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The integration of sustainable additive manufacturing (AM) within the framework
of African industrialization presents a promising avenue for economic
advancement while addressing environmental concerns. This review explores
the convergence of sustainable AM practices with the industrial landscape of
Africa, highlighting potential benefits and challenges. Through efficient resource
utilization and localized production capabilities, AM holds promise for enhancing
industrial resilience, stimulating employment opportunities, and fostering
innovation. However, the realization of these benefits necessitates navigating
infrastructural limitations, technological disparities, and regulatory complexities.
By critically examining sustainable AM strategies and their relevance to African
contexts, this review aims to delineate actionable pathways for leveraging the
transformative potential of AM. The role of AM in industrialization as expressed in
the African Union Agenda 2063 are highlighted. This has the potential to increase
the staggering ~11% contribution of manufacturing to gross domestic product of
Africa. Collaboration through the triple helix approach focusing on government,
industry and academia is highly pivotal for the success of such nascent and
ubiquitous AM technology which is able to address the sustainable development
goals. Africa can leapfrog and harness sustainable AM as a catalyst for inclusive
industrial development and sustainable growth across the continent. The
implications of AM for an industrialised Africa and areas for future research
direction are briefly discussed.

KEYWORDS

additive manufacturing, sustainability, African industrialization, sustainable
development goals, economic development

OPEN ACCESS

EDITED BY

Kingsley Ukoba,
University of Johannesburg, South Africa

REVIEWED BY

António Abreu,
Lisbon Higher Institute of Engineering (ISEL),
Portugal
Tomasz J. Nitkiewicz,
Częstochowa University of Technology, Poland

*CORRESPONDENCE

Desmond Klenam,
desmond.klenam@wits.ac.za

RECEIVED 01 April 2024
ACCEPTED 11 December 2024
PUBLISHED 07 January 2025

CITATION

Klenam D, Asumadu T, Bodunrin M, Obiko J,
Genga R, Maape S, McBagonluri F and
Soboyejo W (2025) Toward sustainable
industrialization in Africa: the potential of
additive manufacturing – an overview.
Front. Manuf. Technol. 4:1410653.
doi: 10.3389/fmtec.2024.1410653

COPYRIGHT

© 2025 Klenam, Asumadu, Bodunrin, Obiko,
Genga, Maape, McBagonluri and Soboyejo. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Manufacturing Technology frontiersin.org01

TYPE Review
PUBLISHED 07 January 2025
DOI 10.3389/fmtec.2024.1410653

https://www.frontiersin.org/articles/10.3389/fmtec.2024.1410653/full
https://www.frontiersin.org/articles/10.3389/fmtec.2024.1410653/full
https://www.frontiersin.org/articles/10.3389/fmtec.2024.1410653/full
https://www.frontiersin.org/articles/10.3389/fmtec.2024.1410653/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmtec.2024.1410653&domain=pdf&date_stamp=2025-01-07
mailto:desmond.klenam@wits.ac.za
mailto:desmond.klenam@wits.ac.za
https://doi.org/10.3389/fmtec.2024.1410653
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org/journals/manufacturing-technology#editorial-board
https://www.frontiersin.org/journals/manufacturing-technology#editorial-board
https://doi.org/10.3389/fmtec.2024.1410653


Introduction

Additive manufacturing (AM) involves creating structural and
functional components from 3D models through a layer-by-layer
deposition process (Rupp et al., 2022; Monteiro et al., 2022; Landi
et al., 2022; Gao et al., 2021; Výtisk et al., 2022; Wang K. et al., 2022).
This is in contrast to conventional subtractive methods where
component parts are removed through machining (Egan et al.,
2019; Jiang et al., 2020; Jiang, 2020; Roque et al., 2021; Kumar
et al., 2021). The shift from conventional approaches to AM
technologies is beneficial from sustainability and economic
viability standpoint. Although, the AM technology was initially
associated with rapid prototyping (Gibson et al., 2015; Dimitrov
et al., 2007; Poole and Phillips, 2015), it has evolved significantly
offering enhanced efficiency in product development, reduced
material wastage, improved product quality, and mass production
across various classes of materials (Egan et al., 2019; Roque et al.,
2021; Kumar et al., 2021; Jiang et al., 2022; Xu et al., 2020; Wegner
et al., 2022; Hagman and Svanborg, 2022; Patel et al., 2022;
Psarommatis et al., 2023; Klenam et al., 2022). Furthermore, the
precision and accuracy associated with products from AM make
them suitable for customizing component parts seamlessly. The
foundational concepts emerged in the early 1940s and 50s with
significant progress made up to early 70s. The development of
functional AM equipment in the 1980s and commercial
application ushered in the new dawn of digital manufacturing.
Thus, AM technologies are nascent and revolutionary
technologies which will form the backbone of the economies of
the future in an era of overwhelming complexities, tremendous
competition and accelerated change.

The industrialization of Africa is incomplete without the
adoption and implementation of AM technologies. Although, the
technology is evolving and at its nascent stage, most African
countries are yet to adopt and integrate it. This is partly due to
low industrialization rates and infrastructure deficits. However,
there is the need to leapfrog and gradually deploy the technology
to meet the increasing demands of the manufacturing sector (Egan
et al., 2019; Roque et al., 2021; Kumar et al., 2021; Jiang et al., 2022;
Xu et al., 2020; Wegner et al., 2022; Hagman and Svanborg, 2022;
Patel et al., 2022; Psarommatis et al., 2023; Klenam et al., 2022).
Currently, global trends show versatile use of AM technologies in
aerospace (Egan et al., 2019; Roque et al., 2021; Kumar et al., 2021;
Jiang et al., 2022; Xu et al., 2020; Wegner et al., 2022; Hagman and
Svanborg, 2022; Patel et al., 2022; Psarommatis et al., 2023; Klenam
et al., 2022), consumer goods, industrial machinery, motor vehicle
parts (Monteiro et al., 2022; Lim et al., 2012; Alami et al., 2023;
Ashima et al., 2021; Isasi-Sanchez et al., 2020; Salifu et al., 2022;
Najmon et al., 2019; Altıparmak and Xiao, 2021; Froes and Boyer,
2019; Oyesola et al., 2020; Oyesola et al., 2018), medical (Kumar
et al., 2021; Arif et al., 2023; Jardini et al., 2014; Bose et al., 2018;
Puppi and Chiellini, 2020; Lv et al., 2021; Badkoobeh et al., 2023;
Safaei et al., 2021; Davoodi et al., 2020; Rezvani Ghomi et al., 2021;
Bacha et al., 2019) and eco-friendly buildings (Bedarf et al., 2021; du
Plessis et al., 2021; Salet et al., 2018; Tay et al., 2017; Kruger et al.,
2020; Kruger et al., 2021) using locally sourced, low-cost materials.
The ease of producing complex geometries and lightweight
functional and structural components to near net shape
contributes to increased use. In green buildings, AM techniques

allow the use of cost-effective, recyclable materials like cob, bamboo,
and hemp, offering natural insulation and aligning with sustainable
practices such as low carbon footprint (Agnusdei and Del Prete,
2022; Balubaid and Alsaadi, 2023; Woodson, 2015). Since 2015, one
of the leading market shares of AM is in aerospace with annual
revenue of $7.3 billion and growth rate of ~13%. This is attributed to
being more efficient and economical than many subtractive (Bae
et al., 2017; Newman et al., 2015; Manogharan et al., 2016; Watson
and Taminger, 2018; Jayawardane et al., 2023), joining (Klenam
et al., 2021; Kallee, 2010; Bagger and Olsen, 2005; Czerwinski, 2011;
Padhy et al., 2015; Kirk Kanemaru et al., 2015; Li et al., 2021;
Ogbonna et al., 2019), and forming processes (Bodunrin et al., 2023;
Komane et al., 2023; Asumadu et al., 2023). Thus, leveraging AM
technologies is pivotal for African nations to lead the sustainable
industrial transformation, reshape supply chains, create sustainable
jobs, and contribute to economic development in ways that address
socioeconomic disparities (Agnusdei and Del Prete, 2022; Balubaid
and Alsaadi, 2023; Woodson, 2015). The merits and upward global
market trends of AM technologies provide the incentives to
accelerate the adoption and gradual infrastructural investments to
drive economic growth and development of Africa to the era of
digital manufacturing.

Research on AM focuses on key areas such as material
advancements (Egan et al., 2019; Roque et al., 2021; Kumar
et al., 2021; Jiang et al., 2022; Xu et al., 2020; Wegner et al.,
2022; Hagman and Svanborg, 2022; Patel et al., 2022;
Psarommatis et al., 2023; Klenam et al., 2022), optimization of
design for complex geometries, and improving efficiency and
precision. Increasing attention is given to sustainability, eco-
friendly practices, recyclable materials, and energy-efficient
processes. In Africa, research is emerging from countries like
South Africa, Nigeria, Kenya, Morocco, Egypt, and Tunisia
(Klenam et al., 2022), but systematic studies on AM’s
contribution to African industrialization remain limited.

This paper reviews AM technologies and their potential in
Africa, assessing adoption rates, challenges, and opportunities. It
highlights how AM aligns with African industrialization goals,
economic benefits, job creation, and necessary infrastructure. The
review explores the transformative potential of sustainable AM in
driving equitable economic growth and suggests areas for future
research and application in African manufacturing. The review
examines Africa’s industrialization landscape and AM’s role,
discusses emerging smart manufacturing technologies, and
connects sustainable development goals (SDGs) with AM
processes. It presents the market value of AM, offers case studies
from African countries, and concludes with future research
directions and a summary.

Approach and methodology

Approach

To ascertain the impact of emerging AM technologies on
African industrialization, four key questions posed were:

• Is there any change in industrialization and manufacturing
landscape of Africa?
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• How can sustainable AM contribute to the African
industrialization agenda?

• What are the main challenges faced by African countries in
implementing sustainable AM technologies?

• How do current applications of AM in Africa align with SDGs?

Based on these questions, the objectives are to:

• Assess historical data to show any changes in industrialization
and manufacturing landscape of Africa and its
contribution to GDP.

• Identify emerging AM technologies and evaluate the
challenges and barriers to their adoption in Africa.

• Evaluate the alignment of current AM applications in Africa
with sustainable development goals.

These research questions and objectives guide the methodology
of the review.

Methodology

An assessment of existing literature on sustainable AM
technologies and its implications on African industrialization was
done. This review is synthesized from carefully selected peer-
reviewed conferences and journal articles using the Scopus
database. All articles and conference proceedings included in this
review were mainly in English. The search syntax was based on the
title, abstract and keywords (TITLE–ABS–KEY) of articles. The
overall search followed the order of “AND” and “OR” operators with
the detailed search format in the Scopus database displayed as
“(TITLE-ABS-KEY (“additive manufacturing*” OR “3D
printing*”) AND TITLE-ABS-KEY (“Africa*“O”sub-saharan
Africa”)) AND (EXCLUDE (LANGUAGE,“German”) OR
EXCLUDE (LANGUAGE,“Spanish”)) AND (LIMIT-TO
(EXACTKEYWORD,“3D Printing”) OR LIMIT-TO
(EXACTKEYWORD,“Additive Manufacturing”) OR LIMIT-TO
(EXACTKEYWORD,“3D Printers”) OR LIMIT-TO (EXACT
KEYWORD) OR LIMIT-TO (EXACTKEYWORD, “3-D
Printing”) OR LIMIT-TO (EXACTKEYWORD, “Three
Dimensional Printing”) OR LIMIT-TO (EXACTKEYWORD,
“Engineering Education”) OR LIMIT-TO (EXACTKEYWORD,
“3D-printing”) OR LIMIT-TO (EXACTKEYWORD, “Industrial
Research”) OR LIMIT-TO (EXACTKEYWORD, “Sustainable
Development”) OR LIMIT-TO (EXACTKEYWORD, “Industry
4.0”) OR LIMIT-TO (EXACTKEYWORD, “Africa”) OR LIMIT-
TO (EXACTKEYWORD, “Product Design”) OR LIMIT-TO
(EXACTKEYWORD, “Rapid Prototyping”) OR LIMIT-TO
(EXACTKEYWORD, “Additive Manufacturing Technology”) OR
LIMIT-TO (EXACTKEYWORD, “Digitalization”) OR LIMIT-TO
(EXACTKEYWORD, “sub-Saharan Africa”) OR LIMIT-TO
(EXACTKEYWORD, “South African Government”) OR LIMIT-
TO (EXACTKEYWORD, “Rapid Manufacturing”) OR LIMIT-TO
(EXACTKEYWORD, “Product Development”) OR LIMIT-TO
(EXACTKEYWORD, “Printing, Three-Dimensional”) OR LIMIT-
TO (EXACTKEYWORD, “Microstructure”) OR LIMIT-TO
(EXACTKEYWORD, “Innovation”) OR LIMIT-TO
(EXACTKEYWORD, “Fourth Industrial Revolution”) OR LIMIT-

TO (EXACTKEYWORD, “Digital Fabrication”) OR LIMIT-TO
(EXACTKEYWORD, “Computer Aided Design”) OR LIMIT-TO
(EXACTKEYWORD, “Case-studies”) OR LIMIT-TO
(EXACTKEYWORD, “Artificial Intelligence”) OR LIMIT-TO
(EXACTKEYWORD, “Printing Technologies”) OR LIMIT-TO
(EXACTKEYWORD, “Powder Metallurgy”))”. A flowchart
showing the approach and systematic thinking is provided
in Figure 1.

African industrialization and
manufacturing landscape

The industrialization landscape in Africa is undergoing a major
paradigm shift (Cilliers, 2018). Most African countries are gradually
deviating from the conventional exportation of goods and services.
Many of these countries are beginning to prioritize manufacturing to
foster sustainable economic growth and development to an extent.
Persistent challenges bedevilling the African industrialization efforts
include lack of stable energy supply, exorbitant cost of energy,
inadequate and poor transportation networks, insufficient
funding and the low productivity sectors (Cilliers, 2018).
However, the paradigm shift is in the form of structural change
to increase the productivity sector towards manufacturing (Cilliers,
2018). Few of the emerging economies are Ethiopia, Rwanda,
Ghana, Nigeria, Kenya and South Africa. These industrialization
efforts are based on the triple helix concept involving government,
industries and the higher education sector (Lerman et al., 2021;
Leydesdorff, 2000; Leydesdorff, 2012). This is due to the bridging of
the gap between academia and industry through the formation of
various faculty–industry boards in many of these centres of higher
learning (Lerman et al., 2021; Leydesdorff, 2012).

The direct impact on the manufacturing sector can be
phenomenal. As income levels ascend and economies progress,
the manufacturing sector experiences a discernible evolution,
altering its contribution to overall economic dynamics.
Conventionally, the contribution of the manufacturing sector,
measured by its share of Gross Domestic Product (GDP), reaches

FIGURE 1
Representation of published data retrieved from Scopus
Database focusing on AM or 3D printing publications done or
collaborated with African scientists.
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its zenith, typically between 20%–35% (Manyika et al., 2013a).
Subsequently, a noteworthy transition unfolds, characterized by
the shifting consumption patterns and a concomitant surge in
job creation within the service sector. In advanced economies
and the global North, the focus of manufacturing is shifted
towards promoting innovation, enhancing productivity, and
facilitating international trade (Cilliers, 2018; Manyika et al.,
2013a). This has been observed in increased use of data,
automation and current state-of-the-art technologies and tools
for enhanced efficiency (Manyika et al., 2013a). Conversely, in
developing economies (global South) like Africa, manufacturing
remains crucial, acting as an essential pathway from subsistence
agriculture to increased incomes and improved standard of living.
The manufacturing terrain in Africa is anticipated to undergo
accelerated transformation amidst the advent of the Fourth
Industrial Revolution (4IR). This epoch holds promise for Africa,
potentially catalysing a transition towards heightened levels of
productivity and economic expansion. Nonetheless, the
realization of these prospects necessitates a concerted effort on
the part of African governments to spearhead initiatives,
fostering partnerships and collaborative engagements with
industrial stakeholders and institutions of higher education and
research. This public–private collaborative framework, akin to a
triple helix approach (Lerman et al., 2021; Leydesdorff, 2000;
Leydesdorff, 2012), stands as imperative for maximizing the
capacity of the continent to capitalize on emerging opportunities
and steer the path towards sustainable growth trajectories.

An overview and trends of the
African economy

Africa contends with approximately eight prominent challenges,
encompassing healthcare deficiencies, educational inadequacies,
water scarcity, energy insufficiencies, transportation complexities,
widespread poverty, escalating unemployment, terrorism,

governance deficiencies, and corruption (Klenam, 2019). These
challenges, bearing significant weight on the economy, have
profoundly impacted the economic trajectory of the continent.
For instance, an analysis of income levels vis-à-vis global
benchmarks reveals a disheartening narrative, as shown in
Figure 2, albeit with marginal improvements since 1995 (Cilliers,
2018). Nevertheless, the income levels in Africa are among the
lowest globally, underscoring the persistent prevalence of extreme
poverty, tenacious and pervasive characteristic of
underdevelopment.

The wealth and prosperity of nations is largely and inextricably
linked to industrialization. This is further entrenched and evident at
the dawn of artificial intelligence, data analytics and advanced
manufacturing. The advanced manufacturing landscape is
contributing disproportionally to innovation, growth and export.
This has been demonstrated by the Asian Tigers with concerted
effort of transforming from low-productivity sector to high
productivity and advanced manufacturing (Cilliers, 2018).
Industrialization and advanced manufacturing are indispensable
in the transition from subsistence agriculture to more robust,
efficient, and high-value services. Furthermore, the knowledge
spill over from manufacturing has significant potential for
investment in advanced infrastructure and systems, thereby
enhancing the productivity and profitability of agricultural
operations (Cilliers, 2018). Consequently, such advancements are
poised to stimulate growth within the manufacturing sector, thereby
exerting a direct positive impact on wages and productivity within
the agricultural sphere. This becomes particularly pertinent given
the underdeveloped nature of the agricultural sector amidst the
abundance of arable and fertile lands across the African continent.

Manufacturing is crucial for the economies of developed and
wealthy nations. This drives productivity and offering substantial
employment with fair wages. Countries like the U.S., U.K., Italy,
Germany, Japan, and France thrive due to strategic manufacturing
investments. Recently, China has become a global manufacturing
powerhouse, and emerging economies in Southeast Asia are

FIGURE 2
Comparison of average income levels of Africa with the rest of the world [World Bank data, (Cilliers, 2018)].
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similarly growing their industrial sectors to fuel economic growth.
However, Africa’s structural transformation has faced setbacks since
the 1970s economic downturn. Structural adjustment programs in
the 1980s aimed at stability, but currency devaluation and trade
liberalization hampered industrial growth. Nations like Ghana,
Kenya, Mauritius, Nigeria, Ethiopia, Tanzania and Senegal shifted
from low-productivity agriculture to urban services without
significant manufacturing investment (Figure 3). This resulted in
reduced manufacturing workforces, slowing growth, and lowering
output per worker, hindering economic development. The

manufacturing sector’s contribution to African GDP remains
stagnant due to unresolved systemic challenges, with
2022 statistics (Figure 4) showing worsening situations.

In 2015, the contribution of the manufacturing sector to African
economies ranged from 5% to 30% of GDP (Figure 3). Smaller
economies often showed stronger manufacturing sectors. Since the
mid-1980s, this contribution has declined or stagnated. By 2015,
Nigeria and South Africa, the continent’s largest economies, saw
significant declines in manufacturing. In 2022, manufacturing
contributed 14% to Nigeria’s GDP and 12% to South Africa’s,

FIGURE 3
Major industries and their contributions to the GDP of most Africa countries in 2015.

FIGURE 4
The contribution of manufacturing to the GDP of Africa of some selected countries based on 2022 data from the World Bank (Source: World Bank).
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largely due to issues like power rationing and load shedding. Sub-
Saharan Africa’s overall manufacturing contribution to GDP was
11% in 2022, with Algeria leading at 34% (Figure 4).

Retrofitting to “Afrofitting” the African
manufacturing sector

Manufacturing in the Fourth Industrial Revolution will focus on
sustainability through regional consumption. Similar strategies in
Asia led to the rise of the Asian Tigers. From 2000 to 2010, countries
like India, China, and Indonesia saw a ~7.4% global manufacturing
contribution, three times that of developed nations (Figure 5).
Despite the data been ~15 years old, the highlights are about the
steady progress nations can achieve with well-planned and
effectively executed programs with China being a case in point.
China now ranks second globally, behind the U.S., whereas
Indonesia moved from 20th to 13th, surpassing Canada and Spain.

Africa, while lagging economically, has the opportunity to
industrialize through systematic policies and initiatives like the African
Continental Free Trade Agreement (AfCFTA) (Ismail, 2017; Kambase

and Akodia, 2022; Omphemetse, 2021). This single initiative has the
potential to generate ~$3.4 trillion for ~1.3 billion Africans. By leveraging
technologies like additive manufacturing, robotics, AI, and IoT (Malatji,
2024; Kalaba, 2020; Kere and Zongo, 2023; Lemma et al., 2022), Africa
can accelerate growth exponentially. For instance, additivemanufacturing
enables rapid prototyping, customization, and decentralized production,
benefiting African SMEs. Integrating digital technologies optimizes
supply chains, streamlines production, and enhances market access.
This could assist African manufacturers compete globally while
adopting sustainable practices for a win-win scenario.

Sustainable advanced manufacturing, focused on resource
efficiency, environmental responsibility, and social equity, is
gaining momentum globally. African countries are embracing
this by using renewable energy, reducing waste, and adopting
eco-friendly production. Aligning industrialization with
sustainability goals fosters inclusive growth, protects the
environment, and builds resilient, competitive manufacturing
ecosystems for long-term prosperity.

The concept of sustainable advanced manufacturing is gaining
traction across the globe. This emphasizes resource efficiency,
environmental responsibility, and social equity. African countries

FIGURE 5
Top 15 manufacturing economies of the world with large developing economies steadily moving up (Manyika et al., 2013b).
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are increasingly adopting sustainable manufacturing practices,
leveraging renewable energy sources, reducing waste generation,
and implementing eco-friendly production processes. By aligning
industrialization efforts with sustainability goals, African nations
can foster inclusive growth, mitigate environmental degradation,
and build resilient manufacturing ecosystems that contribute to
long-term prosperity and competitiveness on the global stage.

Types of additive
manufacturing–general overview

Additive manufacturing (AM) has over 40 years of continuous
research, leading to seven classifications based on feedstock, energy

source, and equipment per ISO/ASTM 52900 standards: vat
polymerization, material jetting, binder jetting, material
extrusion, powder bed fusion, sheet lamination, and direct energy
deposition (Balubaid and Alsaadi, 2023; Adekanye S. A. et al., 2017;
International Organization for Standardization, 2018; Mahamood
et al., 2014; Kanishka and Acherjee, 2023; Frazier, 2014; Cooke et al.,
2020; Haghnegahdar et al., 2022; Guo and Leu, 2013; Murr, 2015).
Table 1 briefly summarizes these technologies, which vary in
feedstock and mechanisms, offering diverse industrial
applications. A recent addition is cold spray technology (Wu
et al., 2021; Rojas et al., 2022; Li et al., 2018; Yin et al., 2018a;
Fan et al., 2020; Yin et al., 2018b; Vaz et al., 2023; Zou, 2021), used
for coating or bulk material design by accelerating metal or ceramic
particles to form a cohesive layer through plastic deformation. Some

TABLE 1 The different types of AM methods and distinguishing features.

Classification Distinguishing features

Vat polymerization Feedstock: Liquid photopolymer resin

Energy source: ultraviolet (UV) light source for curing

Equipment: Stereolithography or digital light processing printer with a vat of photopolymer resin

Mechanisms: solidification of liquid resin using UV light

Material extrusion Feedstock: Thermoplastic filaments or pellets or liquid thermosetting polymers

Energy source: Electric heaters for melting

Equipment: fused deposition modelling printers suitable for extruding melted material through a nozzle

Mechanisms: Layer – by – layer deposition controlled by computer aided design platform

Material jetting Feedstock: Liquid photopolymer resin

Energy source: UV light source for curing

Equipment: Inkjet – style printheads

Mechanisms: Solidification of liquid resin using UV

Powder bed fusion Feedstock: Powdered ceramic, metals or polymers

Energy source: Laser or electron beam for selective fusion

Equipment: Selective laser melting (SLM) or selective laser sintering (SLS)

Mechanisms: Fusion of powered materials from the laser or electron beam energy source

Binder jetting Feedstock: Powdered ceramics and metals

Energy source: Thermal energy source

Equipment: Printers with printheads

Mechanisms: Binding of powdered materials

Sheet lamination Feedstock: Thin sheets of metals or polymers

Energy source: Mechanical pressure or heating for bonding

Equipment: Machines that cut and bond layer by layer

Mechanisms: Bonding of sheets layer by layer

Directed energy deposition Nature of feedstock: Metal wire or powdered materials

Energy source: laser or electron beam for melting

Equipment: Machines equipped with nozzles or deposition heads

Mechanisms: Melting and deposition on material onto substrate and guided by instructions feed from CAD.
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of the advantages of AM processes are (Ford and Despeisse, 2016;
Gebler et al., 2014):

• Cost-effective customization: Small batches of customizable
parts are economically produced.

• Direct production: Parts are made directly from 3D CAD
models, eliminating tools and moulds.

• Design flexibility: Digital designs are easily shared and
modified for customization.

• Material efficiency: AM minimizes waste, supporting reuse
and recycling.

• Complex geometries: Enables fabrication of intricate designs
with high accuracy.

• Reduced defects: Fewer defects like porosity improve
part quality.

• On-demand production: Reduces inventory risk and
streamlines supply chains.

• Enhanced interaction: Encourages collaboration between
producers, customers, and users.

Despite the benefits of AM process, key challenges that require
further investigation and research include:

• Cost and speed: Production costs and speed need optimization
to stay competitive.

• Design shift: Designers must adapt to AM’s unique
capabilities, moving away from traditional methods.

• Perception: Overcoming the view that AM is only for
prototyping is essential for broader adoption.

• Materials: Developing and standardizing AM materials is
crucial to meet performance demands.

• Property validation: Ensuring mechanical and thermal
properties meet standards is vital for real-world use.

• Multi-material systems: Advances in multi-material AM are
needed for design flexibility.

• Automation: Automating AM systems boosts efficiency and
scalability.

• Post-processing: Addressing surface imperfections and
accuracy after printing is important.

• Support structures: Minimizing non-recyclable supports is key
to sustainability.

• Intellectual property: Legal issues around copyright
require attention.

• Skills gap: Training in AM techniques is critical to innovation.
• Collaboration: Effective coordination in AMprojects is needed
due to their complex nature.

• Competition: Staying agile in a rapidly evolving market is
necessary for success.

Additive manufacturing (AM) begins with a 3D digital model,
created using CAD and converted into formats like. AMF or. STL
(Strong et al., 2018). The AM machine builds the object layer by layer,
using materials such as resin, thermoplastics, or metal powders. This
process minimizes waste and enables the creation of complex
geometries not possible with traditional methods. Post-processing
may be needed to remove supports and enhance accuracy.

Additive manufacturing (AM) offers significant advantages such
as cost-effective customization, material efficiency, and the ability to

produce complex geometries, but key challenges like optimizing
costs, speed, material development, and post-processing must be
addressed for broader adoption. As industries increasingly leverage
digital designs and technologies like CAD/CAM, AM’s integration
with sustainable practices and innovative solutions will be critical to
its evolution, paving the way for more efficient, flexible, and scalable
manufacturing processes in the future.

Emerging technologies and trends
associated with AM

Emerging technologies and trends in additive manufacturing
(AM) include the integration of traditional and AM processes to
create hybrid manufacturing systems, cold spray technologies,
advancements in multi-material and high-performance materials,
and the adoption of digital manufacturing platforms driven by
Industry 4.0 and 5.0. The rise of 4D printing, which adds a time-
based dimension to 3D printing by enabling objects to change shape
or function post-production, is also gaining momentum.
Additionally, sustainability is becoming a key focus, with efforts
to minimize waste and optimize energy usage in AM processes.
These trends are revolutionizing industries like aerospace,
automotive, and healthcare, pushing the boundaries of what is
possible in manufacturing. A brief overview of these emerging
technologies is provided below, with suggested references for
further reading.

Hybrid manufacturing

Hybrid manufacturing combines conventional manufacturing
processes like subtractive methods with additive manufacturing
(AM) technologies to enhance precision and efficiency (Nassehi
et al., 2011; Zhu et al., 2013). Traditional subtractive processes, such
as milling or machining, focus on material removal, which often
results in significant waste. Transformative processes, like thermal
treatment and metamorphic manufacturing (Daehn and Taub,
2018; Balasubramanian et al., 2001; Szadkowski, 1994; Doi et al.,
2021), preserve mass while shaping components. Joining
technologies are used to put multiple parts together, whereas
subtractive technologies are used to disassemble components or
cut pieces to near-net-shapes. Additive technologies involve material
deposition to create robust structures, as seen in rapid prototyping
and die casting. Hybrid processes merge one or more of these
traditional approaches with AM, offering the best of both worlds
by leveraging the precision of subtractive methods and the flexibility
of additive techniques (Strong et al., 2018; Nassehi et al., 2011; Pérez
et al., 2020).

Hybrid manufacturing has been in development for decades,
largely driven by universities and research centres. This process
enables near-net shape production via AM, followed by subtractive
machining for final precision and surface finish (Strong et al., 2018;
Pérez et al., 2020). Hybrid models integrate direct digital
manufacturing (DDM) with traditional machine shops,
promoting knowledge transfer and accelerating AM adoption
(Webster et al., 2021). By combining technologies, hybrid
manufacturing improves the performance and capacity of AM
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hubs, facilitating more advanced product development (Strong et al.,
2018; Pérez et al., 2020). Examples of components produced using
hybrid methods include brackets and turbine blades by companies
like Alcoa and General Electric (Nassehi et al., 2011; Zhu
et al., 2013).

Cold spray technologies

Cold spray is an emerging additive manufacturing (AM)
technology that uses high-velocity metal or ceramic particles to
build or coat parts without the need for heat (Walker, 2018; Srikanth
et al., 2019; Wang Q. et al., 2021; Klenam et al., 2023), unlike
techniques such as selective laser melting or fused deposition
modeling. The high-velocity particles generate sufficient kinetic
energy to bond materials, allowing for precise control over the
shape, structure, and composition of the final product. Cold spray
can deposit a wide range of materials, including metals, polymers,
and ceramics, with minimal heat-affected zones and distortions (Li
et al., 2018; Champagne et al., 2015; Rahmati and Ghaei, 2014;
Assadi et al., 2016; Moridi et al., 2014; Assadi et al., 2003; Su et al.,
2019; Champagne and Helfritch, 2016). It also enables the
fabrication of complex geometries and the repair or
refurbishment of existing components with minimal material
waste, making it a versatile and cost-effective method for
industries like aerospace, automotive, and defense (Li et al., 2018;
Yin et al., 2018b; Champagne and Helfritch, 2015; Cavaliere and
Silvello, 2017; Astarita et al., 2016; Bagherifard and
Guagliano, 2020).

Research on cold spray technologies can focus on several key
areas, including optimizing particle velocity and deposition
parameters to enhance bonding strength and material properties.
Further exploration into the use of a broader range of materials, such
as composites and advanced alloys, could expand its industrial
applications. Studies on reducing surface roughness and
improving dimensional accuracy in cold spray components are
also critical for high-precision industries. Furthermore, there is
the need to investigate long-term performance and durability of
cold spray coatings under extreme conditions, such as high
temperatures or corrosive environments. This is vital for its
adoption in aerospace, automotive and defense applications.
Another possible research gap worth exploring is integrating cold
spray with other additive manufacturing processes. This could
provide various pathways to advance automation of the
technology for efficiency and scalability.

Progress in advanced materials for
AM processes

Additive manufacturing (3D printing) has rapidly evolved for
the production of advanced materials (García-Collado et al., 2022;
Forés-Garriga et al., 2023; Chen and Zheng, 2018; Liu et al., 2020;
Hasanov et al., 2021; Hasanov et al., 2022; Nazir et al., 2023). These
include multi-materials (García-Collado et al., 2022; Forés-Garriga
et al., 2023; Chen and Zheng, 2018; Liu et al., 2020; Hasanov et al.,
2021; Hasanov et al., 2022), metamaterials, functionally graded
materials (Nazir et al., 2023), and complex concentrated alloys

(Chen et al., 2023; Kim et al., 2021; Moorehead et al., 2020;
Xiong, 2022; Melia et al., 2020; Ren et al., 2020; Pegues et al.,
2020; Peng et al., 2021). The layer-by-layer process in multi-
materials allows for the design and fabrication of components
with varying properties, enabling customizable parts with distinct
physical and mechanical characteristics. This method significantly
reduces lead time for high-volume production. The process also
mirrors natural systems where multiple material combinations
coexist. Figure 6 illustrates examples of nature-inspired
metamaterials and multi-materials, demonstrating synergy
between material architecture, functionality, and performance
(Liu et al., 2020; Hasanov et al., 2021; Nazir et al., 2023; Zhang
et al., 2019; Ravanbakhsh et al., 2021; Baca and Ahmad, 2020; Blanco
et al., 2021a; Sarathchandra et al., 2018; Blanco et al., 2021b).

The main types of multi-materials used in additive
manufacturing are shown in Figure 7. These include polymer-
polymer, metal-metal, ceramic-ceramic materials, or
combinations of each (García-Collado et al., 2022; Forés-Garriga
et al., 2023; Chen and Zheng, 2018; Liu et al., 2020; Hasanov et al.,
2021; Hasanov et al., 2022; Nazir et al., 2023). The additive
manufacturing of dissimilar materials and its effects on the
structural integrity of printed components offer advantages over
conventional casting, welding, and forging processes (Liu et al.,
2020; Zhang et al., 2019; Liu et al., 2024; Zhang et al., 2024;
Teawdeswan and Dong, 2024; Meyer et al., 2023; Willmott et al.,
2023; Gao et al., 2023; Dzogbewu T. C. and de Beer D., 2023). It also
opens up possibilities for further material exploration, with
polymers and metals being widely studied. Commonly fabricated
polymers include PLA, ABS, PEEK, and PET, focusing on properties
like enhanced strength, stability, and performance. Metals and alloys
used in multi-materials include Cu alloys, Ti alloys, Al alloys, and
structural steels, with properties such as lightweighting, hardness,
conductivity, wear resistance, strength-ductility synergy, and
thermal performance (Nazir et al., 2023; Zhang et al., 2019; Baca
and Ahmad, 2020; Liu et al., 2024; Zhang et al., 2024; Teawdeswan
and Dong, 2024; Meyer et al., 2023; Willmott et al., 2023; Gao et al.,
2023; Dzogbewu T. C. and de Beer D., 2023).

Functionally graded materials (FGMs) are engineered with gradual
variations in composition, structure, and properties during
manufacturing, aimed at creating heterogeneous components tailored
for specific structural and functional needs. This approach allows the
design of freeform components with performance-based gradual
changes in composition, structure, and properties (Hasanov et al.,
2022). FGMs are particularly explored to address mechanical
property trade-offs, such as the strength-ductility balance in metallic
materials. The typical additive manufacturing workflow for FGM design
is shown in Figure 8. FGMs are mainly produced using fused filament
fabrication, a type of material extrusion. Additive manufacturing enables
precise control over spatial distribution and feedstock compositions
through layer-by-layer deposition, offering full control over composition,
structure, and property gradients (Hasanov et al., 2022).

Industries 4.0 and 5.0 driving digital
manufacturing

The shift from Industry 4.0 to Industry 5.0 significantly impacts
additive manufacturing (AM) (Gibson et al., 2015; Daehn and Taub,
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FIGURE 6
Typical example of nature–inspired structures for the design and additive manufacturing of cellular metamaterials and multi–materials (Nazir
et al., 2023).

FIGURE 7
Typical multi–materials based on three main classes of engineering materials for additively manufactured products.
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2018; Hopkinson et al., 2006a; Hopkinson et al., 2006b; Zhang et al.,
2020). Industry 4.0 integrates cyber-physical systems, IoT, and cloud
computing to optimize manufacturing, increase flexibility, and
enable real-time control (Rupp et al., 2022; Gibson et al., 2015;
WangW.-Y. et al., 2022; Liu et al., 2022). In AM, smart factories use
interconnected systems for automated workflows and data-driven
decisions. Industry 5.0 introduces human-machine collaboration
and AI-driven automation, pushing towards metamorphic
manufacturing (Daehn and Taub, 2018). This fusion of human
creativity and machine intelligence will drive innovation,

customization, and sustainability, positioning AM as a key player
in the evolving digital manufacturing landscape.

The concept of 4D printing

Four D printing is an evolution of 3D printing with the
dimension of time, enabling structures to change shape or
function in response to environmental stimuli (Mohammadi
et al., 2024; Haleem et al., 2018). It has gained attention in fields

FIGURE 8
Schematic diagram showing the workflow of 3D printing of functionally graded material (Hasanov et al., 2022).

Frontiers in Manufacturing Technology frontiersin.org11

Klenam et al. 10.3389/fmtec.2024.1410653

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2024.1410653


like biomedicine (Cui et al., 2020; Ramezani and Mohd Ripin, 2023;
Antezana et al., 2023), materials science (Antezana et al., 2023; Guo
et al., 2024; Zhang et al., 2021; Kuang et al., 2019), and robotics
(Adam et al., 2021; Zolfagharian et al., 2022), with recent advances
expanding its capabilities.

In biomedicine, 4D printing shows potential in tissue
engineering and drug delivery systems. Self-folding structures
mimic natural tissues (Cui et al., 2020; Ramezani and Mohd
Ripin, 2023; Antezana et al., 2023; Zhang et al., 2023), while
shape-memory polymers create adaptive implants that respond to
physiological changes (Ramezani and Mohd Ripin, 2023), offering
personalized medical solutions (Antezana et al., 2023).

Advances in materials like liquid crystal elastomers and new
fabrication techniques (Guo et al., 2024; Zhang et al., 2021) have
broadened its applications. In robotics, 4D printing enables soft
robots that adapt to their environment (Zhang et al., 2021;
Zolfagharian et al., 2022; Zhang et al., 2023), useful for tasks like
search-and-rescue or medical devices. As the technology matures,
4D printing is set to revolutionize manufacturing, healthcare, and
robotics by developing adaptive, responsive materials and structures.
While there have been significant advances in materials, processes,
and applications, there are still challenges and opportunities for
future research, particularly in the areas of biomedical applications,
and the development of machine learning approaches for
4D printing.

Sustainable development goals and
additive manufacturing

Additive manufacturing (AM) is closely aligned with the
sustainable development goals (SDGs), directly impacting 13 of
the 17 SDGs (Figure 9) and Africa Agenda 2063. AM supports

drivers for its adoption across industries by promoting education,
quality control, lightweighting for environmental benefits,
alternative energy, and recyclability, contributing to
environmental, societal, and economic sustainability (Figure 10)
(Machado et al., 2019; Hegab et al., 2023). Furthermore, sustainable
industrial ecosystems and accelerators are key to Africa’s
Industrialization Agenda 2026, fostering innovation and
technological growth through resilient infrastructure and strategic
partnerships. These accelerators support business development,
infrastructure, networks, and financial assistance, helping
transition ideas to market (Caccamo and Beckman, 2022;
Aljalahma and Slof, 2022; Kaur et al., 2024; Riesener et al., 2019;
Pustovrh et al., 2020). They bridge the gap between academia and
industry, driving innovation and the adoption of digital
manufacturing, where AM plays a leading role (Lerman et al.,
2021; Leydesdorff, 2000; Leydesdorff, 2012).

Sustainable practices in additive
manufacturing–an overview

Sustainable practices in AM represent a paradigm shift in
advanced manufacturing, focusing on resource efficiency, eco-
friendly material selection, energy-efficient technologies, waste
minimization, and recycling (Arif et al., 2023; Woodson, 2015;
De Beer, 2010; Jiang and Fu, 2020; Al Jahdaly et al., 2022; Raabe,
2023; Olivetti and Cullen, 1979). AM supports localized production,
eliminating extensive supply chains and infrastructure, empowering
local communities, and reducing lead times and currency fluctuation
impacts. This decentralized approach could thrive in Africa’s
informal economy, with digital inventories replacing physical
warehouses. Table 2 outlines critical evaluation criteria for
ensuring sustainability in AM technologies (Gebler et al., 2014).

FIGURE 9
Sustainable development goals.
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Additive manufacturing fosters innovation, aligning with SDG
9 as a pillar of the Fourth Industrial Revolution, driving
technological and material advancements (Klenam et al., 2022;
Assadi et al., 2016; Bandyopadhyay et al., 2022). Eco-friendly
materials, energy-efficient printing methods, and optimized
process parameters reduce energy consumption and carbon
footprints, contributing to global sustainability efforts (Machado
et al., 2019; Hegab et al., 2023). AM also supports resilient
infrastructure by enabling rapid prototyping and the production
of spare parts, crucial during supply chain disruptions, such as
during the COVID-19 pandemic.

The use of bio-based and recycled materials in AM aligns with
circular economy principles, reducing reliance on traditional raw
materials and promoting waste minimization (Arif et al., 2023;
Woodson, 2015; De Beer, 2010; Jiang and Fu, 2020; Al Jahdaly
et al., 2022; Raabe, 2023; Olivetti and Cullen, 1979). AM
technologies contribute to environmentally friendly approaches
by addressing natural resource consumption, waste generation,
and pollution remediation, emphasizing sustainability in the
environment, society, and economy (Agnusdei and Del Prete,
2022; Jayawardane et al., 2023; Gebler et al., 2014; Hegab et al.,
2023; Olivetti and Cullen, 1979; Cann et al., 2020; Raabe et al., 2019;
Joshi and Sheikh, 2015).

Material selection and localized sourcing

Traditional manufacturing consumes 35%–40% of engineered
materials globally, with the metal industry contributing 12% of
CO2 emissions (Gao et al., 2021; Daraban et al., 2019). Subtractive

manufacturing leads to significant material wastage and emits
greenhouse gases, which are unsustainable in today’s resource-
constrained era (Balubaid and Alsaadi, 2023; Raabe, 2023; Olivetti
and Cullen, 1979; Cann et al., 2020; Radlbeck and Mensinger, 2011;
Gordon et al., 2006; Thakur et al., 2018). Additive manufacturing offers
a sustainable alternative by focusing on eco-friendly materials and
localized sourcing (De Beer, 2010; Raabe, 2023; World Economic
Forum, 2015). Sustainable material selection prioritizes recyclability,
biodegradability, low toxicity, and minimal waste, helping to mitigate
environmental impacts (Gao et al., 2021; Daraban et al., 2019).

Using biodegradable polymers, recycled plastics, bio-based
composites, and impurity-tolerant alloys in AM reduces reliance
on petroleum-based materials and lowers carbon emissions (Raabe,
2023; Raabe et al., 2019). Recycled materials for 3D printing can cut
the demand for virgin resources and reduce production costs.
Locally sourced materials for AM further decrease
transportation-related emissions and strengthen regional
economies, promoting job creation and resilient supply chains
(Oyesola et al., 2018; Agnusdei and Del Prete, 2022; Balubaid
and Alsaadi, 2023; Raabe, 2023; Cann et al., 2020; Raabe et al.,
2019; Joshi and Sheikh, 2015; Radlbeck and Mensinger, 2011;
Gordon et al., 2006; Thakur et al., 2018).

Sustainable practices in AM, particularly in material selection
and sourcing, promote environmental stewardship, resource
efficiency, and technological innovation (Agnusdei and Del Prete,
2022; Raabe, 2023; Vanclay, 2002; Wüstenhagen et al., 2007;
Petrovic et al., 2011; Radlbeck and Mensinger, 2011; Gordon
et al., 2006; Thakur et al., 2018; Wang Y. et al., 2021). As
industries adopt these practices, eco-friendly materials will
continue to advance sustainability and resilience in manufacturing.

FIGURE 10
Interplay of additive manufacturing with sustainable development goals (Machado et al., 2019; Hegab et al., 2023).
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Energy efficiency

Current industrial manufacturing consumes 15% of global
energy (Gao et al., 2021; Daraban et al., 2019). Energy efficiency
in AM is crucial for sustainable production, particularly in regions
like Africa, where energy sources are often unreliable. Technologies
such as power bed fusion (PBF), which uses laser melting and

sintering, and fused deposition modeling (FDM) are known for its
low power requirements (Monteiro et al., 2022; Gao et al., 2021;
Wang K. et al., 2022; Xu et al., 2020). This offers energy-efficient
alternatives to most conventional methods. These processes also
reduce the need for energy-intensive post-processing.

The integration of renewable energy into 3D printing is expanding,
with solar-powered AM systems used in off-grid and remote

TABLE 2 Criteria and explanation for the sustainable evaluation of AM technologies and intended implications (Gebler et al., 2014).

Criterion Explanation and description References

Environment

Resource demands Changes of material inputs in comparison to conventional
subtractive processes

Hopkinson et al. (2006a)

Process energy Changes in energy requirements per piece

Process emissions Changes in ambient process emissions Gebler et al. (2014)

Life cycle energy Changes in life cycle energy demands of a product

Life cycle emissions Changes in life cycle ambient emissions of a product

Recyclable waste Changes in amount, type and minimization of recyclable waste Berman (2012)

Non – recyclable wastes Changes in amount, type and minimization of non – recyclable
waste

Society

Development benefits Suitability for open-source appropriate technologies (OSAT) Gershenfeld (2012), Pearce et al. (2010)

Implications for self – directed sustainable development

Labour patterns Changes in labour intensity, employment schemes and evolution of
the type of work and skills required

Impacts Social impacts generated (positive or negative) through AM
technology

Vanclay (2002)

Acceptance Acceptance from socio – economic, community and market
perspectives

Wüstenhagen et al. (2007)

Health Changes in medical treatments or medical components Petrovic et al. (2011)

Ethics Ethical questions on morality of AM technologies on bioprinting Simon and Pace (2013)

Copyright, patent and trademark Questions on copyrights/shifts Pearce et al. (2010)

Impacts of OSAT on patents/copyrights

Licensing Shifts in licensing generated through OSAT applications

Product quality Changes in product quality Gebler et al. (2014)

Economy

Market outlook Estimated market potential within the time frame of assessment Manyika et al. (2013b), Gebler et al. (2014)

Applications Suitable functional and structural applications for AM technology Berman (2012)

Changes in production processes through the AM process

Supply chain management Changes in supply chain structures

Production time Changes in production time per unit piece

Production costs Changes in costs per piece and process (comparison of different AM
processes)

Hopkinson et al. (2006a)

Machinery costs Purchasing prices of different AM machinery for the intended
application

Material costs Changes in purchase costs of raw materials due to price volatility Gebler et al. (2014)
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communities (O’Neill and Mehmanparast, 2024; Wang Y. et al., 2021;
Zhakeyev et al., 2017; Dzogbewu T. C. and de Beer D. J., 2023; Strack,
2019). Africa, rich in renewable resources, is well-positioned to benefit
from these developments, promoting energy independence, reducing
environmental impacts, and supporting economic growth. This could
also help curb rural-to-urban migration by decentralizing
manufacturing capabilities. In conclusion, energy-efficient AM
technologies, combined with renewable energy, have the potential to
drive sustainable industrialization in Africa (Meurisse et al., 2018).

Waste reduction and recycling towards
sustainable circular economy

Waste in engineering design, primarily from conventional
manufacturing, has significant environmental impacts. Additive
manufacturing (AM), with its circular economy approach,
reduces waste by up to 90% and promotes recycling across
industries (Mohammed et al., 2022; Jiang et al., 2019a; Di and
Yang, 2022; Jiang et al., 2019b; Byard et al., 2019; Dhiman et al.,
2021; Peng et al., 2018). Generally, the strategies of the circular
economy supporting additive manufacturing with identifiable
benefits are given in Table 3 (Hegab et al., 2023; Spirio et al.,
2024). The precision and on-demand fabrication with AM
technologies minimize material waste, as seen in
stereolithography (SLA), digital light processing (DLP), and metal
AMmethods like selective laser sintering and selective laser melting.
These processes optimize material use, converting machining waste
into feedstocks for further 3D printing (Dhiman et al., 2021). In
fusion deposition modeling (FDM), recycled thermoplastics like
PET and ABS are repurposed into feedstock, diverting plastic waste
from landfills and incineration (Hegab et al., 2023; Mohammed
et al., 2022; Spirio et al., 2024; Al Rashid and Koç, 2023). This closed-
loop recycling approach embodies the principles of a circular
economy and supports sustainability within AM practices (Di

and Yang, 2022). These advancements signify a shift toward
resource-efficient and eco-friendly manufacturing.

Life cycle analysis and assessment in AM
technologies–an overview

Life cycle analysis (LCA) is a crucial framework for assessing the
environmental impact of additive manufacturing (AM) technologies
(Landi et al., 2022; Výtisk et al., 2022; Kokare et al., 2023). It examines
the full life cycle of AM processes, including raw material extraction,
energy use during printing, post-processing, logistics, and disposal or
recycling. Table 4 compares the production and life cycle costs of AM
and conventional manufacturing (CM), showing advantages of AM. By
applying LCA, environmental impacts can be identified, and
sustainability strategies developed. In resource-scarce regions like
Africa, LCA supports informed decisions and policies tailored to
local needs, as illustrated in Figure 11 (Kokare et al., 2023).

Generally, LCA helps optimize AM processes and materials for
sustainability, pinpointing opportunities for resource efficiency,
waste reduction, and energy conservation. This approach
strengthens both environmental and economic outcomes. In
Africa, where AM supports localized production, LCA can help
reduce carbon footprints and improve resource utilization. Research
should focus on comprehensive LCA studies to identify critical
stages for improvement and promote closed-loop material systems,
essential for a circular economy in AM. Sustainable materials and
practices in AM align with responsible manufacturing and the
broader sustainability goals throughout the lifecycle of components.

Estimated market value of AM by 2050

The market share of additive manufacturing has been increasing
exponentially since 2010 (Kolade et al., 2022). Globally, additively

TABLE 3 Circular economic strategies and benefits of sustainable practices in AM (Hegab et al., 2023; Kravchenko et al., 2020).

Strategy Contexts Benefits

Business reconfiguration Drive for novel value propositions for individualised and
customizable items. This is critical for aerospace,
electronics and biomedical industries

Fostering closer relationship, ensuring customizable
client satisfaction. Increased response to consumer
needs and demands

The effects on sourcing of raw materials ought to be
minimized and prevented

There is the need for sourcing locally and recycled
feedstock materials for additive manufacturing of
structural and functional components

Drastic reduction in transportation cost, greenhouse gas
emission, material acquisition costs and great reliance
on local resources. Full control over quantity and quality
of materials while sourcing for recyclable materials.
Opportunity for bio-based and biodegradable materials

Avoiding and mitigating consequences associated with
manufacturing

Flexibility with on-demand production, distributed and
localised production, high – precision manufacturing

Eliminate stocking, improves localised manufacturing,
saves cost and over reliance on supply chain and
customization for reduction in inventory

Component repair and maintenance Rebuild and repair of damaged components Highly flexible operation, reduction in packaging cost
and customer - centered

Remanufacture Rebuilding with high precision and accuracy Flexible operation of remanufacturing and reduction of
material and overall packaging cost

Repurposing Easy to modify components that promotes rapid
prototyping and rational material development

Opportunity to extend the life of the component under
different conditions and scenarios

Recycle Massive recycling low overall and transport cost and great control over
quality and amount of material usage
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manufactured products have increased in value from $ 2.3 billion in
2012 to ~$3.07 billion in 2013 and then ~$13.78 billion in 2020. This
value is expected to hit $62.79 billion by 2028. A compound growth
of ~26.4% has been recorded annually on average since the global
adoption of AM and its related technologies in 1989. The market
value is expected to increase with an estimated global market value
of $550 billion by 2050. The increasing exponential growth is
attributed to the merits of the technology as discussed earlier. It
is also one the eight pillars and technological adjacencies of the
Fourth Industrial revolution (4IR).

African industries that can benefit from
integrating AM technologies

Additive manufacturing (AM) holds immense potential for
African industries such as oil and gas, healthcare, aerospace,
defense, automotive, consumer goods, and energy. In the oil and
gas sector, AM can streamline operations by enabling on-demand
production of critical components, reducing reliance on
traditional supply chains and minimizing downtime (Klenam
et al., 2022; Barambu Umar, 2023). The ability to customize parts

TABLE 4 Studies focusing on life cycle assessment comparing AM and CM structural and functional components (Kokare et al., 2023).

AM type CM type Cost element Scope Summary of findings Refs.

SLM CNC Research and development, material,
indirect, transportation, labour, fuel,
maintenance, crew, spare parts, and

end of life treatment costs

Life cycle cost The life cycle costing (LCC) of AM
was ~8% more than the CM. This is

attributed to high cost of AM
machinery. However, the LCC of AM
reduced by ~12% after optimization

when compared to CM.

Mami et al. (2017)

DMLS + DED
repair

Injection moulding Material, machine, labour, energy,
design, process planning, assembling,
inspection, diagnosis and disassembly

costs

Life cycle cost Cost per part is 13% lower for AM
with current performance and 35%

lower for matured future case
performance compared to CM

Huang et al. (2017)

SLM Laser cutting Machine, maintenance, material, inert
gas, labour, energy, and post-

processing costs

Production
cost

Life cycle cost is more economical
than SLM due to its huge production
capacity and lower processing time

Guarino et al. (2020)

LBM Hobbing, CNC milling Machine, substrate, material,
maintenance, production area,
electricity, inert gas, and post-

processing costs

Production
cost

AM is a cost-efficient alternative for
small batch sizes. The economic
efficiency of AM is higher for

lightweight designs

Kamps et al. (2018)

EBM CNC milling Material, machine, energy, labour,
post-processing, and AM indirect costs

Production
cost

CM process is more economical than
AM for the given part. Costs of AM

decreases as SCR decreases (or
product complexity increases)

Ingarao and Priarone
(2020)

WAAM CNC milling Machine, material, set – up, substrate
preparation, facility, delivery, overhead,
electricity, inert gas, post – processing

costs

Production
cost

Out of the 3 geometries considered,
WAAM is economical for two
geometries but costlier for one

geometry due to higher
manufacturing time

Priarone et al. (2020)

DED CNC milling Machine, material, labour, and
electricity costs

Production
cost

DED is economical only when milling
requires more than 90% removal of

feedstock material

Kokare et al. (2023)

DED repair CNC milling Material, machine, energy, labour,
maintenance, and environmental costs

Life cycle cost DED-based repairing is more
economical than conventional

production due to the material savings
obtained

Gouveia et al. (2022)

BJ Metal injection
moulding (MIM)

Machine, labour, material, production
facility, maintenance, consumables,

and utilities costs

Production
cost

MIM is more economical due to lower
machine costs and shorter cycle time

Raoufi et al. (2022), Raoufi
et al. (2020)

3DCP Conventional
construction

Machine, construction material, and
energy costs

Life cycle cost 3DCP is 49% cheaper than
conventional construction due to the
exclusion of concrete, formworks, and

manual labour

Abdalla et al. (2021)

3DCP Conventional
construction

Building material cost, formwork cost,
machine cost, labour cost, energy cost

Production
cost

3DCP is economical only for
geometrically irregular buildings due
to lower labour and formwork costs

Han et al. (2021)

LCD 3DP — Machine, material, labour and energy
costs

Production Adaptive slicing significantly reduced
the product cost by 6%–30% than

traditional slicing due to a reduction
in building time

Mele and Campana (2022)
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also offers significant cost savings and operational
improvements.

In healthcare, AM played a crucial role during the COVID-19
pandemic, producing essential medical equipment like PPE and
ventilators. AM allows for rapid prototyping and customization of
medical devices, improving patient care (Dzogbewu T. C. and de Beer
D., 2023; Dzogbewu T. C. and de Beer D. J., 2023; Dzogbewu et al.,
2022). South Africa’s development of customized biomedical implants
highlights the potential for better patient outcomes and reduced
healthcare costs (du Preez and de Beer, 2015; Preez et al., 2020; du
Preez and de Beer, 2006; Stefaniak et al., 2021; de Beer et al., 2016).

In manufacturing, AM enables the production of complex
geometries and customized products, increasing competitiveness

and job creation, particularly for small and medium enterprises
(SMEs) (Muvunzi et al., 2022). Promoting collaboration between
universities, industry, and government, along with national
frameworks, can guide the adoption of AM and drive innovation
(du Preez and de Beer, 2015; Preez et al., 2020; du Preez and de Beer,
2006; de Beer et al., 2016). By addressing infrastructure challenges
and offering financial incentives, African industries can fully harness
benefits of AM for industrial growth, sustainability, and economic
advancement. The applications of AM also extend to aerospace,
defense, automotive, and energy sectors, where it accelerates
prototyping and low-volume production of complex parts. In
consumer goods, 3D printing enables cost-effective customization
and continuous product improvement, particularly in the footwear

FIGURE 11
Life cycle assessment of a 3D printed component (Kokare et al., 2023).
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industry, where it eliminates costly moulds and supports small-
batch production. Across sectors, AM enhances efficiency, reduces
costs, and fosters innovation.

Case studies on potential AM adoption
by African countries and relevant sector

The adoption and acceptance of additive manufacturing (AM)
in Africa are gaining traction. This is mainly driven by increased
awareness, infrastructural support, and the commitment of key
stakeholders from the public and private sectors. In terms of
curriculum design for most schools across the continent, 3D
printing tools have been used to compliment the training of
students, support teaching, create artefacts and assistive devices
for hands–on training and for outreach programs (Ford and
Minshall, 2019) and awareness creation (Mhlongo et al., 2023).
The technology is being applied to address unique local challenges,
fostering economic growth.

Several case studies highlight the use of AM technologies in
African countries, though many remain undocumented or
proprietary. These examples are not exhaustive, but
representative nations were selected from four economic blocs
based on economic size and adoption of 4IR technologies. In the
Southern African Development Community (SADC), South Africa
stands out for its leadership in AM, driven by research institutions,
industry partnerships, and government legislation. In West Africa,
Nigeria, the largest economy in ECOWAS, is implementing AM in
its growing spare parts and luxury goods sectors, supported by
research initiatives. During the 2019–2021 COVID-19 pandemic,
AM was used to design and develop personal protective equipment,
ventilator components, testing swabs, hands-free door openers,
medical devices, respirator masks, and filters. These efforts
mitigated supply chain disruptions and enabled rapid local
production to meet urgent medical needs, with universities,
companies, and grassroots organizations leveraging 3D printing
to quickly and affordably produce essential items. AM’s
effectiveness during the pandemic was due to its ability to reduce
dependence on disrupted international supply chains and offer cost-
efficient production, particularly for countries with limited
resources. Its flexibility allowed for rapid prototyping and
customization to meet specific needs while bridging gaps in
Africa’s underdeveloped manufacturing infrastructure. By
fostering collaboration and promoting innovation, AM built
resilience across communities, and its material efficiency
supported sustainability by reducing waste, making it an ideal
solution for addressing medical supply shortages in Africa and
globally during the crisis. Building on these gains, many African
countries are expanding and utilizing the infrastructure developed
during the pandemic, with the potential to integrate it into
mainstream manufacturing. This could strengthen economic
growth and support the realization of Africa Union Agenda 2063.

South Africa

Additive manufacturing (AM) technologies were introduced in
South Africa in the early 90s (Dzogbewu et al., 2022; du Preez and de

Beer, 2015; de Beer et al., 2016; du Plessis et al., 2019a; Campbell
et al., 2011; Kunniger, 2015; Alabi, 2019). However, the adoption has
been rapid approximately a decade after the global
commercialization of the technology. South Africa, being one of
the more industrialized African economies had manufacturing
sector contributing ~19% to its GDP prior to her independence.
Therefore, the adopting of the technology was well intentioned and
motivated (Dzogbewu et al., 2022; de Beer et al., 2016; Campbell
et al., 2011). The Council for Scientific and Industrial Research
(CSIR) acquired the first AM system (3D Systems SLA 250) in 1991.
By 1998, various public and private institutions had procured a total
of seven AM systems. The invention of personal and desktop 3D
printers saw an astronomical increase in 3D printers from ~90 in
2005 to ~1,500 in 2010 and over 3,500 in 2015. About 87% of the
facilities were entry levels. This momentum led to the establishment
of the Rapid Product Development Association of South Africa
(RAPDASA) in the early 2000s and the creation of a National
Additive Manufacturing Strategic Roadmap in 2013. Significant
budget allocations between 2010 and 2016 supported the use of
AM technologies for aerospace and biomedical component design
and manufacturing. These efforts facilitated the adoption of AM by
local businesses and high-value industry sectors. The CSIR Centre of
Competence was then established to promote the development,
industrialization, commercialization, and acquisition of world-
class AM infrastructure, guided by globally accepted best
practices (de Beer et al., 2016). The adoption of AM aligns with
the strategic goals of economic efficiency and environmental
sustainability while positioning South Africa as an industrial hub
of the continent.

Four priority areas for advancing AM technologies were set out
by the South African government (Dzogbewu et al., 2022; de Beer
et al., 2016). The priority areas were joint effort by subject matter
experts from governments agencies to inform policy, education
establishment and research councils to support innovation and
industry players to for implementation and commercialization
(de Beer et al., 2016). The priority areas are: (1) The need for
qualified AM or 3D printing technologies for final manufacturing of
high–earn value goods in aerospace and medical industry; (2)
integration of AM technologies in traditional manufacturing
markets; (3) the development of new technologies and designing
of new functional and structural materials; and (4) development of
support programmes geared toward small, medium and micro
enterprises (SMME). The priority areas contextualised and
provided an inclusive framework for the triple helix approach for
all industry players (Lerman et al., 2021; Leydesdorff, 2000;
Leydesdorff, 2012; Kolade et al., 2022).

Additive manufacturing technologies have gradually been
integrated into the South African manufacturing sector. This is
due to increasing research from universities, research centres and
private-public partnership. Thus, in 2023, South Africa had the
highest research throughput with over 60% of publications on the
continent (Klenam et al., 2022). Pioneering works were done by the
Central University of Technology. The aerospace industry has
produced specialized parts for lightweight applications (du Plessis
et al., 2019a; Blakey-Milner et al., 2021). The Aeroswift Project, a
private-public partnership led to the design of the world’s largest and
fastest Ti-based additive manufacturing systems (Dzogbewu et al.,
2022; Campbell et al., 2011; Kunniger, 2015; du Plessis et al., 2019b).
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This is testament to digital and high-tech manufacturing capabilities
of South Africa to transform the aerospace sector. The biomedical
industry is actively using AM for the design and manufacture of
prosthetics and implants. For instance, Anton Du Plessis, from
Stellenbosch University has been phenomenal in the field of
biomimicry and bioinspired additive manufacturing (du Plessis
et al., 2021; du Plessis et al., 2019b; du Plessis et al., 2016). Their
team has been one of the first to procure X-ray micro computed
tomography and other state-of-the-art characterization techniques
for processing-structural-property investigated of 3D printed
functional and structural materials (du Plessis et al., 2021; Kruger
et al., 2021; du Plessis et al., 2019b; du Plessis et al., 2016; du Plessis
and le Roux, 2018; du Plessis et al., 2020). Similarly, the automotive
and railway industries are also producing mechanical component
parts with the technology on small scale in various industrial parks
in Johannesburg, Durban and Cape Town (Toth et al., 2022). The
Physical Metallurgy Group at Mintek, subsidiary of the South
African Department of Mineral Resource (DMR) in
Johannesburg procured Amazement rePowder Ultrasonic
atomizer and a General Electric metal 3D printing facilities in
2023. This is in with the mineral beneficiation and value addition
to the South African mineral wealth under the auspices of the DRM.
Thus, South Africa is mainly steady progress to leverage from
advanced materials development, robotics and manufacturing,
one of the pillars of the Fourth Industrial revolution.

Nigeria

Manufacturing sector and the infusion of nascent technologies
of the Fourth Industrial Revolution are inseparable (Klenam et al.,
2022; Inoma et al., 2020; Adefuye et al., 2019). The manufacturing
sector in Nigeria is grouped under eight major industries since 2015.
This includes oil refining, cement production, food, beverage and
tobacco, fashion (textiles, apparel and footwear), wood and wood
products, pulp, paper and paper products, chemical and
pharmaceutical products, and non-metallic products. The AM
technologies are applicable in these sectors of manufacturing in
Nigeria and can drive a rapid economic transformation (Inoma
et al., 2020; Adefuye et al., 2019; Adekunle and Alhassan, 2022;
Ishengoma andMtaho, 2014; Olomu et al., 2023). This is essential to
the increasing fortunes and contribution of manufacturing to the
GDP of the Nigerian economy (Inoma et al., 2020; Adefuye et al.,
2019; Adekunle and Alhassan, 2022; Adekanye A. et al., 2017).
Leveraging AM technologies in dental and medical industries,
footwear, jewellery and automotive industries has the capacity to
position Nigeria as an industrial hub on the continent.

Additive manufacturing is increasingly being used to produce
automotive parts in Nigeria (Klenam et al., 2022; Inoma et al., 2020;
Adefuye et al., 2019; Adekunle and Alhassan, 2022). Typical
example is the use of both AM and subtractive technologies to
produce gears. For the two approaches, in terms of lead time, energy
savings and overall cost, AM technologies were better than the
subtractive technologies (Adekunle and Alhassan, 2022). The use of
AM for rapid prototyping of components for aerospace and
automotive parts are also on the rise. This results in drastic
reduction in time-to-market of products with less use of tooling
and massive infrastructure for most factories. Thus, AM

technologies provide innovation pathways for manufacturing
structural and functional components with ease, contributing to
the African industrialization agenda. This is why AM technologies
are touted the future of modern manufacturing.

The inclusion of AM technologies in high education sector in
Nigeria has increased (Mhlongo et al., 2023; Inoma et al., 2020). This
is to address the skills shortfall in the Nigerian economy and then
provide an education that is forward thinking, experiential and
extensional. The linkage between AM based courses and the
perception, attitude and knowledge of the undergraduate and
postgraduates are on the rise (Inoma et al., 2020). The use of
AM technologies drives awareness and boost industry
participation. It has also been effective in enhancing the learning
of difficult concepts of students in engineering (Mhlongo et al.,
2023). By using 3D printing, models are designed and produced
based on specific concepts to enhance understanding of three-
dimensional perspectives of ideas (Ford and Minshall, 2019).

Egypt

The Egyptian Strategy for Development provides the pathway
for the infusion of AM technologies into the manufacturing sector
(Geneidy et al., 2019; Saleem et al., 2023; Bibb and McKnight, 2022;
El-Mahdy et al., 2021; McKnight et al., 2015; Abbady et al., 2022; El-
din et al., 2021). The Egypt Vision 2030 aimed to invest heavily in
areas that drives the technologies of the future and to ensure Egypt is
in the top 30 heavily industrialized countries of the world. The
prospects of AM in the construction industry, educational
establishment, preservation of cultural heritage by replicating
historical artifacts and recycling of wastes toward green
manufacturing is being examined for overall contribution to
manufacturing (Geneidy et al., 2019; Saleem et al., 2023; Bibb
and McKnight, 2022; El-Mahdy et al., 2021; McKnight et al.,
2015; Abbady et al., 2022; El-din et al., 2021; Nigro et al., 2024).

Archiving and replicating historical artefacts have been critical
to Egyptian rich cultural heritage (Saleem et al., 2023; Bibb and
McKnight, 2022). The Factum Foundation used 3D scanning and
printing technologies to create and printed replicas of artefacts such
as the “Tomb of Tutankhamun” and other historical relics (Saleem
et al., 2023; Bibb and McKnight, 2022). Thus, original historical
artefacts are preserved, and the 3D models are then used for
exhibition and educational purposes.

Additive manufacturing is widely being used in the Egyptian
construction industry (Geneidy et al., 2019; El-din et al., 2021). This
is mainly due to merits such as increased design flexibility, use of in-
situ materials, different types of raw materials, reduced used of
resource with negligible waste, eco–and environmentally–friendly,
low-cost construction method, reduced workforce, low
transportation costs and low-cost mass customization route (El-
din et al., 2021).

There is increasing application of AM techniques in surgical and
dentistry in the medical fraternity in Egypt (Hafez et al., 2015; Hafez,
2012). It has successfully been used for producing splints, surgical
guides, templates and cutting tools in orthopaedic and maxillofacial
surgery processes (Hafez et al., 2015). In some instance, patient-
specific and tailored templates for total knee arthroplasty have been
3D printed (Hafez, 2012). To curb the increasing demand for donors
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for various vital organs for transplant, 3D printed organs have been
successfully implanted in urology (Soliman et al., 2015) and
cardiology (El-Sherbiny and Yacoub, 2013). Typical example is
the successful bladder transplant in Egypt (Soliman et al., 2015).
For cardiology, various hydrogels have been used as scaffolds for
cardiac tissue engineering (El-Sherbiny and Yacoub, 2013). As of
2013, the major AM and other 3D prototyping machinery available
in Egypt is summarized in Table 5.

Kenya

Kenya is one of the progressive African nations embracing
technologies of the Fourth Industrial Revolution. Some of these
technologies have been deployed in SMMEs and various industries
which is in line with the Kenya Vision 2030 (Cairns et al., 2022;
Rodrigues et al., 2024). A critical driver of these initiatives is
underpinned by the Nairobi Integrated Urban Development
Master Plan (NIUPLAN) which provides the roadmap for an
industrialised and knowledge economy. We are in the knowledge
and information age where there is tremendous, extensive and rapid
disruptive technological transformation.

In Kenya, additive manufacturing (AM) has been applied across
various sectors, demonstrating its transformative potential (Mounde
and Arisi Alex, 2019). One notable case study is in the medical
industry, where 3D printing has been used to produce affordable
prosthetics, improving accessibility for amputees (du Plessis et al.,
2019a). Some of the leading institutions and startup deploying
innovative and customizable prosthetics are the Victoria Hand
Project started working in 2020 with St. Luke’s Orthopaedic and
TraumaHospital (https://www.victoriahandproject.com/kenya) and
3D LifePrints. Furthermore, a vein finder was produced and
manufactured from 3D printing for an infant (Ishengoma and
Mtaho, 2014). These biomedical products or devices are being
produced timeously, low-cost and easily accessible to individuals
with disabilities thereby improving the quality of life.

The AM technologies is gaining traction in the educational
sector (Cairns et al., 2022; Mounde and Arisi Alex, 2019; Peter et al.,
2022). Thus, universities are integrating AM into their curricula, for
advance manufacturing, design and fabrication of prototypes,
fostering innovation and practical skills (Kolade et al., 2022). The
integration is organized around Fabrication laboratories in most
universities in Africa (Ishengoma andMtaho, 2014; Leminen, 2015).
This is mainly through the public-private partnership and
collaboration with global institutions from the global North.
Typical example is the Semiconductor Technologies Limited, one
of the leading microchip and nanotechnology materials

development company in Dedan Kimati University of
Technology in Nyeri in Kenya. By using AM technologies and
partnership from the Global North and East, they are carrying
out cutting edge research and commercialization of high-earn
products with wide range applications in various industries
(Caccamo and Beckman, 2022; Riesener et al., 2019; Pustovrh
et al., 2020). Face shields and masks were 3D printed during the
Covid – 19 pandemic. This is a typical example of the triple helix
approach to innovation (Kolade et al., 2022; Leminen, 2015).

The automotive and construction industries have benefited with
application of AM technologies (Bedarf et al., 2021; Tay et al., 2017;
Sakin and Kiroglu, 2017; Kanyilmaz et al., 2021; Sikora et al., 2021).
There is continuous use of 3D printing by local startups to
manufacture vehicle parts to reduce costs and lead times (Kolade
et al., 2022). Additionally, the construction sector has seen
advancements through AM, with projects exploring the use of
3D-printed components for eco-friendly housing. Lastly,
agricultural equipment manufacturers are leveraging AM to
produce customized tools and spare parts, enhancing
productivity and sustainability in farming practices. Although
these case studies are on-going in the public and private space in
Kenya, most of them are not documented and not available to
the public.

Critical assessment of the four research questions and the
linkage to sustainable African development is summarized in
Table 6. The first one highlighted the manufacturing landscape of
the continent and how the excesses can be minimized. The role of
sustainable AM in the industrialization of the continent is also
discussed in light with the available literature, highlighting current
trends and implications for future research direction. Some of the
recent challenges of implementing sustainable AM approaches were
identified and possible solutions to overcome them proffered.

Future research opportunities and
challenges for Africa industrialization

There is increasing research and innovation in the science and
engineering of additive manufacturing. However, there are still
pertinent issues that require further investigation. These issues
ranged from interfacing computational tools with
experimentation in additive manufacturing. Some of the main
areas are focused on additive manufacturing that is
complimented and enabled by machine learning design. Areas
such as 3D printing–assisted topological optimization,
ML–assisted process monitoring with diagnosis and prognosis for
the design of additive manufacturing, process parameter

TABLE 5 Additive manufacturing machines and successful medical cases done in Egypt (Hafez et al., 2015).

AM machine information Applicable materials Successful cases

ZCorp – 3DSystems Polymers 10

M3Linear – Selective laser melting for metallic powders for
biomedical applications with 200W fiber laser

Stainless steels 304 and 316L, Ti-6Al-4V, CoCr and ceramic materials 21

Ultra2 (Envision Tec) – Direct light deposition of photopolymers Medical grade polymers 65

FORMIGA P100 – Selective laser sintering Medical grade polyamide PA2201 438
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optimization, defect detection and characterization in additively
manufactured products. There is the need to develop
physics–based models for robust design of additively
manufactured products. All these ML–based techniques offer
more opportunities and gaps that require careful and pragmatic
steps for better structural and functional components to be designed
from the 3D printing processes.

Practical recommendations for leveraging additive
manufacturing (AM) to drive industrialization in Africa include:

• Investment in Infrastructure: Governments should invest in
AM infrastructure, such as research centres and technology
hubs. Organizing investments around African economic blocs

can reduce costs, while revamping existing projects can offer
quick returns.

• Promotion of R&D: Foster collaboration between
academia, industry, and government to support AM
research tailored to African needs, with funding and
partnerships focusing on sectors like healthcare, energy,
and agriculture.

• Capacity Building: Implement training programs to develop a
skilled AM workforce, focusing on design, machine operation,
and materials science, with universities and technical schools
playing key roles.

• Support for SMMEs: Provide incentives, technical assistance,
and access to AM facilities for small and medium-sized

TABLE 6 The research questions and summary of concluding remarks towards an AM-driven African industrialization.

Research questions Summary and application to African industrialization

RQ1: Is there any change in industrialization and manufacturing landscape of
Africa?

The African manufacturing landscape is rapidly transforming with additive manufacturing
(AM). Ethiopia, a growing hub in textiles, benefits from government investments like the
Hawassa industrial park, attracting global brands. AM is gaining momentum, with startups
and foreign investments boosting rapid prototyping and reducing import reliance. In Nigeria,
the automotive industry is exploring 3D printing for complex components to improve
efficiency

South Africa’s advanced manufacturing sector, including BMW, Ford, and Toyota, uses 3D
printing for prototyping and specialized part production. Biotech industries across Africa are
also leveraging AM for biomedical applications. Tech hubs in Nairobi and Lagos are adopting
3D printing to drive innovation in electronics and ICT. Additive manufacturing is poised to
play a key role in sustainable growth, positioning Africa as a rising player in global
manufacturing

RQ2: How can sustainable AM contribute to the African industrialization
agenda?

Sustainable additive manufacturing (AM) can drive African industrialization by promoting
eco-friendly production and reducing resource dependency. AM minimizes waste, conserves
resources, and reduces environmental impact, aligning with sustainable development goals.
Using locally sourced, biodegradable materials lowers the carbon footprint and fosters a
circular economy focused on reuse and recycling

AM also boosts local economies by fostering innovation and high-skilled expertise. As AM
becomes more accessible, it empowers local entrepreneurs and small businesses to create
customized products, driving technological advancement and global competitiveness.
Decentralized manufacturing reduces logistical challenges, making sustainable AM a key to
building a robust, eco-friendly industrial base and accelerating African industrialization

RQ3: What are the main challenges faced by African countries in implementing
sustainable AM technologies?

African countries face challenges in implementing sustainable additive manufacturing (AM),
including limited infrastructure, political will, and unreliable energy sources. High initial
capital costs of AM equipment and materials, along with limited access to financing, hinder
adoption. Additionally, the scarcity of technical expertise and skilled labour slows AM
integration

Regulatory frameworks for AM technologies are lacking, leading to uncertainties for
businesses and investors. Intellectual property protection and quality standards are
underdeveloped, deterring innovation. Inadequate supply chains and logistical networks,
especially in remote areas, further complicate the distribution of AM-produced goods.
Addressing these issues is critical for African countries to successfully implement AM and
leverage its industrial growth potential

RQ4: How do current applications of AM in Africa align with SDGs? Current applications of AM in Africa align with the SDGs and Africa Agenda 2063 by
promoting sustainable industrial growth, innovation, and resource efficiency. In healthcare,
AM produces low-cost medical devices and prosthetics, addressing SDG 3 (Good Health and
Wellbeing) and Aspiration 1 (high standards of living). Locally sourcedmaterials and efficient
production reduce waste and environmental impact, supporting SDG 12 (Responsible
Consumption) and Aspiration 1’s goal of climate-resilient economies. AM fosters innovation,
aligning with SDG 9 (Industry, Innovation, and Infrastructure) and Aspiration 1 for inclusive
economic growth

AM is critical to economic growth and job creation, supporting SDG 8 (Decent Work) and
Aspiration 1 by enabling local manufacturing, reducing import dependency, and creating
high-skilled jobs. It enhances STEM education (SDG 4) and Aspiration 6 by developing skills,
especially for youth and women. AM’s decentralized nature also helps reduce inequalities
(SDG 10), supporting inclusive growth and sustainable development, essential to realizing the
vision of Agenda 2063
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enterprises, encouraging AM integration through favourable
government procurement policies.

• Regulatory Frameworks: Develop clear regulations and
standards to ensure quality, safety, and sustainability in
AM, aligning with international standards for global
interoperability.

• Local Materials & Sustainability: Promote the use of locally
sourced materials and sustainable practices in AM to
minimize environmental impact, encouraging research into
recycled and renewable resources.

• Public-Private Partnerships (PPPs): Facilitate collaboration
between governments, the private sector, and research
institutions to drive AM adoption, knowledge transfer, and
infrastructure investment.

By adopting these strategies, African countries can unlock AM’s
potential to drive industrialization, stimulate economic growth, and
address key societal challenges.

Summary and concluding remarks

The economic growth of Africa is through value addition to its
natural resources and skilled workforce. This partly hinges on
vibrant manufacturing sector, which is currently at staggering
11% of the GDP of Africa. A vibrant manufacturing sector
should implement sustainable additive manufacturing (AM) to
the mix to drive economic growth, foster innovation, and
promote sustainability across the continent. With its ability to
produce customizable parts with minimal material wastage, AM
offers a cost-effective solution for addressing the diverse
manufacturing needs of Africa. By leveraging the capabilities of
AM, African countries can overcome traditional barriers to
industrialization, such as limited access to capital-intensive
machinery, energy demands and infrastructure. Moreover, AM
enables the fabrication of complex geometries and intricate
designs, empowering local industries to compete on a global scale
and catalyse the development of indigenous manufacturing
capabilities.

The successful implementation of sustainable AM practices
in Africa requires concerted efforts from governments,
industries, and educational institutions. Investment in
research and development, infrastructure development, and
skills training is essential to harness the full potential of AM
technologies. Additionally, collaboration with international
partners and the adoption of best practices in sustainable
manufacturing will be instrumental in driving the continental
industrialization agenda forward. By embracing sustainable AM
practices, Africa can not only accelerate its industrialization
journey but also address pressing societal challenges, promote
inclusive growth, and build a resilient and sustainable future for
now and posterity.

Case studies of the adoption of AM in leading countries in Africa
are highlighted. South Africa currently leads the adoption,
acceptance and integration of AM processes into the
manufacturing sector. Other countries include Nigeria, Kenya
and Egypt. The industries integrating AM includes aerospace,
energy, health, education and construction sector. Although these
sectors show promise, there is the need for increased awareness on
the continent for rapid industrialization and realization of the Africa
Agenda 2063 and the sustainable development goals. It is instructive
to note that technologies such as AM and those of the Fourth
Industrial Revolution will be play critical role in the development of
the Africa we need. This will provide the pathway to leapfrog and
speed up the industrialization process and overhaul the reliance on
traditional manufacturing processes which are becoming
unsustainable and expensive.
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