms. Regional algorithms are necessary as
the empirical relationships between �Ar and oceanographic
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variables would be expected to vary over broad domains with
a wide range of oceanographic conditions (e.g., such as the
whole North Atlantic). The specific objectives are to (1) develop
regional empirical algorithms for the subpolar North Atlantic
to determine �Ar using existing data from GLODAPv2, which
has not been done before; and (2) validate the algorithms
against independent shipboard data (from the OVIDE2012
cruise) to assess its performance and to improve best practices
in skill assessment methodology. As an illustration of how the
algorithms trained with GLODAPv2 data can be applied to a set
of commonly measured non-carbon variables we use the derived
empirical algorithm with a time series data from Irminger Sea
site, and from a mooring (Station K1 in the Labrador Sea), and
estimate for the first time the variability of�Ar over a full seasonal
cycle.

DATA

GLODAPv2 Data
Observations of oceanographic non-carbonate variables [T (◦C),
S, P (dbar), O2 (µmol kg−1), NO−

3 (µmol kg−1), PO3−
4 (µmol

kg−1), Si(OH)4 (µmol kg−1)] and inorganic carbonate variables
[TAlk (µmol kg−1), pH (at in situ T and P), and �Ar] were
extracted from Global Ocean Data Analysis Project version 2
(GLODAPv2; Olsen et al., 2016). The input for our analysis
are the vertically interpolated, horizontally bin averaged bottle
data extracted from the mapped GLODAPv2 product (Lauvset
et al., 2016). Each of these bin-averaged data points comes
with an associated standard deviation, as well as the number
of data in the bin. For further details on this data product the
reader is referred to Lauvset et al. (2016) and the published
metadata (available here: https://www.nodc.noaa.gov/archive/
arc0107/0162565/1.1/data/0-data/mapped/). Note that in order
to eliminate biases due to variable spatial and temporal resolution
of the bottle data and an anthropogenically-driven trend, both
the pH and �Ar data were normalized to year 2002 before
binning and averaging. The GLODAPv2 normalization was done
by using anthropogenic carbon calculated with the transit time
distribution (TTD) method (Hall et al., 2002; Waugh et al., 2006)
to correct TCO2 to year 2002. �Ar was then calculated from
the normalized TCO2. The method is thoroughly described in
Lauvset et al. (2016). The bin-averaged data were also used as the
basis for the 1◦ latitude and longitude spatial statistical mapping
by Lauvset et al. (2016), but we note that this global mapped
product had large spatial scales incompatible with our limited
regional focus.

�Ar (at in situ T and P) in GLODAPv2 was calculated from
the TCO2 (normalized to year 2002 to remove anthropogenic
influence) and TAlk. pH was calculated from the TCO2

(normalized to year 2002 to remove anthropogenic influence)
and TAlk at both in situ T and P, and at constant T (25◦C) and P
(0 dbar). All calculations for the carbonate system in GLODAPv2
were performed using the MATLAB version (van Heuven et al.,
2009) of CO2SYS (Lewis and Wallace, 1998) using T, S, P, PO3−

4 ,
and Si(OH)4, the dissociation constants of Lueker et al. (2000)
for carbonate, Dickson (1990) for sulfate, and the total borate–
salinity relationship of Uppström (1974). The uncertainly in

calculated �Ar was about 0.05. For further details, see Olsen et al.
(2016).

The geographical domain of our study was adapted from the
southwestern portion of the Longhurst ARCT biogeochemical
province (Longhurst, 1995; Figure 1-black line), and designed
to reflect the approximate boundaries of the Irminger and most
of the Labrador Sea. For each variable approximately 1630 data
points in this domain were extracted from GLODAPv2 and used
to develop empirical algorithms using amultiple linear regression
(MLR) model (see section Methods). Note that the GLODAPv2
data (Figure 1-blue dots) has a well-recognized seasonal bias as
this region of the subpolar North Atlantic is almost exclusively
sampled inMay–August (boreal summer). The bin-averaged data
used here are thus representative of the summer season.

Shipboard Measurements
To validate the empirical algorithms derived from the regression
analysis of the GLODAPv2 data [see section Multiple
Linear Regression (MLR) Algorithms (Training)], we used
Conductivity-Temperature-Depth (CTD) profiles and water
samples for nutrients [NO−

3 (µmol kg−1), PO3−
4 (µmol kg−1),

and Si(OH)4 (µmol kg−1)], and inorganic carbon (TAlk and
pH) from the OVIDE section across the Irminger Sea in summer
2012 (Figure 1-pink circles). These data were not included
in GLODAPv2, because they were not submitted in time for
inclusion in the database, and hence represent an independent
data set. For the OVIDE2012 cruise, water samples were drawn
at 108 stations from 0 to 5,400m depth. TAlk was analyzed
by single point titration (Mintrop et al., 2000; Pérez and
Fraga, 2007) and calibrated with certified reference materials
(CRMs) (Dickson et al., 2007) with overall accuracy of 4 µmol
kg−1. pH was determined at T = 25◦C and P = 1 atm with a
spectrophotometric method with uncertainty of 0.0055 pH units

FIGURE 1 | Map of the northern North Atlantic, showing GLODAPv2 bottle

data locations (blue dots) with OVIDE2012 cruise stations (pink dots) and K1

mooring location (green dot) and Irminger Sea site (light blue dot). Black line

represents the southwestern portion of Longhurst Atlantic-Arctic (ARCT)

province, which is the study domain.
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(Clayton and Byrne, 1993). Further details on the analysis of
inorganic carbon is described in García-Ibáñez et al. (2016). As
TCO2 was not measured at OVIDE2012, �Ar was calculated
from TAlk and pH (total scale, at in situ T and P), and T, S,
P, PO3−

4 , and Si(OH)4 using the same MATLAB version of
CO2SYS (van Heuven et al., 2009) and constants (Uppström,
1974; Dickson, 1990; Lueker et al., 2000) as used in GLODAPv2.
The estimated uncertainty in calculated�Ar using a perturbation
(Monte Carlo) method and uncertainties of 6 µmol kg−1 for
TAlk and 0.01 for pH, were between 0.020 and 0.056 (Perez,
personal communication). Nutrient analyses were performed
using a SKALAR segmented flow auto-analyser, and oxygen
samples were analyzed by the Winkler method. Details of the
analysis are given in the CATARINA Cruise report (https://
cchdo.ucsd.edu/cruise/29AH20120622). Given that there is
a non-negligible uncertainty associated with the calculation
of �Ar, and that the calculation from TAlk and pH yield
slightly different answers compared to using the Talk and TCO2

combination as in GLODAPv2, this adds further rationale for
performing skill assessment using independent validation (i.e.,
while every effort is made to ensure consistency, independently
collected data will always have its own unique features). We also
note the observed decrease in pH [−0.025 pH decade−1 in the
Irminger Sea, Bates et al. (2014)] as a consequence of increase
in TCO2 since 2002 due to invasion of anthropogenic CO2. For
validation of the regression analysis we extracted the subset of
OVIDE2012 data from 0 to 3,500m at those stations and depths
where the complete set of analysis variables was available (303
points for each variable).

Time Series
As an illustration of how the algorithms trained with GLODAPv2
data can be applied to a set of commonly measured non-carbon
variables to predict seasonal variability of �Ar in the surface
waters, we used time series data of T, S, P, and O2 at 10 and 100m
depth from two sites in subpolar North Atlantic (Figure 1): (1)
Irminger Sea site (64.3◦N, 28◦W, Olafsson, 2016), and (2) the K1
mooring (56.5◦N, 52.6◦W) in Labrador Sea.

For Irminger Sea site, we used T, S, P, and O2 data from
2010 to 2012, measured four times per year (February, May,
August, November). We also used T, S, P, TCO2, pCO2, PO

3−
4 ,

and Si(OH)4 to compute �Ar using CO2SYS for comparison
with estimated �Ar. For the K1 mooring we have high
frequency T, S, P, and O2 data from August 2014 to March
2015. O2 measurements from the K1 mooring were inter-
calibrated when the mixed layer encompassed both sensors,
and matched to a CTD profile taken prior to deployment.
The details on measurements are described in Koelling et al.
(2017). Observations of inorganic carbon variables at K1mooring
location during our time-series observations were not available.

METHODS

The saturation state (�Ar) for the aragonite is calculated as:

�Ar = [Ca2+][CO2−
3 ]/K’sp (1)

where [Ca2+] is concentration of calcium ions, [CO2−
3 ] is

concentration of carbonate ions and K’sp is the stoichiometric
solubility product for aragonite. [Ca2+] changes in seawater
are related to S, but they are small, therefore �Ar is largely
determined by changes in [CO2−

3 ] and K’sp. [CO
2−
3 ] can be

calculated from TCO2 and TAlk, where TCO2 varies (non-linear)
with physical conditions and biological activity (Barbero et al.,
2011) and TAlk with T and S (linear) (Lee et al., 2006). K’sp, is
a function (non-linear) of T, S, and P. In the open ocean, we
expect (1) TCO2 to increase with higher uptake of nutrients and
decrease with production of O2, (2) TAlk to increase with T and S,
and (3) K’sp to decrease with T and increase with P and S.We thus
anticipate that �Ar will also vary with all these variables (most
likely non-linear); generally to increase with T, O2, and pH, and
decrease with P and nutrients. The relationship with S is harder
to predict, as well as whether the relationships of these variables
with non-conservative quantity, such as �Ar could be predicted
with linear function.

Multiple Linear Regression (MLR)
Algorithms (Training)
MLR was used to develop a predictive relationship for �Ar in the
subpolar North Atlantic in 0–3,500m, which is referred to as the
“training” of the algorithm. MLR used GLODAPv2 �Ar as the
response variable and a subset of the GLODAPv2 data [T, S, P,
pH, TAlk, O2, NO

−

3 , PO
3−
4 , and Si(OH)4] as predictor variables,

all of which are potentially readily measureable quantities. The
regression equation for the full model, which includes both
non-carbonate variables and the autonomous sensor variables is:

�Ar = β0 + β1T + β2S + β3P + β4 pH+ β5O2 + β6NO
−

3

+ β7PO
3−
4 + β8Si(OH)4 + e (2)

where βi are the regression coefficients (with β0 representing the
intercept) and e is the error term. Note that we do not include
TAlk in the full model of Equation (2), but instead also consider
a separate model with those predictor variables that are used as
inputs to CO2SYS to calculate �Ar [i.e., T, S, P, TAlk, pH, PO3−

4 ,
and Si(OH)4]:

�Ar = β0 + β1T+ β2S+ β3P+ β4pH+ β5TAlk+ β6PO
3−
4

+ β7Si(OH)4 + e (3)

To account for both the sampling density and data spread,
all regressions were weighted by the inverse of standard error
making the weighting proportional to the square root of the
number of data points per bin. Note that in all cases considered
here, regression output yield error estimates for the regression
parameters, as well as confidence and prediction intervals for
estimated �Ar.

For reasons of parsimony and interpretability we have chosen
only to consider the oceanographic predictor variables in their
original forma and not to consider higher order regression
models wherein the predictor variables are combined into
products and nonlinear polynomial relations are used. Similarly,
we have explicitly decided not to include latitude and longitude
as predictor variables. The rationale is that the regional domain
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for analysis has been chosen so that relationships should be
relatively homogenous within it, and also that spatial variations
(as embodied in latitude and longitude as predictors) can be
easily confounded with changes in the primary oceanographic
variable.

Two regression model building strategies were undertaken
to identify the best set of oceanographic variables useful in
predicting �Ar. These strategies broadly correspond to (i)
unsupervised and (ii) supervised learning (e.g., see Hastie et al.,
2009). We used two types of unsupervised model building
approaches. The first of these is “all possible regressions.”
This approach considers all possible subsets of the predictor
variables and can identify the regression model that has the
best fit for a given number of predictor variables (i.e., the
best regression based on one predictor, two predictors, etc.),
as well as allow for assessment of the tradeoff in including
different subsets of the available predictor variables. The second
unsupervised approach was an automated selection of a set
of best predictor variables for �Ar based on the statistical
model building technique of stepwise regression (Montgomery
et al., 2015). Here, we performed stepwise predictor variable
selection based on information criteria wherein regression fit (as
measured by the coefficient of determination, R2) is balanced
against model complexity (the number of predictor variables).
We used the Bayesian Information Criterion (BIC) (Box et al.,
1994), since this provides for a relatively strong complexity
penalty relative to other information criteria (Plancherel et al.,
2013). Three established stepwise approaches were implemented:
forward selection, backward elimination, and forward/backward
combination. For details on these techniques, the interested
reader is referred to Montgomery et al. (2015), or most textbooks
on multiple regression.

This unsupervised approach, however, does not take into
account which variables are easy to measure, or which might
be readily available through existing instruments or monitoring
programs. Hence, we also use a scenario based, or “supervised
learning,” approach to predict �Ar. Three cases are considered:
Scenario 1 uses non-carbonate variables [T, S, P, NO−

3 , PO
3−
4 ,

Si(OH)4] only; Scenario 2 uses variables that can be measured
by autonomous sensors (T, S, P, O2, pH, NO−

3 ); and Scenario
3, designed to see how well a regionally tuned MLR model
can represent the carbonate system in terms of predicting �Ar

using the inputs to CO2SYS [i.e., T, S, P, TAlk, pH, PO3−
4 , and

Si(OH)4], and here is named the “CO2SYS model.” For the
first two scenarios we examine subsets of predictors to identify
key variables. This strategy provides useful information toward
a cost-benefit analysis to inform decisions on prioritization
of shipboard measurements and outfitting of autonomous
platforms.

Validation
The empirical algorithms were evaluated in terms of their
ability to predict “out of sample,” i.e., validation based on an
independent data set that was not used in training the regression
model. Here an independent data set from the OVIDE2012
cruise (Figure 1) was used for validation. Specifically, the derived
algorithms were applied to (subsets) of the predictor variables
(Table 3) measured on the OVIDE2012 cruise. Predicted �Ar

from algorithms trained with GLODAPv2 climatological data
were compared to “observed” �Ar as calculated from carbon
parameters (pH and TAlk) measured on the OVIDE2012 cruise.
The quantitative metrics used to assess validation performance
followed Stow et al. (2009), and a detailed interpretation is
given there. Metrics included: correlation (r), root mean squared
error (RMSE), the reliability index (RI), the average error (AE),
the average absolute error (AAE), and the modeling efficiency
(MEF). We have adopted the following quantification for MEF
thresholds: MEF < 0.2 (poor), MEF 0.2–0.5 (good), MEF 0.5–
0.65 (very good), and MEF > 0.65 (excellent; Allen et al., 2007;
Nondal et al., 2009). These metrics, taken together, act to assess
the bias and variability associated with applying the empirical
algorithms to independent data.

Note that a few stations from the OVIDE2012 data set
fall outside of our modified Longhurst ARCT biogeochemical
province boundary (Figure 1). Specifically, stations closer to
Greenland where a lower �Ar could be expected due to higher
fresh water input.

RESULTS AND DISCUSSION

Depth Profiles of Variables
Depth profiles from 0 to 3,500m from the GLODAPv2 data for
all variables over the study domain, are presented in Figure 2

(blue dots). All variables show the highest variability in the upper
0–100m, the approximate depth of the euphotic zone. This is
the depth layer where photosynthesis, which acts to remove
nutrients and TCO2 and add O2, is taking place. Consequently,
there is a sharp decrease in NO−

3 , and PO3−
4 and Si(OH)4,

and increase in O2, pH, and �Ar which reflects the seasonal
bias in the GLODAPv2 data. In addition, the surface part of
the euphotic zone (the approximate depth of 0–30m) is also
affected by local heating/cooling, freshwater inputs, and by
air-sea exchange of CO2 and O2. During the boreal summer,
when most GLODAPv2 data is collected, the subpolar North
Atlantic Sea exhibits warming and increased fresh water input
due to ice melt resulting in slightly higher T and lower S in
this surface part of the euphotic zone in comparison to the
layer below (30–100m). In addition, nutrients concentrations are
lower and pH higher at the surface layer due to strong biological
uptake.

Below the euphotic zone (>100m), where photosynthesis is
not present, respiration and remineralization of nutrients and
organic matter dominates. These processes lead to a gradual
increase of NO−

3 , PO
3−
4 , and Si(OH)4, and lower O2, pH and

�Ar. T decreases in this depth layer, but S and TAlk stay nearly
constant. Below 1,000m, T, pH, and �Ar continue to decrease
down to 3,500m, while S, TAlk, O2, NO

−

3 , and PO3−
4 stay nearly

constant. Si(OH)4 is the only variable that increases in deep
layers due mainly to the deep water masses containing a higher
fraction of water from the Arctic Sea (Ragueneau et al., 2001).
There is also a contribution of Si(OH)4 from sediment sources,
but this is relatively small. �Ar shows values reaching 2.6 in the
upper 100m and decreases with depth to 0.8 at 3,500m. The
�Ar compensation depth (�Ar = 1) is observed at about 2,300–
2,500m, which is similar to previous studies in the Labrador Sea
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FIGURE 2 | Depth profiles of (A) �Ar, (B) pH (in situ), (C) TAlk (mol kg−1), (D) T (oC), (E) S, (F) O2 (mol kg−1), (G) NO−

3 (mol kg−1), (H) PO3−
4 (mol kg−1), and (I)

Si(OH)4 (mol kg−1) from GLODAPv2 data (blue) and OVIDE2012 cruise (red).

(2,300m, Azetsu-Scott et al., 2010) and lower than reported in the
Iceland Sea (1,710m, Olafsson et al., 2009)

All variables from the OVIDE2012 cruise show similar range

of values within the modified Longhurst ARCT biogeochemical
province boundary as GLODAPv2 (Table 1). The OVIDE2012

show slightly lower T, S, and TAlk due to inclusion of a few

stations close to Greenland with higher freshwater content that
are out of the ARCT border. OVIDE2012 data also shows lower

nutrient levels values and NO3 and PO3−
4 depletion, while in

GLODAPv2 nutrients were not depleted in the study area. This

difference could be due to particular conditions during 2012, or
more likely due to the bin-averaging inherent in creating the
GLODAPv2 data.

Relationships between GLODAPv2
Variables
The pairwise scatter plots for the GLODAPv2 variables; �Ar, pH
(in situ), TAlk, T, S, O2, nutrients and P, and histograms for
each of the variables are presented in Figure 3. Most of these
variables and the relationships between them show variations
with depth reflecting different biogeochemical regimes and the
processes thorough the water column noted in the section
on Depth Profiles of Variables. This suggests that depth is
an important variable for constructing predictive algorithms.
Based on examining depth profiles, we divided data into
three depth layers (0–100, 100–500, 500–3,500m) approximately
reflecting the different biogeochemical regimes (euphotic zone,
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respiration/remineralization zone, and deep water). The depth
division also allows for better visualization to highlight major
features of variable inter-relationships and how they change with
depth.

TABLE 1 | Range of values between 0 and 3,500m for all variables from

GLODAPv2 and OVIDE2012 (Figure 1).

GLODAPv2 OVIDE2012

T (◦C) 2.0–11.9 −0.4–13.6

S 33.1–35.2 30.4–35.1

O2 (µmol kg−1) 232–347 229–420

NO−

3 (µmol kg−1) 3.6–18.6 0–18.2

PO3−
4 (µmol kg−1) 0.36–1.21 0–1.16

Si(OH)4 (µmol kg−1) 1.11–16.4 0.21–17.2

TAlk (µmol kg−1) 2,191–2,324 2,062–2,317

pH (in situ) 7.93–8.15* 7.93–8.31

�Ar 0.80–2.60* 0.81–2.77*

Calculated variables are marked with *.

For individual variables, the histograms suggest
non-symmetric distributions (excepting O2), and sometimes
are indicative of bi-modality (pH, T) due to the different
depth regimes. Perhaps the most notable feature is the strong
dependence (correlation) amongst the variables. Correlations
of �Ar with other variables (Figure 3, top panels) for the
three depth layers are shown in Table 2. In the euphotic zone
(0–100m), we observe negative correlation of �Ar with nutrients
and O2 and positive with pH reflecting biological uptake and

TABLE 2 | Correlations (r) of GLODAPv2 variables with �Ar for the three depth

layers.

Depth (m) pH TAlk T S NO−

3
PO3−

4
Si(OH)4 O2

0–100 0.49 0.60 0.78 0.51 −0.37 −0.69 −0.57 −0.48

100–500 0.45 0.64 0.74 0.39 −0.63 −0.72 −0.73 −0.39

500–3,500 0.83 −0.07 0.66 0.02 0.11 −0.01 −0.73 −0.03

Correlations >0.7 are considered strong, 0.3–0.7 moderate and <0.3 weak.

FIGURE 3 | Pairwise scatter plots of GLODAPv2 data. Histograms of each variable are shown on the main diagonal. Scatter plots are color coded to show the

variable values in three different depth layers: 0–100m (blue), 100–500m (green), 500–3500m (red).
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photosynthesis. Positive correlations are also found with T, S
(stoichiometric solubility is a function of T, S, P) and TAlk
(affecting CO2−

3 ). The strongest inter-correlations in this depth

layer are found with T, TAlk, PO3−
4 , and Si(OH)4 and moderate

ones between pH, S, and O2 and NO−

3 (Table 2). Note that the
variables pH, O2, and NO−

3 are not included in CO2SYS as input
variables for calculating GLODAPv2 �Ar. Correlations of similar
strength and the same sign as above are found in 100–500m
layer, where photosynthesis is not present, but respiration and
remineralization of nutrients and organic matter dominates.
This implies similar stoichiometry of biological uptake and
remineralization. Slightly stronger correlations with nutrients, in
particular with NO−

3 , and weaker correlation with S are observed.
In the deep layer (500–3,500m) strong correlations are only
found with variables that are changing at these depths; pH, T,
and Si(OH)4. The relationships between measured OVIDE2012
variables are consistent with those from GLODAPv2 (not
shown).

We also note that in the surface part of the euphotic zone
(0–30m), local heating/cooling, gas exchange and freshwater
inputs may affect inorganic carbon and O2, and decouple the
O2:CO2 stoichiometry. This consequently could lead to different
relationships between the variables at the surface (0–30m) than
those found in the remaining of euphotic zone below (30–100m).
For this reason, some of the previous studies (Juranek et al., 2009,
2011; Alin et al., 2012) excluded 0–30 and 0–15m from their
analysis. We found that regression coefficients were similar when
excluding data from 0 to 30m data and have, therefore, based the
analysis on using all data from 0 to 100m.

Algorithm Training: Estimating �Ar Using
Observations
Unsupervised Learning: MLR Applied to Training Data

All variables regression
When including all non-carbonate and autonomous sensor
variables (0–3,500m) in the model (Equation 2) the R2 is very
high (98%), and an F-test indicates that the overall regression
is highly significant (p < 10−15). T-tests also show that all
individual predictors are significant, with the exception of O2.
Figure 4 shows the R2 from “all variables regression” for different
combination of 1–8 predictor variables [T, S, P, O2, pH, NO−

3 ,

PO3−
4 , Si(OH)4]. This exercise indicates how, for a given level

of complexity (or number of predictors), different combinations
of variables affect the fit. It also provides information as to
how adding and/or removing certain predictors can change the
goodness of fit, which can be useful as guidance for a selection
(and development) of additional sensors for existing platforms.
The results suggest T and pH is the best combination of two
key explanatory variables, which together can explain 95 % of
variability in �Ar, followed by a combination of P and PO3−

4 (R2

= 0.94). The best combination of three predictors are T, P, and
PO3−

4 (R2 = 0.96), closely followed by T, pH, and NO−

3 , and the

best four predictors are T, P, pH, and PO3−
4 (R2 = 0.98). The all

variables regression suggests that T, P, pH, and PO3−
4 are the most

important predictors for�Ar, although differences in R
2 are quite

small.

FIGURE 4 | Goodness of fit (R2) for all variable subsets regression

(0–3,500m). Shown are the R2 (in grayscale, and numerical y-axis) for

regressions predicting �Ar from different combinations of the 8 predictor

variables used in Scenarios 1 and 2 [i.e., T, S, P, O2, pH, NO
−

3 , PO3−
4 ,

Si(OH)4]. The regressions are ordered by increasing level of complexity with

the bottom row representing a regression with a single predictor (here, an

intercept β0 and S), and the top row being a full regression with all eight

predictor variables corresponding to Equation (2). For any given row, the

shaded blocks indicate which predictor variables are included in the

regression. The model complexity, or number of predictor variables included,

increases from bottom to top. The top regression models (as measured by R2)

for 2, 3, and 4 predictor variables are marked with red dots.

Stepwise regression
In all cases, the best regression model chosen by the various
variable selection procedures (forward selection, backward
elimination, and forward/backward combination) eliminated
only the O2 variable, with the final chosen model therefore being
a regression of the response variable �Ar on T, S, P, pH, NO−

3 ,
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PO3−
4 , Si(OH)4. It is likely that O2 is eliminated by the selection

procedures due to its relatively low correlation with�Ar (Table 1)
as well as its strong relationship with other predictor variables
(Figure 3).

Supervised Learning: MLR Regression Scenarios
Table 3 gives a summary of the regression statistics based
on GLODAPv2 data from 0 to 3,500m for the three
scenarios described in section Multiple Linear Regression (MLR)
Algorithms (Training). We define the algorithm provides a
“good” estimate of �Ar when R2 > 0.98 and RMSE < 0.05
(i.e., uncertainty in GLODAPv2�Ar) and an “adequate” estimate
when R2 > 0.95 and RMSE is smaller than 2x uncertainty in
GLODAPv2 �Ar (0.1).

Scenario 1—non-carbonate
T and S alone are not “adequate” predictors of �Ar, (R

2 =

0.822, RMSE = 0.153, not shown in Table 3). Inclusion of depth
dependence through P improves the R2 and RMSE, confirming
depth is important predictor, but still does not yield an “adequate”
estimate of �Ar. The combination of T, S, NO−

3 , and P can

“adequately” predict the �Ar variable. PO3−
4 is slightly better

predictor than NO−

3 , and the combination of T, S, P, NO−

3 ,

and PO3−
4 yields R2 = 0.969, RMSE = 0.064 (not shown in

Table 3). The addition of Si(OH)4, does not significantly improve
prediction. As with the “all variables regression,” this suggests
that PO3−

4 is the most important predictor nutrient in our study
domain.

Scenario 2—autonomous sensors
Our results suggest that autonomous sensor measurements of T,
S, P, and O2 can provide “adequate” predictability of �Ar for our
study domain. Nitrate provides similar information as oxygen,
while inclusions of pH improves predictability by a small amount
suggesting it may be useful to add pH sensors on autonomous
floats like Argo and moorings (K1, OSNAP, etc.). We also tested
the use of apparent oxygen utilization (AOU), the difference
between the measured O2 concentration and its equilibrium
saturation concentration, as a predictor variable instead of O2.
AOU is known to be a better metric for biological activity than
O2, but using AOU as a predictor variable did not improve the
regression.

Scenario 3—CO2SYS
The multiple regression model with input corresponding to the
CO2SYS input variables, yields “good” predictability (R

2 = 0.985,
RMSE = 0.044). This is better than achieved in Scenario 1 and
2. This is an extremely good fit in terms for a linear regression
model based on bin-averaged bottle data. The implication is that
there is essentially a linear relation between �Ar and the CO2SYS
inputs at least within the range of variations in the variable levels
found within the study domain.

For simplicity, we focused mainly on the statistics of
the least-squares regression fit and mostly avoided statistical
inference (significance testing and p-values). Note that residuals
plots however, were examined during model fitting and it
was found that regression assumptions were mostly satisfied,

TABLE 3 | Regression fit (R2) and root mean squared error (RSME), and

regression coefficient ± standard error (SE) for different combination of

non-carbonate, autonomous sensors and CO2SYS variables from the GLODAPv2

data from 0 to 3,500m (n = 1,631).

Scenario/

variables

R2 RSME Coefficient ± SE

NON-CARBONATE

T, S, P 0.938 0.090 β0 = 12.3310 ± 0.4978

β1 = 0.1087 ± 0.0018

β2 = −0.3199 ± 0.0144

β3 = −0.2017e-03 ± 3.6473e-06

T, S, NO−

3 , P 0.959 0.073 β0 = −2.1368 ± 0.6388

β1 = 0.0465 ± 0.0025

β2 = 0.1194 ± 0.0905

β3 = −0.03768 ± 0.00128

β4 = −0.2315e-03 ± 3.128e-06

T, S, NO−

3 , PO3−
4 ,

Si(OH)4, P

0.969 0.063 β0 = −1.1479± 0.5607

β1 = 0.0392 ± 0.0022

β2 = 0.0980 ± 0.0166

β3 = −0.0047 ± 0.0022

β4 = −0.7703 ± 0.0351

β4 = 0.0092 ± 0.0020

β3 = −0.2451e-03 ± 3.9485e-06

AUTONOMOUS SENSORS

T, S, O2, P* 0.957 0.075 β0 = 2.8475 ± 0.5438

β1 = 0.1156 ± 0.00155

β2 = −0.0861 ± 0.0148

β3 = 4.4712e-03 ± 0.1659e-03

β4 == −0.1774e-03 ± 3.1687e-06

T, S, O2, pH, P 0.978 0.054 β0 = −25.800 ± 0.826

β1 = 0.0750 ± 0.0015

β2 = 0.0212 ± 0.0109

β3 = 4.5133e-04 ± 1.5595e-04

β4 = 3.2579 ± 0.0828

β5 = −0.1042e-03 ± 2.9201e-06

T, S, O2, pH, NO3,

P

0.978 0.053 β0 = −25.819 ± 0.8255

β1 = 0.0701 ± 0.0031

β2 = 0.0387 ± 0.0147

β3 = 2.0956e-04 ± 2.0922e-04

β4 = 3.2013 ± 0.0886

β5 = −3.0580e-03 ± 1.7460e-03

β6 = −0.1095e-03 ± 4.2277e-06

CO2SYS

T, S, TAlk, pH,

PO3−
4 Si(OH)4, P

0.985 0.044 β0 = −21.4630 ± 0.6870

β1 = 0.0488 ± 0.0016

β2 = −0.0749 ± 0.0146

β3 = 3.6093e-03 ± 2.3167e-03

β4 = 2.1860.± 0.0780

β5 = −0.4874 ± 0.0205

β6 = 0.0125 ± 0.0013

β7 = −0.1777e-03 ± 3.6385e-06

These cases are used for validation in section Validation: Testing theΩAr Algorithms Using

Independent Ship Data, case marked with * is used for application to K1 mooring time

series.

excepting the violation of non-constant variance in some
cases. This would normally be corrected by transformation,
but such transformation would be case-specific and make
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algorithm comparison more difficult but is recommended when
developing a targeted algorithm. Similarly, no attempts were
made to include interaction terms or polynomial terms when
building regression models. Our experience showed that little
was to be gained from the addition of such complexity, and
such models also suffer from difficulty in interpretation and

exacerbate the effects of multicollinearity on the regression. The
multicollinearity in the predictor variables is a ubiquitous feature
in oceanographic problems and a consequence of a myriad
of interacting physical-chemical processes, which dynamically
link the variables. While complicating the interpretation of the
statistical analysis, a positive effect of this variable dependence

FIGURE 5 | Validation plots of estimated �Ar from empirical algorithms vs. observed �Ar from OVIDE2012 cruise. These are done for different selections of

non-carbonate (A–C) variables and autonomous sensor (D–F) variables. Observed refers to �Ar calculated from OVIDE2012 pH and TAlk. The 1:1 line is shown in

black.
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is that there is considerable flexibility in choosing predictor
variables for empirical algorithms (i.e., the trading of ease of
measurement vs. predictive skill).

Validation: Testing the �Ar Algorithms
Using Independent Ship Data
In this section, we assess how well the non-carbonate and
autonomous sensor empirical algorithms, which were trained
using the GLODAPv2 data normalized to 2002, are able to
predict �Ar for an independent data set, the OVIDE2012 cruise.
Validation plots and corresponding quantitative metrics for the
selected algorithms (Table 3) are presented in Figure 5 and
Table 4. Overall, the validation plots in Figure 5 indicate a very
good correspondence between the observed and predicted �Ar.
In all cases, the points cluster tightly near the 1:1 line indicating
little bias and a small level of variability. The overall results in
Table 4 also indicate successful validation with: (i) a correlation
close to one, (ii) a consistently good fit (low RMSE), (iii) a
small bias (AAE), but one that is slightly positive (AE), (iv)
observations that differ from predictions by a factor close to

one (RI); and (v) a model with consistent predictive skill (MEF
between 0.5 and 1). Specific cases are discussed below.

Scenario 1—Non-Carbonate
For the non-carbonate scenario (Figures 5A–C, Table 4), the
physical case (T, S, P) has the worst fit, particularly for
the two shallowest depth layer (0–100 and 0–500m) where
oceanographic variability is highest. The addition of nitrate (the
T, S, NO−

3 , P case) reduces the variability (r, RMSE) and bias

(AE). Inclusion of the full nutrient suite [the T, S, P, NO−

3 , PO
3−
4 ,

and Si(OH)4 case] yields slightly degraded performance with
increased bias.

Scenario 2—Autonomous Sensors
All three algorithms with autonomous sensors variables
(Figures 5D–F, Table 4) have consistently good and quite similar
overall predictability over the full water depth (0–3,500m).
The T, S, O2, P algorithm has good performance in the deep
layer (500–3,500m) and may be sufficient for the prediction of
�Ar there, but has the lowest performance in the 0–100 and

TABLE 4 | Quantitative validation metrics: correlation (r), root mean squared error (RMSE), the reliability index (RI), the average error (AE), the average absolute error (AAE),

and the modeling efficiency (MEF), all calculated according to Stow et al. (2009), for comparison of predicted �Ar (Equation 2, with regression coefficients given in

Table 3) with �Ar calculated from observed TAlk and pH using CO2SYS (n = 303).

Scenario/variables Depth (m) r RSME AE AAE RI MEF

NON-CARBONATE

T, S, P 0–3,500 0.975 0.113 0.064 0.082 1.073 0.914

0–100 0.865 0.195 0.087 0.124 1.088 0.667

100–500 0.801 0.113 0.082 0.088 1.069 −0.234

500–3,500 0.984 0.087 0.054 0.071 1.071 0.740

T, S, NO−

3 , P 0–3,500 0.984 0.083 0.047 0.066 1.056 0.953

0–100 0.902 0.153 −0.039 0.100 1.084 0.795

100–500 0.970 0.072 0.067 0.067 1.045 0.493

500–3,500 0.994 0.064 0.059 0.059 1.053 0.857

T, S, NO−

3 , PO3−
4 , Si(OH)4, P 0–3,500 0.992 0.103 0.088 0.093 1.070 0.929

0–100 0.947 0.157 0.110 0.142 1.076 0.783

100–500 0.948 0.116 0.109 0.109 1.071 −0.305

500–3,500 0.990 0.081 0.076 0.076 1.068 0.774

AUTONOMOUS SENSORS

T, S, O2, P 0–3,500 0.991 0.067 0.042 0.055 1.042 0.969

0–100 0.962 0.102 0.044 0.086 1.049 0.908

100–500 0.890 0.081 0.058 0.074 1.049 0.359

500–3,500 0.996 0.050 0.036 0.040 1.038 0.913

T, S, O2, pH, P 0–3,500 0.997 0.029 −0.004 0.018 1.018 0.994

0–100 0.989 0.064 −0.030 0.047 1.027 0.963

100–500 0.993 0.016 −0.010 0.013 1.010 0.974

500–3,500 0.996 0.017 0.004 0.014 1.018 0.989

T, S, pH, O2, NO
−

3 , P 0–3,500 0.998 0.027 −0.003 0.018 1.017 0.995

0–100 0.994 0.060 −0.036 0.044 1.025 0.968

100–500 0.994 0.014 −0.008 0.012 1.009 0.980

500–3,500 0.996 0.017 0.006 0.014 1.017 0.989
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0–500m depth layer. The addition of pH in the 0–100 and
0–500m provides an improvement, while little incremental
improvement is achieved from the addition of NO−

3 . The
algorithms that include pH have small negative bias in the
upper two layers (0–100 and 0–500m). The validation using
OVIDE2012 pH corrected for the decadal decrease reported
for Irminger Sea of −0.025 slightly increased the bias. The

good predictability implies that the algorithms are insensitive to
decadal anthropogenic changes in the carbonate system.

Application
Empirical algorithms trained on GLODAPv2 data (see Table 3)
were applied to time series of T, S, O2, and P at 10 and 100m
to estimate �Ar at two sites: (1) Irminger Sea during 2010–2012

FIGURE 6 | Time series of T, S, O2 (A–C) at the Irminger Sea site (64.3◦N, 28◦W) at 10 and 100m from 2010 to 2012. (D) Shows the values for �Ar estimated from

T, S, P, and O2 using the empirical algorithm (Equation 3, dashed line) and observed �Ar (full line). Observed refers to �Ar calculated from pCO2 and TCO2.
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(Figures 6A–D, P not shown) and (2) K1 mooring in Labrador
Sea during August 2014 to March 2015 (Figures 7A–D, P not
shown). The regression equation used for this application is (see
also Table 3):

�Ar = 2.8475+ 0.1156 T− 0.0861 S+

4.4712e-03 O2 − 0.1774e-03 P (4)

At Irminger Sea site, we compared the estimated �Ar using
Equation (4) to �Ar calculated from observations of TCO2

and pCO2 using CO2SYS (Figure 6D). Calculated �Ar showed
good agreement with estimated values at both 10 and 100m.
Observations of inorganic carbon variables at K1 mooring
location during our time-series observations were not available
for comparison. To attempt to assess the validity of estimated

FIGURE 7 | Time series of T, S, O2 (A–C) at the K1 mooring (56.5◦N, 52.6◦W) at 10 and 100m from August 2014 to May 2015. (D) shows the values for �Ar

estimated from T, S, P, and O2 using the empirical algorithm (Equation 3). Red square is a value of observed �Ar at the station near K1 during May 2014 from

AR70W2014 cruse. Observed refers to �Ar calculated from TAlk and TCO2.
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�Ar (Figure 7D), we compared our values to the �Ar, calculated
from observations of TCO2 and TAlk at the station near the K1
mooring that have been collected on yearly spring (May/June)
AR07W cruises since 1998 (https://www.nodc.noaa.gov/ocads/
oceans/RepeatSections/clivar_ar07w.html). Consistent with our
observations, �Ar from 1998 to 2014 showed higher values
at 10m compared to 100m. Large interannual variability was
observed with �Ar ranging between 2.7 and 1.5 at 10m
and between 2.0 and 1.5 at 100m. �Ar at both depths
showed a decreasing trend. In May 2014, �Ar, measured on
AR07W2014 cruise (Yashayaev and Azetsu-Scott, 2016) showed
values 1.72 at 10m and 1.67 at 100m, and decreasing to 0.8
at 3,500m. This is consistent to what would be expected for
�Ar, based on our algorithm (Equation 4). However direct
comparison is not possible since the K1 mooring data was
not available in May 2014. We further compared our �Ar to
the literature values in the Labrador Sea (Azetsu-Scott et al.,
2010) and �Ar calculated from pH and TAlk on Redfish
cruises (June/July 2013, unpublished data) from the region
west from the K1 mooring. Both show summer values of �Ar

around 2.4, consistent with our estimates. Our observation
emphasize the need for pH sensors on moorings in the
area.

As expected, estimated �Ar at 10m depth exhibits seasonal
variability at both sites, Irminger Sea and K1 mooring, with
highest values in August (around 2.5) due to biological

drawdown of inorganic carbon during the summer. �Ar then
gradually decreased and showed lowest values at Irminger in
February (around 1.9). At the K1 mooring �Ar decreased
to 1.5–1.6 in December, and continued to stay at this value
through the winter. At 100m, estimated �Ar remained at
values between 1.9 and 2.0 at Irminger site, and 1.5 and 1.7
at K1 mooring without seasonal variation, which indicates
biological uptake at this depth was negligible. Similar values
of �Ar at 10 and 100m during the winter are expected due
to mixing of surface water down to various depths during
convection in the area, which results in fairly uniform �Ar

values over the convection depth (Azetsu-Scott et al., 2010).
During winter of 2014, an extreme convection event occurred
and extended to about 1,700m (Yashayaev and Loder, 2016),
so presumably the surface values of �Ar from K1 mooring
could be representative of the water column down to that
depth.

We have also applied empirical algorithms from previous
studies that used T, S, O2, and P or T, O2, and P to predict �Ar

along the central Oregon coast (Juranek et al., 2009; Figure 8, red
line) and in the Sea of Japan (Kim et al., 2010; Figure 7, black
lines). These algorithms either under-predict or over-predict
the known values of �Ar in our study domain by a significant
amount (more than 0.5). This confirms the need for development
of regionally specific algorithms. A caveat of our approach is
the use of seasonally biased (mainly summer) climatological

FIGURE 8 | �Ar estimated from time series of T, S, O2, and P (or T, O2, and P) at the K1 mooring (56.5◦N, 52.6◦W) at 10m depth from August 2014 to March 2015

using three different empirical algorithms from: (a) this study, Equation 4 (blue line), (b) central Oregon coast (Juranek et al., 2009) (red line), and (c) the Sea of Japan

(Kim et al., 2010) (black lines).

Frontiers in Marine Science | www.frontiersin.org 14 December 2017 | Volume 4 | Article 385

https://www.nodc.noaa.gov/ocads/oceans/RepeatSections/clivar_ar07w.html
https://www.nodc.noaa.gov/ocads/oceans/RepeatSections/clivar_ar07w.html
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Turk et al. Empirical Algorithms to Estimate �Ar

data to train the algorithms and summer ship data to validate
them.

CONCLUSIONS

Our study suggests that linear regression models (empirical
algorithms) based on the GLODAPv2 data bin-averaged in
1◦ × 1◦ cells can successfully be used to estimate �Ar in
the North Atlantic Subpolar region. Another key feature is
in producing reliable error bounds for any estimates of �Ar.
Algorithms based on non-carbonate variables indicate that �Ar

can be predicted well from entirely non-carbonate observations,
with PO3−

4 being the best nutrient predictor. Algorithms
using autonomous sensor variables emphasize the importance
of adding pH sensors on autonomous floats like Argo and
moorings (K1, OSNAP, etc.), in particular in the euphotic
and remineralization zone. In deeper water, observations of
T, S, and O2 may be sufficient for predicting �Ar. Different
regressionmodel building strategies suggest PO3−

4 measurements
are desirable. It appears that there is essentially a linear
relation between �Ar and the CO2SYS input variables at least
within the range of variations in the variable levels found
here.

Validation with independent ship data showed good
correspondence, with small bias and variability. Since the
anthropogenic trend in �Ar has been removed, the algorithms
have no temporal component to them (i.e., no time variable
as predictor). Nevertheless, the validation with OVIDE2012
data show that the algorithms trained on 2002 data manage to
successfully estimate �Ar in 2012. This shows the robustness of
the algorithms to changes over a short time interval (such as a
decade).

The empirical algorithms also performed well even though
they are being applied outside the range of values used to train the
algorithms. This suggests that, while they are regional algorithms,
they may have much broader spatial applicability. Future work
seeks to identify appropriate biogeochemical provinces for
which a regional algorithm is valid. Since the relationship of
variables with �Ar may be correlative, rather than directly
causal, emphasis must be on validating predictive skill using
independent data.

Application to Station K1 time series, as well as time series
from the Irminger Sea suggest the potential for regionally
tuned algorithms, but they need to validate against measured
�Ar to properly assess their performance. Finally, algorithms
require evolution and recalibration by ongoing periodic carbon-
dedicated cruises in order to account for secular trends in
anthropogenic CO2.
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