AUTHOR=Courtney Travis A. , Andersson Andreas J. , Bates Nicholas R. , Collins Andrew , Cyronak Tyler , de Putron Samantha J. , Eyre Bradley D. , Garley Rebecca , Hochberg Eric J. , Johnson Rodney , Musielewicz Sylvia , Noyes Tim J. , Sabine Christopher L. , Sutton Adrienne J. , Toncin Jessy , Tribollet Aline TITLE=Comparing Chemistry and Census-Based Estimates of Net Ecosystem Calcification on a Rim Reef in Bermuda JOURNAL=Frontiers in Marine Science VOLUME=3 YEAR=2016 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2016.00181 DOI=10.3389/fmars.2016.00181 ISSN=2296-7745 ABSTRACT=
Coral reef net ecosystem calcification (NEC) has decreased for many Caribbean reefs over recent decades primarily due to changes in benthic community composition. Chemistry-based approaches to calculate NEC utilize the drawdown of seawater total alkalinity (TA) combined with residence time to calculate an instantaneous measurement of NEC. Census-based approaches combine annual growth rates with benthic cover and reef structural complexity to estimate NEC occurring over annual timescales. Here, NEC was calculated for Hog Reef in Bermuda using both chemistry and census-based NEC techniques to compare the mass-balance generated by the two methods and identify the dominant biocalcifiers at Hog Reef. Our findings indicate close agreement between the annual 2011 census-based NEC 2.35 ± 1.01 kg CaCO3•m−2•y−1 and chemistry-based NEC 2.23 ± 1.02 kg CaCO3•m−2•y−1 at Hog Reef. An additional record of Hog Reef TA data calculated from an autonomous CO2 mooring measuring