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Introduction: This study explores the shift toward predictive maintenance
through real-time data analytics to minimize machine downtime and improve
machinery insights in industrial environments. Predictive maintenance aims to
enable proactive interventions by predicting failures, enhancing
operational efficiency.

Methods: The research was conducted in three stages. First, BA Glass equipment
was sensorized usingOPC Router and PowerStudio SCADA to facilitate real-time
data extraction. A predictive maintenance algorithm was then developed in
Python to analyze sensor data, predict failures, and trigger alarms. Finally,
various forecasting models, including Linear and Polynomial Regression,
Simple and Double Exponential Smoothing, ARIMA, and Prophet, were
evaluated using a combination of blocked cross-validation and rolling window
methodologies. The algorithm calculated performance metrics such as MSE,
RMSE, and MAE for different parameter configurations and training sizes.

Results: A comparative analysis between wired and wireless sensors concluded
that wireless sensors, although more expensive, were more practical and
interchangeable in the factory setting. The results from the evaluation of
prediction models showed that the Double Exponential Smoothing (DES)
model with an additive damped trend and linear models performed best for
datasets with daily seasonality and gradual oscillations. For datasets with stable
trends and higher frequency oscillations, ARIMA and Prophet models proved to
be more accurate.

Discussion: These findings suggest that the choice of sensors and prediction
models can significantly impact the effectiveness of predictive maintenance
systems. Wireless sensors offer long-term benefits in terms of flexibility and
practicality, while the DES model and ARIMA/Prophet models are optimal
depending on the dataset characteristics. This research highlights the value of
real-time data analytics and predictive models in industrial environments for
reducing downtime and improving decision-making.
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1 Introduction

The Smart Industry is profoundly transformed by technological innovations such as the
Industrial Internet of Things (IIoT), Cloud and Edge Computing, Cyber-Physical
Production Systems (CPPS), Artificial Intelligence (AI), and Big Data analytics. At the
core of this evolution, maintenance emerges as a critical function ensuring the reliability,
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efficiency, and safety of industrial processes and equipment
throughout their lifecycle EN (2017); Silvestri et al. (2020).
Recent concepts like Industry 5.0 Lu et al. (2022); Huang et al.
(2022); Müller et al. (2020); Xu et al. (2021) and Maintenance
5.0 Cortés-Leal et al. (2022); Psarommatis et al. (2023) bring
significant benefits to the Smart Industry, enabling predictive
maintenance through real-time sensor data and advanced
analytics to minimize downtime and promote sustainability.
Workforce training programs further enhance creativity and
innovation, addressing skill gaps and ensuring workforce
relevance Pinto et al. (2024); Pinto et al. (2023).

The adoption of circular economy principles, such as
refurbishing and recycling equipment, reduces waste and
conserves resources, aligning with global sustainability objectives.
Robust data management solutions facilitate comprehensive data
collection and analysis, optimizing maintenance operations and
decision-making within manufacturing and industrial settings.
Maintenance encompasses a spectrum of activities aimed at
preserving equipment condition and performance. This includes
corrective maintenance, responding to unexpected failures through
planned or unplanned interventions, with planned corrective
maintenance offering strategic efficiency and safety advantages.
Preventive maintenance focuses on scheduled tasks to prevent
equipment failures and degradation, optimizing reliability,
lifespan extension, and safety Basri et al. (2017).

Integrating diverse maintenance strategies within the Smart
Industry framework Márquez and Papaelias (2020) underscores the
sector’s adaptability and optimization potential. Leveraging advanced
analytics and real-time data monitoring enables organizations to
proactively manage maintenance operations, minimize downtime,
and enhance overall operational efficiency Zonta et al. (2020).
Predictive maintenance, rooted in data analysis and real-time asset
monitoring, plays a pivotal role inminimizingmaintenance frequency
and preventing unplanned outages within industrial operations. It
utilizes historical and real-time data to proactively identify operational
anomalies and potential equipment defects Zonta et al. (2020). This
approach differs from traditional condition-based maintenance
by predicting when failures will occur, enabling planned corrective
interventions before equipment degradation. Predictive maintenance
leverages technology such as IoT and AI, integrating techniques like
vibration analysis, oil analysis, thermal imaging, and equipment
observation to pinpoint areas needing attention.

Integration within the Smart Industry fosters cohesive processes
and data flow, facilitating horizontal connections among machines,
supply chains, and organizational functions, as well as vertical
connections for data-driven decision-making Rüßmann et al.
(2015); Laaper et al. (2018). Cloud and Edge Computing further
enables real-time data processing and predictive maintenance, with
scalable infrastructure and optimized operational responsiveness
Dillon et al. (2010); Cao et al. (2020). Big Data analytics,
characterized by processing vast datasets at high speeds and
diverse types, plays a pivotal role in supporting equipment
monitoring, predictive maintenance, and data-driven decision-
making Plunkett et al. (2013); Addo-Tenkorang and Helo (2016).
By harnessing extensive data resources on machinery performance
and maintenance, organizations can tailor their processes for
maximum efficiency and operational effectiveness Addo-
Tenkorang and Helo (2016); Zonta et al. (2020).

BA Glass Alves (2012), a prominent international glass container
manufacturer with a century-old legacy, exemplifies this
transformative approach. Present in seven countries, producing over
11 billion containers annually across 12 plants with approximately
4,000 employees, BA Glass serves more than 60 countries worldwide
Alves (2023). This work delves intoBAGlass’s initiative at their Avintes
plant, where predictive maintenance strategies intersect with Industry
4.0 technologies to enhance electrical maintenance practices and
ensure operational excellence.

The glass packaging industry, serving as a key supplier to food
and beverage sectors, emphasizes efficiency amidst continuous high-
volume production. To stay competitive, industries like BA Glass
prioritize operational efficiency, reducing production losses through
enhanced maintenance management and improved equipment
reliability Testa et al. (2017); Pombal et al. (2019). This study
aims to identify optimal sensors, integrate them with Supervisory
Control and Data Acquisition (SCADA) systems using tools such as
PowerStudio SCADA Circutor (2013); Wasaya et al. (2021); Ponte
et al. (2024), and develop precise prediction models using Machine
Learning (ML) techniques. Through these efforts, BA Glass aims to
minimize downtime, enhance operational efficiency, and empower
decision-makers with insights for proactive maintenance.

This work addresses two primary research questions:

RQ1 What are the most suitable types of sensors for the diverse
machinery within the BA Glass Avintes factory floor?

RQ2What are the most accurate prediction models for predicting
the state of components in the Water Cooling System of the
AV5 furnace?

Regarding RQ1, the main goal is to identify and evaluate the
most appropriate sensors for monitoring the diverse machinery used
in the factory, ensuring they meet operational needs and
environmental conditions. This involves assessing various sensors
for compatibility, durability, and data transmission capabilities. The
selection process includes a comparison between wired and wireless
sensors, evaluating factors such as installation complexity, cost, and
data accuracy.

As for RQ2, the main goal is to determine the most effective
predictive models for forecasting the condition and potential failures
of components in the AV5 furnace’s water cooling system. This
entails developing and testing various ML models, including Linear
and Polynomial Regression Nunno (2014), Exponential Smoothing
Hu et al. (2013); Bucay-Valdiviezo et al. (2023), AutoRegressive
Integrated Moving Average (ARIMA) Mo (2023), and Prophet
models Riady (2023); Caicedo-Castro (2023). The evaluation
framework employs blocked cross-validation and rolling window
methodologies to simulate real-time conditions and assess model
performance using metrics like Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and Mean Absolute Error (MAE)
Plevris et al. (2022).

By addressing these research questions, the study aims to
enhance BA Glass’s predictive maintenance capabilities, reducing
downtime, improving operational efficiency, and supporting a
proactive maintenance strategy.

The paper is organized into five more sections. Section 2 briefly
presents the BA Glass company, as well as the context in which the
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study arose, namely the glass packaging production process and the
maintenance processes. Section 3 describes in detail the research
methodology, proposed solution and testing methodology,
organized into three topics: I) Sensorization and Data Extraction;
II) Predictive Maintenance Algorithm; and III) Forecasting Models.
Section 4 summarizes the validation/testing results and analyzes
how the proposed solution can address the digital transformation of
maintenance processes in BA Glass. Section 5 covers the key findings
of the study, including the potential shortcomings and limitations
on their interpretations, and their integration into the current
understanding of the problem. Finally, Section 6 concludes the
paper, stating final remarks about the study performed while
further discussing the proposed approach.

2 BA Glass production and
maintenance processes

BA Glass is a Portuguese company dedicated to the
development, manufacturing, and commercialization of glass
containers for the food, beverage, pharmaceutical, and cosmetic
industries, with over a century-old history. BA Glass is present in
7 countries, producing over 11 billion containers annually. With a
total of 12 plants and around 4,000 employees, BA Glass distributes
glass packaging to more than 60 countries around the world
Alves (2023).

Incorporated in 1912, initially focused solely on the
commercialization of glass bottles. Subsequently, in 1930, the
company initiated industrial activities with semi-automatic
technology. In 1947 the company introduced automated technology,
with the installation of the automatic feeder mechanism and molding
machine in bottle manufacturing. By 1965, the firm was able to expand
its weekly production to approximately 350 thousand bottles, a capacity
six times greater than that of 1947. In 1969, a new industrial unit began
operations in Avintes, Vila Nova de Gaia, with two regenerative
furnaces (with heat recovery), pioneering the use of this technology
over traditional raw material fusion methods.

1971 came with the installation of the first automatic Individual
Section (IS) machine, leading to a substantial increase in production
capacity. By 1979, the company relied on five IS machines, one of
which was computerized. In 1983, a new regenerative furnace was
installed. A new technology was also developed in the area of
computerized moulding and automated product quality control
in all production lines. 1988 led with the construction of a new
furnace that increased the capacity by approximately 40%.

From the 1990s onwards, the company embarked on an expansion
phase, characterized by several acquisitions and constructions. The
group is currently organized in three different sections:

• The Iberian Division, composed of the plants of Avintes,
Marinha Grande, and Venda Nova, all located in Portugal,
and León and Villafranca de los Barros, in Spain

• The Central Europe Division, formed by the plants of Jedlice
and Sieraków, both located in Poland and Gardelegen,
in Germany

• The Southeastern Europe Division, consisting of the plants of
Athens, is located in Greece, Bucharest, in Romania, and
Plovdiv and Sofia, both in Bulgaria

2.1 Production process

Glass is a 100% recyclable material, having the ability to be
reused multiple times without quality and characteristic loss. The
typical composition of a glass package mainly includes silicon
dioxide, sodium oxide, and calcium oxide, with variations of
other chemical compounds based on the desired glass colour.
These raw materials are stored in silos, measured, and mixed
according to specific recipes and then vitrified in furnaces
through a fusion process.

At the refractory furnaces, the material is melted at temperatures
ranging from 1,500 to 1,600°C. The molten glass then flows through
a large container under the influence of gravity, undergoing a tuning
stage to ensure uniform thermal homogeneity throughout the
melted mass, a critical condition for achieving a high-quality
product. The furnace temperature can be real-time controlled
using control panels.

The furnace is entirely constructed from refractory material and
utilizes natural gas as a fuel source. It is where the raw materials are
melted to produce glass, which is then directed through channels or
feeders to reach the moulding machines.

The Avintes plant is comprised of three furnaces, designated
AV2, AV4, and AV5, each with its own set of production lines.
Furnace AV2 accommodates three production lines, as well as
furnace AV4. Furnace AV5 has four production lines. It’s in
these ten production lines that the glass forming is done.

The glass packaging manufacturing process begins with
obtaining a molten glass gob, which is then cut and directed by
gravity through channels to an automatic moulding machine. As the
bottles emerge from the moulds, they are at a temperature of around
600°C, and they undergo a swift cooling process, causing internal
stresses to develop. Following a brief period of stabilization on a
dead plate, grippers move the bottles onto a conveyor belt that
carries them to the subsequent stages of processing.

To release tensions caused by temperature fluctuations as
moulds open and close, a heat treatment known as annealing is
performed to homogenize the material. This involves coating the
packages with tin or titanium chlorides, providing a protective layer
on the glass surface to prevent defects caused by surface friction and
increasing resistance to mechanical shock. Also, thermal annealing
in an annealing lehr, i.e., raising the glass to a higher annealing
temperature and then gradual cooling at a medium-low speed, as
well as cold-end coating, applied at room temperature.

After completing the annealing process, the pieces are
introduced into automatic inspection machines equipped with
various defect detection mechanisms to identify and separate
faulty pieces. Finally, the packaging is conveyed to the end of the
production line, where they are stacked in tiers to form a pallet.

2.2 BA Glass maintenance processes

In any high-production facility, dedicated maintenance teams
play a crucial role in ensuring machinery efficiency and,
consequently, sustained profitability. Within the fast-paced glass
packaging industry where BA Glass operates, disruptions to furnaces
or control systems can have significant adverse consequences. To
uphold optimal operational conditions and enhance machinery
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upkeep, the presence of diverse and responsive maintenance
departments is essential to quickly address and resolve any
operational challenges.

The efficient operation of glass container manufacturing at BA
GlassAvintes relies on multiple maintenance departments, being the
Electrical Maintenance and Instrumentation Department (DEI) the
most important. Their responsibilities encompass the upkeep,
servicing, and calibration of electrical and instrumentation
equipment used in production facilities. The electrical
maintenance component’s role is to preserve the functionality of
all electrical equipment, covering power distribution systems,
motors, switchboards, transformers, and various other electrical
components.

To ensure the proper functioning of the electrical infrastructure,
they regularly conduct testing, maintenance, and troubleshooting.
Regarding the instrumentation component, their tasks include
calibrating and maintaining machinery and control systems in
the factory. This responsibility extends to instruments dedicated
to process control and monitoring, such as temperature sensors,
pressure gauges, flow meters, and level sensors.

Furthermore, the DEI is committed to continuous
improvement, working on energy efficiency projects,
implementing new technologies to increase efficiency, and
making recommendations for upgrading electrical systems and
sensors. Collaborating with other departments, they seek
opportunities to enhance operations and implement best
practices, contributing to an overall improvement in performance.

The DEI at BA Glass Avintes employs a comprehensive
approach to maintenance, encompassing both reactive and
proactive strategies. In response to unforeseen challenges such as
equipment failures or breakdowns, the team reacts promptly by
performing troubleshooting and repairs to restore operational
status. In emergencies, such as power outages or severe
equipment failures, the team mobilizes quickly to implement
urgent corrective measures, minimizing downtime.

On the proactive side, preventive maintenance takes centre
stage. The team actively works to identify and address potential
issues before they escalate, conducting regular inspections, tests, and
maintenance tasks to ensure equipment remains in optimal
condition. This preventive approach aligns closely with the
systematic preventive methodology, involving the performance
and adherence to maintenance tasks at predetermined intervals,
often without the need for equipment sensorization.

However, the current reliance on manual monitoring, where
personnel physically measure machine parameters, has revealed
critical challenges due to the absence of real-time sensors,
resulting in a lack of timely identification of machine anomalies,
potentially leading to operational disruptions. This inadequacy
poses a significant challenge, as machines necessitate
sensorization, alarms require systematic development, and data
from already sensor-equipped machines demand
comprehensive analysis.

Ultimately, faced with the need to minimize machine downtime
and gain a comprehensive insight into the current state of the plant’s
machinery, the Avintes plant recognized the need to implement
predictive maintenance strategies. Predictive maintenance, relies on
two main components: I) real-time health information, which
requires the collection of timely data; II) the development of a

consumption prediction tool utilizing ML regression models, by
leveraging the data collected.

3 Materials and methods

We followed a clearly defined workflow to implement predictive
maintenance at BA Glass. This process began with identifying
sensors tailored to the factory’s requirements and integrating
them into the plant’s SCADA system. Next, we established a
communication link between the SCADA system and the OPC
Router inray Industriesoftware GmbH (2024) for real-time data
extraction. A statistical model was then developed to predict the
degradation status of critical components. Finally, we implemented
an algorithm to analyze the statistical models and generate alarms
within the PowerStudio SCADA system. By proactively addressing
potential machine issues, the organization aims to significantly
reduce downtime and associated operational costs. The
integration of real-time monitoring and predictive analytics is
designed to provide decision-makers with valuable insights,
thereby facilitating the shift from reactive to proactive
maintenance strategies.

The successful implementation of predictive maintenance in
industrial settings relies heavily on acquiring substantial datasets.
This initiative began with the exploration of suitable sensors and
predictive maintenance for the fans in the AV5 production line
machines. We know that in the initial stage, the introduction of
sensors would provide limited data, posing challenges for data
extraction and effectively applying existing models of predictive
maintenance. Thus, the focus was on the Water Cooling System
sensors of the AV5 furnace, where a significant volume of data was
already available.

The process flow diagram for the AV5 furnace Water Cooling
System highlights sensorized components, particularly focusing on
the water path surrounding the heat exchanger, as represented in
Figure 1. This area includes the water flow from the tower and skid,
looping back to the tower, water discharge into the furnace, and
return to the skid. Critical sensors for monitoring this system are
temperature and pressure sensors on both the cold and hot sides of
the heat exchanger.

Several common issues can affect the AV5 Water Cooling
System, including heat exchanger clogging, tower cooling failure,
and pump failures on both the cold and hot sides. These issues can
be analyzed based on pressure and temperature readings from the
sensors. Table 1 provides a comprehensive matrix detailing potential
failures in the system. It is important to note that some results
labelled as “abnormal” are theoretically possible based on sensor
conditions but have not occurred in practice.

3.1 Sensorization and data extraction

For the sensorization process, we selected sensors based on the
specific operational needs and environmental conditions of BA
Glass. Both wired and wireless sensors were evaluated for their
effectiveness and practicality. We integrated these sensors with the
SCADA system using PowerStudio SCADA, ensuring seamless data
acquisition and monitoring.
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The data extraction phase involved establishing a
communication link between the SCADA system and the OPC
Router. This link was crucial for the real-time transmission of
sensor data. The OPC Router was configured to collect and

transmit data from various sensors to a centralized database,
where it was processed and stored for subsequent analysis.

Efforts focused on identifying sensors that met the specific
requisites of BA Glass and the scope of this study. By carefully

FIGURE 1
AV5’s water cooling system’s process flow diagram.
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balancing the technical requirements of BA Glass, cost
considerations, and the need to integrate with existing systems,
the decision to focus on the Sure Cross® QM30VT2 Vibration and
Temperature Sensor and the WISE-2410 LoRaWAN Wireless
Condition Monitoring Sensor, as represented in Figure 2.

• Compatibility with Company Requirements: The primary
criterion for sensor selection was compatibility with BA
Glass’s operational needs. The sensors had to meet the

highest dust protection certification (IP6X), which is critical
in a glass manufacturing environment where dust and
particulate matter can interfere with sensor performance.
Additionally, the sensors needed to be capable of
transmitting data at five-minute intervals to provide timely
and actionable information for predictive maintenance.

• Integration with Existing Systems: Another key factor was the
sensors’ ability to integrate seamlessly with BA Glass’s existing
infrastructure, specifically the SCADA system. The selected

TABLE 1 Heat exchanger monitoring matrix.

Cold side temperature Cold side pressure Hot side temperature Hot side pressure Failure description

High Low High Low Heat exchanger clogging

High Low High Normal Heat exchanger clogging

High Low Normal Low Heat exchanger clogging

High Low Normal Normal Abnormal

High Normal High Low Cooling tower ventilator failure

High Normal High Normal Cooling tower ventilator failure

High Normal Normal Low Abnormal

High Normal Normal Normal Cooling tower ventilator failure

Normal Low High Low Heat exchanger clogging

Normal Low High Normal Cool side pump failure

Normal Low Normal Low Heat exchanger clogging

Normal Low Normal Normal Cool side pump failure

Normal Normal High Low Hot side pump failure

Normal Normal High Normal Abnormal

Normal Normal Normal Low Hot side pump failure

Normal Normal Normal Normal No failure

FIGURE 2
To the left, the Sure Cross® QM30VT2 Vibration and Temperature Sensor. To the right, the WISE-2410 LoRaWAN Wireless Condition
Monitoring Sensor.

Frontiers in Manufacturing Technology frontiersin.org06

Belim et al. 10.3389/fmtec.2024.1475078

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2024.1475078


sensors were required to support communication protocols
such as RS-485, RS-232, or Modbus TCP, which are standard
in industrial environments and necessary for effective data
exchange between the sensors and the monitoring system.

• Cost Considerations: Acquisition cost was also a significant
factor in the selection process. The study was constrained by
budgetary considerations, which necessitated focusing on
cost-effective solutions that would still meet the technical
requirements of the factory.

• Operational Flexibility: The Sure Cross® QM30VT2 was
chosen for its direct Modbus compatibility, making it a
straightforward, cost-effective option for wired sensor
integration. On the other hand, the WISE-2410 was selected
for its wireless, battery-operated design, offering greater
flexibility in sensor placement without the need for
extensive wiring, though it introduced additional
complexity with the requirement of a LoRaWAN gateway.

• Project Scope and Time Constraints: The study was conducted
within a specific timeframe and scope, which limited the
number of sensors that could be thoroughly analyzed. The
selection of these two sensors was based on their alignment
with the project’s immediate needs and the feasibility of their
implementation within the study’s duration.

The Sure Cross® QM30VT2 Vibration and Temperature Sensor
was chosen primarily for its ability to function as a Modbus Slave
and directly connect to a Modbus-485 network. Its Modbus
compatibility made it a reliable and cost-effective option for
integration into the existing infrastructure. Alternatively, the
WISE-2410 LoRaWAN Wireless Condition Monitoring Sensor
offered the advantage of a wireless, battery-operated design,
providing flexibility in placement. However, its reliance on the
WISE-6610 LoRaWAN Gateway for connectivity introduced
additional cost and complexity. While the WISE-2410 has a
prolonged battery life of 2 years, maintaining the desired
data update frequency of every 5 min may require
careful consideration and potential trade-offs affecting
battery longevity.

These two sensors cater to different preferences and operational
scenarios within the BA Glass facility. The QM30VT2 emphasizes
simplicity, direct connectivity, and compatibility with existing
systems, while the WISE-2410 introduces the benefits of wireless
operation but necessitates additional infrastructure considerations.

In sum, the methodology for implementing predictive
maintenance involved extracting and managing sensor data from
the AV5 furnace water system, emphasizing real-time data
acquisition and model-based alarm generation. An OPC Router
was integrated as an intermediary to access and manipulate data
from the SCADA system. Initially, historical sensor data was
extracted via the SCADA GUI, generating a CSV file. For
ongoing real-time data acquisition, the OPC Router facilitated
continuous updates of sensor readings from the SCADA system
to a CSV file every 5 min, ensuring timely data availability for
analytics and model generation.

3.2 Predictive maintenance algorithm

The core of our predictive maintenance strategy was the
development of a robust consumption prediction algorithm. This
algorithm was designed to analyze real-time data from the sensors
and apply statistical models to predict the degradation status of
critical components. The algorithm utilized techniques such as
vibration analysis, oil analysis, thermal imaging, and direct
equipment observation to identify potential failures.

To ensure the algorithm’s effectiveness, we incorporated features
that enabled it to learn from historical data and improve its
predictive accuracy over time. The algorithm generated alarms
and notifications, which were integrated back into the
PowerStudio SCADA system, providing real-time alerts to
maintenance personnel. The primary goal of these alerts was to
offer actionable insights that enabled maintenance teams to
intervene before a failure occurred. By predicting a component’s
degradation or imminent failure, the alerts allowed operators to
make informed maintenance decisions proactively, rather than
reacting to unexpected breakdowns. This enables workers to
make informed and timely decisions supported by the
prediction algorithm.

The usability of these alarms is not merely a secondary feature
but is central to the success of predictive maintenance. Alarms serve
as the critical interface between the predictive algorithm and the
maintenance personnel, translating complex data and predictions
into actionable insights. Without these alarms, the output of the
algorithm remains inaccessible to workers, rendering the predictive
maintenance system ineffective. Thus, the functionality and
reliability of the alarm system are fundamental to achieving the
primary goal of predictive maintenance—preventing unplanned
downtime and enhancing operational efficiency by enabling
proactive interventions.

To enable predictive maintenance and alarm functionality, an
algorithmic framework was developed using Python. This involved
reading and filtering sensor data from a CSV file, applying
prediction models to forecast setpoint breaches, and activating
alarms based on predefined thresholds and a fault matrix. The
algorithm was designed to incorporate a 15-min delay
mechanism to discern genuine threats from transient
fluctuations, enhancing system reliability. Additionally, alarm
activation and deactivation were contingent on three consecutive
predictions above or below thresholds, ensuring sustained
improvements in system conditions.

The algorithm’s adaptability was underscored by allowing users
to adjust alarm thresholds based on operational requirements. The
implementation of the algorithm involved establishing connections
between Python, the OPC Router, and the PowerStudio SCADA
system, ensuring seamless transmission of alarm variables, as
represented in Figure 3.

This comprehensive methodology enabled meticulous data
analysis to identify patterns, correlations, and outliers, forming
the foundation for robust predictive maintenance models and
future evaluative efforts.
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3.3 Forecasting models

A comprehensive dataset extracted from PowerStudio SCADA
and OPC Router was utilized to develop and test robust predictive
maintenance models. The dataset, represented in Figure 4
encompasses pressure and temperature readings from the hot
and cold sides of the heat exchanger, along with corresponding
timestamps spanning approximately 44,000 entries from July to
November 2023.

Visualizing this dataset revealed distinct patterns and insights.
Temperature fluctuations exhibited synchronous behaviours on
both sides of the heat exchanger due to the thermal exchange
process within the system. Conversely, pressure readings on the
tower side (cold) often exceeded setpoints, indicating potential

issues with tower cooling, while the furnace-side pressure
maintained stability with occasional minor deviations.

A critical challenge involved addressing abnormal pressure
drops to 0 bar, which was determined to be intentional during
maintenance activities or benign operational behaviours. To
maintain the focus on predictive model integrity, these outlier
points were excluded from the analysis to ensure an accurate
forecast of potential system faults rather than predicting
known anomalies.

Exploring variable relationships through a correlation matrix,
represented in Figure 5, highlighted strong correlations between
temperatures and moderate inverse relationships between tower
pressure and temperature variables. This observation guided the
development of similar univariate prediction models focusing on

FIGURE 3
Predictive maintenance communications sequence diagram.

FIGURE 4
Dataset plots for AV5’s water cooling system.
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individual variables’ historical trends, emphasizing simplicity and
interoperability.

Initial model evaluations involved segmenting the dataset into
distinct phases to visually assess model performance before
quantitative evaluation. This iterative process informed the
selection of an 8-h prediction window, equating to
100 measurements, to forecast system component failures with
practical operational relevance and proactive maintenance
planning. By integrating data visualization, statistical analysis,
and model testing, this methodology established a robust
framework for developing reliable predictive maintenance solutions.

The choice of forecasting models was guided by prior research,
which demonstrated their effectiveness in similar predictive
contexts. In this case, the study focuses on the analysis of Linear
and Polynomial Regression, Simple and Double Exponential
Smoothing, ARIMA, and Prophet models because these models
represent a range of well-established and widely used forecasting
techniques that are suitable for different types of time series data
typically encountered in industrial settings. Each model has distinct
characteristics and strengths, making them valuable for different
predictive maintenance scenarios:

• Linear and Polynomial Regression: These models are
fundamental tools in predictive modelling, useful for
identifying and extrapolating linear and non-linear trends
in data. They provide a straightforward approach to

forecasting, making them ideal for situations where the
relationship between variables is relatively simple and stable.

• Simple and Double Exponential Smoothing: Exponential
smoothing models are particularly effective for forecasting
data with trends and seasonal patterns. The Double
Exponential Smoothing model, with an additive damped
trend, is designed to handle data with trends that either
strengthen or weaken over time, which is common in
maintenance scenarios where equipment wear and tear may
not follow a consistent pattern.

• ARIMA: ARIMA is a powerful model for analyzing time series
data that exhibit non-stationarity and autocorrelation. It is
particularly suited for datasets where past values influence
future values, making it ideal for predicting equipment
behaviour over time.

• Prophet: Prophet is a model developed by Facebook designed
to handle time series data with complex seasonality and
missing data points. It is highly flexible, making it suitable
for industrial datasets that may have irregular intervals and
require robust handling of outliers and seasonal effects.

3.3.1 Linear and polynomial regression
Time series forecasting involves predicting future values based

on historical observations arranged in a chronological sequence.
Two regression models commonly used in this context are Simple
Regression and Polynomial Regression Nunno (2014).

FIGURE 5
Correlation matrix.
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Simple Regression entails fitting a straight line to the historical
data, assuming a linear relationship between time and observed
values. The regression equation takes the form represented in
Equation 1.

Y � mX + b (1)

Y is the predicted value,X is the time variable,m is the slope, and b is
the intercept. While straightforward, this method may overlook
complex patterns in the data.

Polynomial Regression, on the other hand, offers greater
flexibility by fitting a polynomial equation to the data. The
general form is represented in Equation 2.

FIGURE 6
Linear regression prediction with 12 point training set.

FIGURE 7
Quadratic regression prediction with 144 point training set.
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Y � b0 + b1X + b2X
2 +/ + bnX

n (2)
n is the degree of the polynomial, and b0, b1, . . . , bn are coefficients.
This model can capture more intricate patterns but requires careful
tuning to avoid overfitting Nunno (2014).

The research delved into Linear and Polynomial models,
exploring their performance across varying training dataset sizes
to forecast future temperature and pressure trends, with training
sizes ranging from 12 measurements (equivalent to 1 h) to
288 measurements (24 h). These are represented in Figures 6, 7.

Linear models demonstrated limitations in capturing complex
temperature patterns due to their inherent linearity, resulting in
deviations particularly evident during peak oscillations in the
dataset. These models struggled to adapt to nuanced temperature
trends, highlighting the challenge of representing intricate data
patterns with simplistic linear functions.

Conversely, linear models exhibited more stability in pressure
predictions, especially with larger training sizes. Tower pressure
predictions benefitted from consistent interval patterns, facilitating
more accurate forecasts despite weaker data correlations. However,
as training sizes increased, linear models encountered challenges
adapting to evolving temperature trends, leading to deviations from
actual data.

Polynomial models, showcased significant discrepancies across
all training sizes, failing to capture dataset intricacies accurately.
While there were instances of acceptable performance with smaller
training sizes for specific variables, overall, polynomial models
exhibited exponential divergence from actual data, raising doubts
about their reliability for this dataset.

3.3.2 Exponential smoothing
Exponential Smoothing Bucay-Valdiviezo et al. (2023), a

statistical technique employed in diverse fields such as finance,
economics, marketing, and operations, stands out as a powerful
tool for time series forecasting. Operating on the principle of
assigning exponentially decreasing weights to past observations, it
adapts dynamically to underlying patterns or trends, making it a
versatile choice in various forecasting scenarios Hu et al. (2013).

This methodology, designed specifically for univariate time
series data, employs a weighted linear sum of past observations
or lags, with a crucial element being the assignment of exponentially
decreasing weights.

In its simplest form, Simple Exponential Smoothing (SES) utilizes
the current observation and the previous forecast tomake predictions,
controlled by the parameter α. The SES predicts the next observations
based on the smoothed average, without considering the trend and
seasonality of the data. The choice of α follows the principle that a
smaller α places more emphasis on past observations, making the
smoothing process more persistent, while a larger α gives more weight
to the most recent observation, making the smoothing process more
responsive to changes.

Double Exponential Smoothing (DES), known as Holt’s trend
model, comes into play when data exhibits a linear trend but lacks a
seasonal pattern, introducing an additional parameter, β, to control
the trend’s influence. Moreover, Triple Exponential Smoothing
(TES), also known as Holt-Winters Exponential Smoothing, is
applied when data showcases both linear trends and seasonal
patterns, introducing the new smoothing parameter, γ.

The advantages of Exponential Smoothing lie in its simplicity,
computational efficiency suitable for large datasets, and adaptability
to changes in the time series. Its effectiveness with limited historical
data, thanks to higher weights assigned to recent observations,
further enhances its appeal for real-time forecasting Hu et al. (2013).

With a focus on short-term forecasting situations and the
acknowledgment of limitations in long-term reliability,
Exponential Smoothing stands out as an effective, adaptive, and
computationally efficient tool Bucay-Valdiviezo et al. (2023). The
choice of method should be made judiciously based on the context
and nature of the time series data, recognizing both its strengths and
limitations.

In the case of SES, represented in Figure 8, there exists the option
to manually select the desired alpha parameter or allow the model to
optimize it autonomously. This flexibility in parameter selection
adds an adaptive dimension to the SES model, potentially enhancing
its performance in capturing evolving trends within the dataset.
However, SES consistently yielded flat forecasts across all
predictions. This characteristic stems from SES’s inherent
simplicity, as it does not incorporate trend or seasonal components.

While SES may perform adequately for pressure predictions,
where values typically remain within narrow intervals for extended
periods, its efficacy diminishes when forecasting temperatures.
Furthermore, SES’s inability to capture fluctuations hampers its
utility in predictive maintenance, as it cannot effectively anticipate
whether values will surpass predefined thresholds, limiting its
application in preventing potential system issues.

For the DES model, represented in Figure 9, similar parameter
optimization was employed, allowing the model to determine
optimal values for α and β autonomously. DES offers additional
configurability, including the specification of trend type (additive or
multiplicative) and whether it is damped. In this instance, default
settings were retained, corresponding to a non-damped
additive trend.

The DESmodel exhibited performance akin to linear models but
notably displayed similarity in predictions with different training
data sizes (144 and 288 data points), as represented in Figure 10.
This phenomenon can be attributed to the abundance of training
data, resulting in very small alpha values that diminish the model’s
ability to capture underlying patterns effectively. The resemblance in
predictions underscores the challenge of balancing sufficient
historical data with alpha values to optimize model responsiveness.

3.3.3 ARIMA
ARIMA models combine Autoregressive (AR), Integrated (I),

and Moving Average (MA) components to analyze and predict
future trends in time series data. Central to the configuration of the
ARIMAmodel are the parameters p, d, and q, each playing a distinct
role in capturing the temporal dependencies and achieving
stationarity in the time series Mo (2023).

The autoregressive order p represents the number of lag
observations included in the model. In the AR component, the
current observation is modelled as a linear combination of its p past
observations. A higher p allows the model to capture longer-term
dependencies, making it adept at capturing trends and periodic
patterns within the time series.

The differencing order d signifies the number of times the time
series is differenced to achieve stationarity. Stationarity is a
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prerequisite for effective time series modelling, and the differencing
process eliminates trends or seasonality. A higher d implies more
differencing steps are needed to transform the time series into a
stationary form. The determination of d involves evaluating the
number of differencing steps required to achieve stationarity.

The moving average order q denotes the number of lagged
forecast errors included in the model. The MA component

captures the relationship between the current observation and
q past forecast errors. A higher q enables the model to account for
longer-term dependencies in the forecast errors, aiding in
capturing any remaining serial correlation in the
differenced series.

Careful consideration of p, d, and q is essential in configuring
the ARIMA model to accurately reflect the temporal characteristics

FIGURE 8
SES prediction with 12 point training set.

FIGURE 9
DES prediction with 12 point training set.
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of the time series, ensuring robust forecasting and meaningful
insights into future trends.

Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF) play crucial roles in the thorough analysis of
ARIMA models, as they serve as essential tools for identifying the
appropriate orders (p, d, q) in the model. The examination of decay
or cut-off patterns in these functions enables analysts to discern the
temporal dependencies within the time series Bucay-Valdiviezo
et al. (2023).

Both ACF and PACF start with a lag of 0, resulting in a
correlation of 1 with the time series itself. The 95% confidence
interval in ACF and PACF plots helps identify statistically significant
correlations. For the AR order, a significant spike at lag p in the
PACF plot, with subsequent lags having insignificant values,
suggests an autoregressive order of p. For the MA order, a
significant spike at lag q in the ACF plot, with subsequent lags
having insignificant values, indicates a moving average order of q.
The presence of repeating patterns at regular intervals in the ACF
and PACF plots may also suggest the existence of seasonal
components.

Still, to perform the ACF and PACF analysis, one needs to
assume stationarity, making it necessary first to perform a
stationarity check in the dataset. One can be used with the
Augmented Dickey-Fuller (ADF) test.

Central to the ADF test are two key components: the p-value and
the null hypothesis (H0). The p-value is a statistical metric that
quantifies the probability of observing the ADF test statistic or a
more extreme value under the assumption that the null hypothesis is
true. In the context of the ADF test, the null hypothesis posits the
presence of a unit root in the time series, indicating non-stationarity
Bucay-Valdiviezo et al. (2023). A high p-value suggests a failure to
reject the null hypothesis, implying that the data likely possesses a
unit root and is subsequently non-stationary. Conversely, a low

p-value provides evidence to reject the null hypothesis, signalling
that the data lacks a unit root and is stationary.

In more practical terms, the interpretation of the p-value is
deeply intertwined with the decision-making process. If the p-value
exceeds the chosen significance level, often set at 0.05, one fails to
reject the null hypothesis and the time series is deemed likely non-
stationary. On the other hand, if the p-value is equal to or below the
significance level, it provides evidence to reject the null hypothesis,
indicating stationarity. This pivotal outcome sets the stage for
subsequent analyses, leading to the ACF and PACF examination,
as explained before.

In implementing the ARIMA forecasting model, the initial steps
involved conducting a stationarity test on the dataset using the ADF
test and examining ACF and PACF plots to inform model
development Bucay-Valdiviezo et al. (2023).

Given the dataset’s potential seasonal component and the desire to
accommodate an ARIMA model, a subset of 864 measurements
(equivalent to 3 days) was selected to adequately capture seasonal
cycles. The ADF test revealed that temperature datasets demonstrated
stationarity with p-values below 0.05, while pressure datasets for the
tower and AV5 furnace did not exhibit stationarity, necessitating
differencing. However, inspecting ACF and PACF plots for
temperatures revealed slow convergence to confidence intervals,
suggesting differencing could benefit these datasets as well.

First-order differencing was applied to AV5 pressure and
second-order differencing to AV5 temperature, Tower
temperature, and Tower pressure, achieving convergence to ACF
and PACF confidence intervals and confirming stationarity through
ADF tests, as represented in Figure 11. These steps informed the
determination of the differencing parameter (d) for each time series
in the ARIMA model.

Further examination of ACF and PACF plots informed the
selection of parameters (p and q) for each model, with all plots

FIGURE 10
DES prediction with 288 point training set.
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cutting off at lag 2 and displaying geometric decay in PACF patterns.
Consequently, q was set to 2, and p to 0 for all models.

The ARIMA models generated forecasts characterized by trend
lines similar to those from Linear Regression and DES, with more
robust performance observed in forecasting pressures, potentially
attributed to pressure values maintaining consistency around their
mean despite significant fluctuations. This underscores the ARIMA
model’s ability to capture and predict such patterns effectively.

3.3.4 Prophet
The Prophet model Riady (2023); Caicedo-Castro (2023), an

innovative forecasting tool, was introduced by Facebook’s Core Data
Science team in 2018. Developed as an open-source tool, it was
originally designed for forecasting daily data but has since been
extended to accommodate a diverse range of seasonal patterns. This
model encompasses a piecewise linear trend, seasonal variations,
holiday effects, and a white noise error term.

The key components of the model delve into the intricacies of its
structure. The piecewise linear trend, with automatic changepoint
selection and an optional logistic function for an upper trend bound,
offers a dynamic representation of temporal evolution. Seasonal
components, expressed through Fourier terms with default orders
for annual and weekly seasonality, capture recurring patterns.
Holiday effects are introduced as simple dummy variables,
contributing to a comprehensive modelling approach.

The Prophet model employs a Bayesian approach, enabling the
automatic selection of changepoints and enhancing adaptability to
diverse datasets for robust forecasting. It serves as a versatile tool for
time series forecasting, demonstrating resilience to missing data,
trend shifts, and outliers Sharma et al. (2022).

The final model selected for its simplicity of implementation and
rapid performance is the Prophet model, leveraging the prophet
library. This model, designed to handle the seasonal component of

the dataset, benefits from a larger training dataset, utilizing the
864 data points for training, as represented in Figure 12.

Upon reviewing the documentation, it becomes apparent that
several parameters can be customized by the user, including the
changepoint scale, seasonality scale, uncertainty samples, and more.
For the preliminary model configuration, only the daily_seasonality
was set to true, while weekly_seasonality and yearly_seasonality were
set to false. Other parameters were left at their default values.

In the observed graphs, the forecasted lines exhibit behaviour
relatively similar to the actual data. However, they tend to curve too
early. Further exploration and fine-tuning of the Prophet model, in
conjunction with an optimized training size, could potentially
enhance its accuracy in capturing the intricate patterns present in
the temperature and pressure datasets. This iterative process of
refinement is essential for ensuring the model’s effectiveness and
reliability in predictive maintenance applications.

4 Results

For the evaluation of the models, an algorithm was developed to
calculate performance metrics. The algorithm developed for model
evaluation is designed to assess the performance of various
predictive models by systematically exploring different
combinations of model parameters and training sizes. The core
steps involved in the algorithm’s realization are as follows:

1. Model and Parameter Selection: The algorithm begins by
allowing the user to pre-select the predictive models of
interest (e.g., Linear Regression, Polynomial Regression,
Simple Exponential Smoothing, Double Exponential
Smoothing, ARIMA, Prophet) and their associated
parameters. For each model, the user specifies a range of

FIGURE 11
ACF and PACF plots of second-order differentiated AV5 temperature.
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parameters to be tested. For instance, in the case of ARIMA,
parameters such as p, d, q values are selected, while for
Exponential Smoothing models, parameters like alpha, beta,
and trend dampening are chosen.

2. Training Size Specification: The user also selects the range of
training sizes to be evaluated. The training size represents the
number of data points used to train the model before testing it
on the subsequent data points. The algorithm iterates through
all possible combinations of the selected training sizes with the
model parameters.

3. Blocked Cross-Validation with Rolling Window Strategy:
Unlike traditional rolling window methods, where the
training set incrementally expands, the algorithm employs a
blocked approach. Each training block has a fixed size as
defined by the user, and both the training and testing sets
move across the time series data in a sequential manner.
Specifically, the training block is defined by the current
combination of parameters and training size, while the
testing block immediately follows the training block. After
each evaluation, the blocks are shifted by one data point along
the time series, maintaining the training block’s fixed size. This
method simulates real-time data processing, where models are
constantly updated with the latest available data and then used
to predict the next set of outcomes.

4. Performance Metric Calculation: For each combination of
model parameters and training sizes, the algorithm
calculates performance metrics including Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), and Mean
Absolute Error (MAE). These metrics are key indicators of how
well the model predicts future data points based on the training
it has received. MSE provides a measure of the average squared
difference between observed and predicted values, penalizing
larger errors more heavily. RMSE is the square root of MSE,

offering a measure in the same units as the data. MAE provides
the average magnitude of the errors, giving a more
interpretable measure of prediction accuracy.

5. Result Exportation: Once all combinations have been evaluated,
the results, including eachmodel’s parameters, training size, and
corresponding performance metrics, are exported to a CSV file.
This comprehensive CSV file allows for easy comparison of
models and their performance under different configurations,
facilitating the selection of the best-performing model and
parameter set for the specific time series data.

6. Optimal Model and Parameter Identification: By reviewing the
CSV file, the user can identify which model, training size, and
parameter combination provided the most accurate
predictions (i.e., the lowest MSE, RMSE, and MAE). This
insight is crucial for determining the model that best
captures the patterns in the dataset, ensuring that the
predictive maintenance system is as effective as possible in
anticipating equipment failures.

This approach reflects the sequential nature of the time-series
data, serving as a simulator of the models’ behaviour for the dataset,
as if they were encountering continuous data in real time. With this
methodology, it becomes possible to discern which model
outperformed the others. Simultaneously, it facilitates the
determination of the optimal training size and identification of
the parameter combination that resulted in the most accurate
predictions. Following the observations made in Section 3.3, the
following combinations were considered for each model.

For the Linear and Polynomial Regression models, the only
parameter to consider is the training size. As observed earlier, a
larger training size tends to yield poorer model responses. A training
size ranging from 6 measurements (30 min) to 96 measurements
(equivalent to 8 h) was chosen for evaluation.

FIGURE 12
Prophet prediction with 864 point training set.
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For the DES model, the parameters considered include α, β,
trend, and damped_trend. As highlighted before, there exists a
correlation between α and the number of training sets. A smaller
α value necessitates a larger training set for cumulative weights to
approach 1. However, an excessively high training set for a small α
may result in the neglect of many points due to their
minimal weight.

To address this, a code was developed to determine the number
of measurements required to achieve a cumulative weight of
0.999 for each α value. The results were rounded to the nearest
multiple of 10 to enhance the proximity of the cumulative
weight to 1.

The obtained results are summarized as follows:

• For an α of 0.1, the algorithm considers the previous
70 measurements.

• An α of 0.2 takes into account the latest 40 points.
• α of 0.3 and 0.4 consider the last 20 measurements.
• An α greater than or equal to 0.5 considers only the
previous 10 points.

However, the β component exhibits a similar relationship with
the training size as the α. Consequently, the algorithm selects the
training size as the larger value needed between the α and β

parameters.
In the ARIMAmodel, the parameters consist of the components

p, i, and q. Given that the i component should remain unchanged to
prevent making the data non-stationary, slight adjustments were
made only to the p and q parameters. As for the training size, choices
were made for half a day, 1 day, 2 days, and 3 days.

Finally, in the Prophet model, aiming to capture seasonal
patterns, the same training sizes as the ARIMA model were
selected. Parameters such as changepoint_prior_scale and
seasonality_prior_scale were also considered, exploring values
around their defaults, 0.05 and 10, respectively.

Regarding regression assessment metrics, smaller MSE, RMSE,
and MAE collectively suggest a reduction in the magnitude of
prediction errors. MSE measures the average squared magnitude
of errors, RMSE quantifies the average magnitude of errors by taking
the square root of MSE, andMAE provides the average magnitude of
prediction errors. Smaller values for these metrics indicate that, on
average, the model’s predictions are closer to the actual observed
values, reflecting improved predictive performance.

4.1 Evaluation analysis

As described before, a variety of models were employed to
predict each measurement in the AV5 Water Cooling System,
namely the pressure and temperature. The models predicted the
temperature on both cold and hot sides, i.e., the AV5 Water Tower
and the AV5 Furnace. This diversified configuration has resulted in
the implementation of the alarm system with the devised algorithm
at the Avintes plant, providing accurate and reliable predictions for
the given scenario.

Beginning with Linear and Polynomial Regression models, the
Linear Regression demonstrated much better performance, as
expected. The metrics started to decrease with an increase in the

training size and reached a minimum point at a training size of
18 measurements for both temperatures, equivalent to an hour and a
half. After this training size, all subsequent training sizes increased
the RMSE and MAE values. For tower pressure, this occurred with a
larger size of 78 measurements, and for AV5 inlet pressure, it
occurred with 12 measurements.

Moving on to the DES, coincidentally, for all temperatures and
pressures, the values of α at 0.2, β at 0.9, and a damped additive trend
showed the lowest RMSE. This configuration also resulted in the
lowest MAE. In temperature, this model seems to perform better in
AV5 temperature, with lower metrics in general. For pressures, the
values are so close that the difference is negligible.

A worse performance was noted with the increase of both α and
β. The higher they increase, the smaller the training size, which
causes the model to consider very few points, leading to a disregard
for the dataset’s trend. It was also observed that the performance is
generally better with an additive trend and damped. Most of the
non-damped multiplicative trends showed the worst performance.

Considering the ARIMA model, for AV5 Pressure and Tower
Pressure, an increase in the training size generally corresponds to
improved predictive accuracy, with the best performance observed
at a training size of 864 and 576, respectively. AV5 Temperature and
Tower Temperature found the best performance again with a
training size of 288, validating the idea that the best univariate
model will be the same for both.

Finally, the Prophet model demonstrated better performance for
increasingly larger training set values for all variables. Indeed, the
training set for each variable should be 864. As expected, pressures
showed the lowest RMSE and MAE values, with the model having
changepoint_prior_scale of 0.01 and seasonality_prior_scale of
15 showing the best performance for both pressures. For
temperatures, this time they had different parameters for better
performance: changepoint_prior_scale of 0.1 and seasonality_prior_
scale of 5 for AV5 temperature, and changepoint_prior_scale of
0.01 and seasonality_prior_scale of 15 for the tower side temperature.

By pitting these models against each other, one can scrutinize
the performance metrics presented in Table 2 for the AV5 Water
Tower and Table 3 for the AV5 Furnace. These metrics were
extracted from the output CSV files, sorted in ascending order of
RMSE, MSE, and MAE.

For the AV5 pressure, that is the pressure of the hot side of the
heat exchanger, the best model is Prophet, with a training size of
864 points, a changepoint_prior_scale of 0.01 and seasonality_prior_
scale of 15. For the AV5 temperature, the best model is the DES, with
a training size of 40 measurements, a damped additive trend, an α

value of 0.2, and a β value of 0.9.
For the Tower pressure, that is the pressure of the cold side of the

heat exchanger, the best model is ARIMA, with a training size of
576 points and p, i, and q values of 0, 2, and 2, respectively. For the
Tower temperature, the best model is, again, the DES, with a training
size of 40 measurements, a damped additive trend, an α value of 0.2,
and a β value of 0.9.

5 Discussion

This study aimed to enhance predictive maintenance at BAGlass
by addressing two primary research questions: RQ1. identifying the
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most suitable types of sensors for the diverse machinery within the
BA Glass Avintes factory floor; and RQ2. determining the most
accurate prediction models for predicting the state of components in
the Water Cooling System of the AV5 furnace.

Regarding RQ1, we identified two sensors as particularly suitable
for the AV5 production line machines: the Sure Cross®
QM30VT2 Vibration and Temperature Sensor and the WISE-2410
LoRaWAN Wireless Condition Monitoring Sensor. The QM30VT2
was selected for its Modbus compatibility, allowing direct
connection to a Modbus-485 network, making it a reliable and
cost-effective option. In contrast, the WISE-2410 offered the
advantage of a wireless, battery-operated design, providing
flexibility in placement but requiring additional infrastructure for
connectivity.

The discussion regarding the types of sensors for factory floor
sensorization led to the acquisition and subsequent exploration of
two sensor options: wired sensors with RS 485 connection and
wireless sensors directly linked to a Modbus TCP gateway. This
analysis highlights two key considerations, with the initial being
focused on financial aspects. The acquisition of wired sensors

presents the advantage of lower costs and eliminates the need for
additional investments in gateways. However, the connection of
multiple wireless sensors to a single gateway can lead to a reduction
in the cost per sensor over time. Nevertheless, if each wireless sensor
is more expensive than its wired counterpart, the financial advantage
diminishes, and wired sensors maintain a preferable position.

The subsequent crucial consideration, and what emerges as the
genuine advantage of wireless sensors, lies in their ease of
installation, mitigating concerns associated with managing
extensive cables on the plant floor. The implementation of the
wired sensor encountered challenges, particularly in extending
cables to reach the sensor and connecting it to power outlets.
Additionally, the presence of exposed cables introduces a
potential risk of inadvertently damaging the sensors. In contrast,
wireless sensors distinguish themselves with a straightforward
implementation and removal process, along with the
optimization of space on the plant floor.

This dichotomy essentially boils down to a choice between cost
and practicality, depending on the short-term preferences of BA
Glass. However, considering the goal of achieving predictive

TABLE 2 Top model performances for AV5 pressure and temperature prediction.

Dataset Model and parameters Train size MSE RMSE MAE

AV5 pressure prediction Prophet (0.01; 15) 864 8.42216E-05 0.009177234 0.009017344

Arima 864 0.000257013 0.016031612 0.014458356

Linear 12 0.000376765 0.019410441 0.017486384

DES (0.2, 0.9, True, “add”) 40 0.00102805 0.032063225 0.034972768

Quadratic 18 0.001798349 0.042406945 0.039192513

AV5 temperature prediction DES (0.2, 0.9, True, “add”) 40 1.455394677 1.206397396 1.017156406

Arima 288 2.961623158 1.720936709 1.422516798

Linear 18 2.981266012 1.726634302 1.419559487

Prophet (0.1; 5) 864 5.90992663 2.431034066 2.312245882

Quadratic 96 10.12327961 3.181710171 2.621386333

TABLE 3 Top model performances for tower pressure and temperature prediction.

Dataset Model and parameters Train size MSE RMSE MAE

Tower pressure prediction Arima 576 0.000122684 0.011076302 0.010207622

Linear 78 0.000403563 0.020088886 0.019948447

Prophet (0.01; 15) 864 0.000623703 0.024974049 0.020875929

Quadratic 96 0.00885642 0.094108557 0.072050938

DES (0.2, 0.9, True, “add”) 40 0.035425682 0.188217114 0.078385025

Tower temperature prediction DES (0.2, 0.9, True, “add”) 40 1.629329848 1.276452055 1.071695927

Linear 18 3.15036397 1.774926469 1.456565323

Arima 288 4.492378029 2.119523066 1.703327873

Prophet (0.01; 15) 864 5.666512855 2.380443836 2.062677351

Quadratic 96 11.00533821 3.317429459 2.732734257
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maintenance, this conducted research, encompassing the search,
implementation, and integration of sensors into PowerStudio
SCADA, suggests that transitioning to a completely wireless
sensorization would bemore advantageous in the long-term context.

For the RQ2, we evaluated various predictive models for
forecasting the state of the AV5 furnace’s water cooling system
components. The Prophet model proved to be the best for predicting
the pressure on the hot side of the heat exchanger, while the DES
model was most effective for predicting temperature on both the hot
and cold sides. The ARIMA model was found to be the best for
predicting pressure on the cold side of the heat exchanger.

Before deploying any forecasting models, gaining a
comprehensive understanding of the dataset’s condition is
paramount. This necessitates the availability of an extensive
dataset that enables the observation of patterns and trends over a
significant period. Additionally, attention should be given to
outliers, acknowledging their role not only as representations of
measurement errors or noise but also as indicators of human
intervention, whether in the shutdown of machines or
engagement in maintenance processes. Striking the right balance
between the dataset’s expansiveness for pattern detection and the
detection and removal of outliers is vital for ensuring the accuracy
and reliability of predictions.

In the context of predictive maintenance models, it becomes
evident that the preference for different models is contingent upon
the specific characteristics of the dataset. For forecasting models
applied to datasets exhibiting daily seasonality, such as temperature
data with a slow and steady oscillation of values over time, the
recommendation leans towards using DES with an additive damped
trend. Additionally, linear models tend to perform well with these
datasets and show a preference for smaller training sizes.

On the contrary, when dealing with more stable datasets
characterized by lower amplitude oscillations in the trend but
occurring at higher frequencies, exemplified by pressure data, the
recommendation shifts towards the utilization of ARIMA or
Prophet models, especially with a more substantial training size.
In these datasets, avoiding a small-sized training set is advised, as it
might only capture rapid variations, leading to inaccurate
predictions of future values.

5.1 Feedback from BA Glass operational staff

While this study presents a comprehensive analysis of predictive
maintenance implementation at BA Glass, an essential aspect that
could further validate the project’s success is feedback from the
operational staff who interact directly with the system. Although this
feedback was not formally gathered and analyzed as part of the
current study, preliminary discussions with BA Glass operational
staff have provided some valuable insights.

The operational staff highlighted several strengths of the
implemented predictive maintenance system:

• Enhanced Decision-Making: Staff members reported that the
integration of the predictive maintenance algorithm with the
PowerStudio SCADA system significantly improved their
ability to anticipate and address potential equipment
failures. The real-time alerts and data-driven insights

enabled them to make more informed decisions, thereby
reducing unplanned downtime and improving overall
operational efficiency.

• Ease of Use: The usability of the alarm system was particularly
noted. Workers appreciated the clear, actionable alerts
generated by the SCADA system, which translated complex
predictive data into simple, understandable notifications. This
user-friendly interface minimized the learning curve and
allowed staff to quickly adapt to the new system.

• Operational Efficiency: Feedback also indicated that the
predictive maintenance approach helped streamline
maintenance processes. By shifting from a reactive to a
proactive maintenance strategy, the operational staff observed
a reduction in emergency repairs and unscheduledmaintenance
tasks, which previously disrupted production schedules.

However, the feedback also identified areas for potential
improvement:

• Sensor Performance Monitoring: Some staff expressed a desire
for more detailed real-time monitoring of sensor performance.
While the current system provides essential data, they
suggested that additional diagnostics on sensor health and
functionality could further enhance the system’s reliability.

• Comprehensive Training: Although the system was designed
with usability in mind, there were suggestions for more
comprehensive training sessions. Operational staff indicated
that while they could navigate the system effectively, deeper
training on interpreting the predictive analytics and
understanding the underlying models could empower them
to use the system more effectively.

• Scalability and Expansion: Finally, staff members were
interested in expanding the predictive maintenance
approach to other areas of the factory beyond the
AV5 furnace. They recognized the value of the system and
suggested that similar implementations in other critical
machinery could further reduce downtime and enhance
operational efficiency across the entire facility.

5.2 Contextualizing the findings

The findings align with previous research emphasizing the
importance of sensor selection and predictive modelling in
enhancing maintenance strategies. For instance, studies have
highlighted the role of sensor compatibility and data
transmission capabilities in effective predictive maintenance
Zonta et al. (2020); Basri et al. (2017). Our study reinforces these
insights by demonstrating the practical application of these
principles in a real-world industrial setting.

Moreover, the identification of the most suitable predictive
models for different components of the water cooling system
adds to the existing body of knowledge. Prior research has
explored various forecasting models for industrial maintenance,
but our study provides specific insights into the effectiveness of
models like Prophet, DES, and ARIMA in the context of a glass
manufacturing plant’s cooling system Addo-Tenkorang and Helo
(2016); Plunkett et al. (2013).
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This study advances the current understanding of predictive
maintenance by providing a detailed analysis of sensor suitability
and predictive model accuracy in a specific industrial context. The
integration of real-time monitoring and predictive analytics, as
demonstrated in this study, highlights the potential for proactive
maintenance strategies to reduce downtime and operational costs.
The practical insights gained from the sensor selection and model
evaluation processes can inform similar initiatives in other industrial
settings, contributing to the broader adoption of predictive
maintenance practices.

By addressing the specific needs of a glass manufacturing plant,
this study provides a concrete example of how predictive
maintenance can be tailored to meet the unique challenges of
different industrial environments. The findings underscore the
importance of selecting appropriate sensors and predictive
models based on the specific characteristics of the machinery and
operational processes. This tailored approach can significantly
enhance the effectiveness of predictive maintenance strategies,
leading to improved reliability, efficiency, and safety in industrial
operations.

5.3 Potential shortcomings and limitations

While the study provides valuable insights, several limitations
should be considered. First, the evaluation of sensors was based on
specific operational needs and environmental conditions of the BA
GlassAvintes factory. The findings may not be universally applicable
to other industrial settings with different requirements and
conditions. Furthermore, insufficient sensor data related to the
AV5 Water Cooling System constrained the exploration of a
diverse range of failure cases. The analysis could only encompass
instances of failure in the pumps on the cold side of the heat
exchanger. This restriction hindered the ability to investigate a
broader spectrum of failure scenarios, which could have provided
more comprehensive insights into the predictive maintenance
algorithm’s performance.

Second, the predictive models were tested using historical data
from the AV5 furnace’s Water Cooling System, which may not fully
capture all potential future scenarios. Additionally, the study did not
account for potential external factors, such as changes in operational
practices or environmental conditions, which could impact the
predictive accuracy of the models.

Finally, in terms of predictive models, the study did not utilize
multivariate models. Despite observing strong relationships between
temperatures and a moderate correlation with tower pressure, we
failed to explore multivariate models. This limitation highlights the
potential for further research to compare the effectiveness of
univariate and multivariate models, providing a more
comprehensive understanding of their applicability in predictive
maintenance scenarios.

6 Conclusion

This study aimed to enhance predictive maintenance practices
at BA Glass by addressing two critical research questions: RQ1.
identifying the most suitable sensors for diverse machinery within

the BA Glass Avintes factory floor; and RQ2. determining the
most accurate prediction models for the AV5 furnace’s Water
Cooling System components. The investigation provided several
key insights and contributions to the field of predictive
maintenance.

Firstly, the evaluation of sensors led to the identification of the
Sure Cross® QM30VT2 Vibration and Temperature Sensor and the
WISE-2410 LoRaWAN Wireless Condition Monitoring Sensor as
particularly suitable for the factory’s needs. The QM30VT2 offered a
reliable, cost-effective solution with direct Modbus compatibility,
while the WISE-2410 provided flexibility through its wireless,
battery-operated design, albeit with additional infrastructure
requirements.

Secondly, the study identified the most effective predictive
models for different components of the AV5 furnace’s Water
Cooling System. The Prophet model was found to be optimal for
predicting pressure on the hot side of the heat exchanger, whereas
the DES model excelled in forecasting temperatures on both the hot
and cold sides. The ARIMA model proved most suitable for
predicting pressure on the cold side.

Despite encountering limitations such as restricted data
availability and the exclusion of multivariate models, the study
demonstrated the practical application of predictive maintenance
strategies in an industrial setting. The integration of real-time
monitoring and predictive analytics facilitated a proactive
approach to maintenance, aiming to reduce downtime and
operational costs.

The findings of this study contribute to the broader
understanding of predictive maintenance by providing practical
guidance on sensor selection and model implementation. Future
research should focus on addressing the identified limitations,
particularly by exploring multivariate models and a wider range
of failure scenarios to enhance the predictive
maintenance framework.

Furthermore, the chosen univariate and multivariate models
would be transferred to components with similar behaviour in the
factory, such as other furnaces and production lines, to validate
whether the insights gained from this modelling context could be
applied to other components. This would follow an approach similar
to transfer learning, where the knowledge and parameters acquired
from one set of components are leveraged to improve the
performance of models applied to analogous components. Such
an extension of the research could provide valuable insights into the
generalizability and adaptability of predictive maintenance models
across various machinery and components in this and the other
factories of the BA Glass group.

Another enhancement would involve establishing a direct
connection between the prediction tool and the SCADA system,
allowing for the generation of alarms without the need for a CSV file
to manually toggle alarm variables. The suggested method for this
integration involves the use of an OPC Router, facilitating seamless
communication between systems.

In conclusion, this study lays a strong foundation for the
continued advancement of predictive maintenance practices at
BA Glass and similar industrial environments. By leveraging the
identified sensors and predictive models, organizations can move
from reactive to proactive maintenance strategies, ultimately
achieving greater operational efficiency and reliability.
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