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Bioreactors are essential for the production of biopharmaceuticals and
bioproducts, requiring continuous monitoring to ensure quality assurance.
Manual processes in manufacturing plants often lead to anomalies such as
out-of-trend and out-of-spec incidents, necessitating extensive root cause
analysis that typically takes 2–8 weeks. This paper introduces an innovative
methodology that uses the golden batch profile as a benchmark to identify
deviations and root causes in subsequent industrial batches. The methodology
involves normalizing the data and calculating the variances of a specified batch
from the golden batch profile. By examining the contribution of each critical
process parameter to these variances, the study highlights their importance in
root cause analysis. The application of this methodology to the IndPenSim
dataset demonstrated its effectiveness by significantly reducing false positives
and negatives compared to traditional PCA-based methods. Emphasis on the
deviations of critical quality attributes and critical process parameters from the
specified batch compared to the golden batch profile offers valuable insights into
industrial process analysis. This approach not only enhances anomaly detection
accuracy but also improves the efficiency and reliability of biopharmaceutical and
bioproduct manufacturing processes.
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1 Introduction

In the realm of industrial batch processes, effective root cause analysis is paramount for
maintaining product quality, ensuring process efficiency, and achieving overall operational
excellence (Swim and Farach, 2023). Typically, engineers rely on their expertise and domain
knowledge to identify the root cause by examining the system and specific processes.
Throughout this process, a vast amount of data, including process features, in-line
measurements, and final product information, is automatically recorded. While this
extensive data collection can offer valuable manufacturing insights, the complexity and
intricacy of the data structure make it difficult to process and interpret. As a result,
identifying root causes becomes increasingly challenging, and solely relying on traditional
methods and domain knowledge is inadequate (Chien and Chuang, 2014; He et al., 2019).
This paper explores existing root cause analysis methods, shedding light on their advantages
and limitations, and sets the stage for the introduction of an innovative golden batch-
driven approach.

OPEN ACCESS

EDITED BY

Björn Johansson,
Chalmers University of Technology, Sweden

REVIEWED BY

Federica Acerbi,
Polytechnic University of Milan, Italy
Martin Hollender,
ABB, Germany

*CORRESPONDENCE

Dennis Luo,
dluo@rockwellautomation.com

RECEIVED 26 February 2024
ACCEPTED 14 October 2024
PUBLISHED 28 October 2024

CITATION

Luo D, He M, Darko J, Ly Seymour F and
Maturana F (2024) The golden batch-driven
root cause analysis for anomalies in bioreactor
fermentation process.
Front. Manuf. Technol. 4:1392038.
doi: 10.3389/fmtec.2024.1392038

COPYRIGHT

© 2024 Luo, He, Darko, Ly Seymour and
Maturana. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Manufacturing Technology frontiersin.org01

TYPE Original Research
PUBLISHED 28 October 2024
DOI 10.3389/fmtec.2024.1392038

https://www.frontiersin.org/articles/10.3389/fmtec.2024.1392038/full
https://www.frontiersin.org/articles/10.3389/fmtec.2024.1392038/full
https://www.frontiersin.org/articles/10.3389/fmtec.2024.1392038/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmtec.2024.1392038&domain=pdf&date_stamp=2024-10-28
mailto:dluo@rockwellautomation.com
mailto:dluo@rockwellautomation.com
https://doi.org/10.3389/fmtec.2024.1392038
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org/journals/manufacturing-technology#editorial-board
https://www.frontiersin.org/journals/manufacturing-technology#editorial-board
https://doi.org/10.3389/fmtec.2024.1392038


1.1 Industrial batch process root cause
analysis methods

In our exploration of root cause analysis methods for industrial
batch processes (Section 2), we thoroughly examine a range of
established techniques. These include traditional approaches like
the “5 Whys” method, Cause and Effect Fishbone diagram, Failure
Mode and Effects Analysis (FMEA), and Fish Bone Diagram
(Alliance Indian Pharmaceutical, 2019). Additionally, we
investigate modern solutions such as AI based Automated Root
Cause Analysis (RCA) Tools (Papageorgiou, et al., 2022; Oliveira
et al., 2023), specifically delving into the functionalities of prominent
tools like open library doWhy which are contributed lot of from
Microsoft and Amazon (Sharma and Kiciman, 2020; Molak, 2023),
ABS Group Consulting (Heuvel et al., 2008) and Fuzzy multi criteria
decision making (Xu, et al., 2023). This detailed examination of
diverse methodologies forms a comprehensive understanding that
serves as the groundwork for the introduction of our innovative
golden batch-driven approach.

1.2 Currently challenges in RCA of the
bioreactor batch process

Despite its importance, root cause analysis in the bioreactor
batch process faces challenges, primarily relying on manual
processes that extend from 2 to 8 weeks for proper identification
of root causes for complicated issues (White, 2022). This prolonged
duration can lead to detrimental consequences, including wastage of
valuable materials, increased costs, disruption of production
schedules, and overall operational inefficiency. Addressing these
challenges promptly through automation or data-driven processes is
crucial for ensuring smoother and more efficient operations
(Hornea et al., 2023).

1.3 Business value of advanced golden batch
modeling driven root cause analysis

Introducing an advanced golden batch modeling-driven root
cause analysis offers substantial business value. This approach
accelerates the root cause analysis process by automating some
manual procedures, reducing the time frame from 2 to 8 weeks to
just days or even hours. The benefits include cost reduction through
improved yield and resource utilization, decreased waste and
downtime, increased revenue through enhanced product quality,
and manufacturing consistency leading to market differentiation.
The ease of implementation and focus on continuous
improvement, exemplified by the utilization of a soft sensor (or
“software sensor”) that combines process data (input) with a
model to predict a target quantity (output), leveraging Generative
AI, big data, XAI, and Causal Analysis, make it a strategic shift from
reactionary to preventative analytics (Swim and Farach, 2023; White,
2022; Molak, 2023; Ahmed, et al., 2023; Brunner, et al., 2021;
Menegozzo et al., 2022; Westerhuis et al., 2000; Yan et al., 2015;
Rooney and Heuvel, 2004). This empowers the utilization of historical
data to identify ideal manufacturing conditions, fostering a proactive
approach towards operational excellence.

1.4 The contributions of this paper

This paper presents unique contributions to the field of
bioprocess monitoring, particularly through the introduction of
golden batch modeling and the integration of advanced analytical
tools. Our key contributions are as follows:

• We introduce a data-driven golden batch profile framework
that, when combined with automated root cause analysis,
significantly reduces the manual process time for root cause
identification from 2–8 weeks to mere days, or even less.

• Our methodology includes the automatic calculation of the
primary contributors to deviations from the golden batch for
current batches experiencing out-of-trend or out-of-spec
nonconformance of critical quality attributes (CQAs).

• By leveraging deviations from the golden batch profile, our
approach facilitates critical process parameter (CPP) anomaly
detection, expediting the identification of root causes and
precisely pinpointing the timing, location, and nature of
critical quality attribute losses.

Overall, our proposed methodology, centered around the golden
batch, aggregates data from multiple high-quality batches to
establish a representative profile of the normal batch process
enhancing transparency in analytical processes. Utilizing
operator-defined CQAs and CPPs, our approach normalizes data
and calculates deviations to provide relevant insights. This enables
operators to swiftly identify the root causes of faults in the
batch process.

This paper is organized as follows: Section 2 provides an
overview of the methods related to the root cause analysis of
nonconformance of industrial batch processes and outlines the
strength and limitations of these methods. Section 3 introduces
the golden batch profile framework, including the definition of the
golden batch profile, normalization of batches, deviation of specified
batches from the golden batch, contribution of the deviation of the
specified batch to the golden batch techniques, and how to drill
down to a critical process parameter with the highest contribution to
identify when, where, and how the root cause occurs. In Section 4,
we present experimental results derived from real-world
applications of the proposed architecture.

2 Related work

2.1 Root cause analysis in manufacturing
batch processes

RCA is a critical component in the optimization of
manufacturing batch processes. In this section, we provide a
detailed examination of various RCA methodologies, highlighting
their strengths and limitations. The following table summarizes the
current methods utilized for RCA in manufacturing settings:

From Table 1, current RCAmethods each have unique strengths
and limitations. The 5 Whys method is simple and quick but risks
oversimplification and requires domain knowledge, while the Fish
bone Diagram visually organizes complex information and
encourages collaboration but may also oversimplify issues and be
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subjective. In contrast, our method automatically derives the
contribution of critical process parameters to deviations of
critical quality attributes, reducing dependency on domain
knowledge, and is data-driven with dynamic interactions.

FMEA (Failure Modes and Effects Analysis) offers a systematic
and proactive approach but relies on assumptions and domain
expertise, while Fuzzy Multi-Criteria Decision Making handles
uncertainty well but is challenging to interpret and requires
expertise. Conversely, our method is data-driven to determine
when, where, and how the root cause occurs, and is easy to
explain, reducing dependency on domain knowledge.

DoWhy, as an advanced causal discovery tool, leverages
machine learning for causal inference but has a steep learning
curve and is dependent on data quality. While SPC (Statistical
Process Control) and PCA (Principal Component Analysis)
detect process deviations early and identify control variable
contributions but can produce false positives/negatives and are
complex to explain. In comparison, our solution is based on
statistical modelling and is data-driven, automatically deriving
the contribution of CPPs to the deviations of CQAs, making it
easy to understand and use, while effectively explaining the
root cause.

The SOURCETM methodology provides professional
consultancy but can be costly and dependent on external
expertise. Instead, our solution leverages internal resources for RCA.

Finally, the Golden Batch Profile aids in identifying defect-free
batches but may not meet multiple CQAs and lacks linkage between
CQAs and CPPs, requiring manual processes and domain
knowledge. Conversely, our method can analyze CQAs/
conditions to identify the ideal batches to cultivate a golden
batch. It establishes a linkage between CQAs and CPPs and
automates and semi-automates processes to reduce dependency
on domain knowledge.

From our comprehensive literature review and gathered
insights, the ideal RCA solution should exhibit a data-driven
approach, a user-friendly interface for seamless RCA exploration,
minimized dependency on domain-specific knowledge, and
automated or semi-automated functionality.

Based on the above analysis, we have identified that the golden
batch profile offers a data-driven solution that is highly welcomed by
manufacturing process engineers for root cause analysis. However,
addressing the limitations and developing a method to construct the
golden batch profile from numerous healthy batches, not just
manually selecting a batch as the golden batch, considering
multiple Critical Quality Attributes (CQAs) or quality Key
Performance Indicator (KPI) thresholds or target values to data
filter the batches under normal operational conditions, and
automating the linkage between CQAs and Critical Process
Parameters (CPPs) to facilitate the exploration of CPP
contributions, would significantly enhance business value. This

TABLE 1 Current methods for root cause analysis.

Methods Strengths Limitations

5 Whys: Iterative questioning identifies fundamental problem
cause. (Serrat, 2010; Gangidi, 2019; Reid and Smyth-Renshaw,
2012; Sol’e et al., 2017)

• Simplicity and ease of use.
• Facilitating quick identification of immediate causes.

• Oversimplification risks missing crucial factors.
• Manual processes and requires domain
knowledge.

Fish Bone Diagram: Visual representation organizes problem
causes effectively. (Tague, 2005; Sakdiyah et al., 2022; Reid and
Smyth-Renshaw, 2012)

• Visual cause representation.
• Helps organize and categorize complex information.
• Encourages collaborative involvement.

• Oversimplify complex issues.
• Categorization of causes can be subjective.
• Dynamic interactions may be overlooked.

Failure Mode and Effects Analysis (FMEA): Structured
approach identifies potential failure model. (Stamatis, 2014)

• Systematic approach to identify and prioritize
potential failure modes.

• Ensures a proactive stance.

• Assumptions may overlook comprehensive
failure modes.

• Manual processes and requires domain
knowledge.

DoWhy: Python library for causal inference and analysis in
observational data. (Sharma and Kiciman, 2020; Molak, 2023)

• Machine learning algorithms for root cause analysis.
• Causal influence aids automated RCA process.

• Learning curve, data quality dependency.
• Domain knowledge necessary for diagrams.
• Model results not easily explained.

The SOURCETM Root Cause Analysis Process - ABS Group
Consulting: Risk management with SOURCE methodology.
(Heuvel et al., 2008)

• SOURCETM methodology flowchart for root cause
analysis.

• Professional consultancy with tailored solutions.

• Costly, and reliance on external expertise.
• It involves manual processes and requires domain
knowledge.

Fuzzy Multi Criteria Decision Making: Fuzzy logic meets multi-
criteria analysis. (Xu, et al., 2023; Kaya et al., 2019)

• Fuzzy logic for uncertain root causes.
• Manages ambiguity effectively.

• Challenges in interpretation require expertise.
• Manual processes and requires domain

knowledge.

Statistical Process Control (SPC) and Principal Component
Analysis (PCA): Control through statistics and PCA.
(Duran-Villalobos, et al., 2020; Goldrick, et al., 2019; Gunther
et al., 2007; He, et al., 2023)

• By continuously collecting and analyzing data,
deviations from the expected process can be detected
early.

• Identifies abnormal batch process variations.
• It can calculate the contributions of control variables
to anomalies.

• There are false positives and false negatives for
anomaly detection.

• Complex PCA model complicates explanation.
• Verifying the contributions of control variables is
not easy.

Golden Batch Profile: Reference for comparing batch analysis.
(Swim and Farach, 2023; Alliance Indian Pharmaceutical, 2019;
Goswami, 2018)

• Data-driven solution to identify a successful or
defect-free batch in a manufacturing.

• Used by process engineers for exploring root cause
analysis.

• Manual selection may not satisfy multiple
Critical Quality Attributes (CQAs) or conditions.

• No linkage between CQAs and Critical Process
Parameters (CPPs).

• Manual processes and requires domain
knowledge.
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approach has the potential to expedite the root cause analysis (RCA)
process by providing an automated or semi-automated RCA,
allowing process engineers to explore where, when, and how the
root cause occurred. This solution will speed up the RCA process,
reduce dependence on domain knowledge, and contribute to overall
operational efficiency.

2.2 RCA methods: customer insights

To gain more understanding of the root cause analysis (RCA)
processes employed in the industry, we conducted interviews within
Rockwell Automation engineering support and manufacturing team
to understand their root cause analysis (RCA) process. Additionally,
we gathered feedback from customers during our demo at the
Automation Fair in 2023 in Boston (Rockwell Automation,
2023). The following questions were carried out:

• What methods or modeling do you use for root cause analysis?
• Is it a manual or automatic process?
• How long does it take to investigate root cause analysis?
• How much does it cost if a batch fails?

Based on customer feedback, we have identified that the most
commonly employed root cause analysis (RCA) methodologies in
various industries, including at Rockwell Automation, are the
5 Whys, Fishbone Diagram, A3, and Failure Mode and Effects
Analysis (FMEA) (Gangidi, 2019; Reid and Smyth-Renshaw,
2012; Heher, 2017; Langer, 2008; Shook, 2009). These methods
predominantly rely on manual processes. In industrial settings,
executing an RCA can take between 2 and 8 weeks (White, 2022)
and often involves multiple engineering teams. Domain experts have
expressed a strong interest in leveraging advanced technologies such
as Artificial Intelligence (AI), Machine Learning (ML), statistical
modeling, and the golden batch concept to develop more
sophisticated, automated RCA solutions. Such advancements are
anticipated to reduce costs and enhance accuracy. In the
biopharmaceutical industry, where batch costs range from $1 to
$2 million (Langer, 2008), the ability to save even a single failed
batch would result in substantial financial savings for businesses.

2.3 Apply golden batch in root cause analysis

The Golden Batch is the benchmark against which all other
batches are measured. It can be created through first-principles
models or by having expert engineers meticulously ensure the
apparatus is clean and operate under optimal conditions (Yeh,
et al., 2019). In practical scenarios, our approach involves the
development of data-driven analytics. By analyzing historically
successful batches, we learn the defining characteristics of a
Golden Batch. This knowledge allows us to construct an ideal
model based on the attributes of these previously high-
performing batches.

The practice of establishing a golden batch and using its profile
as a benchmark for evaluating current batches enables root cause
identification, timely interventions and decisions about halting
batch processes (Su and Yu, 2016; Hong et al., 2011). However,

the industry often lacks automated tools for computing deviations.
While many products allow the creation and editing of a golden
batch, their functionality is generally restricted to these tasks. Users
are typically expected to manually monitor the ongoing batch by
visually comparing it to the golden batch, as suggested in training
materials like TrendMiner’s videos, where the emphasis is on visual
assessment against the golden standard (Yeh, et al., 2019).

3 Method

3.1 Definition of the golden batch profile

This section provides a comprehensive overview of defining
golden batch modeling, a fundamental component of our approach.
We elaborate on how this concept functions as a benchmark for
identifying deviations and root causes of anomalies in
subsequent batches.

A time series typically represents measurements of the same
sample taken over time, establishing a connection between the
samples in this type of data. In an industrial batch, numerous
time series exist, some associated with Critical Quality Attributes
(CQAs) and others with Critical Process Parameters (CPPs).

In the following equation, a variable X is repetitively sampled
over time. The subscripts enumerate the sample points (sample
1 through sample n), and the entire series of samples is denoted as X:

X � {xt, t � 1, 2, . . . , n} (1)

Assuming we have I batches under normal operational
conditions, where i = 1, 2, . . ., I. For each batch i, and assuming
there are J Critical Quality Attributes (CQAs), we will denote the jth

CQA time series as follows:

Y i,j( ) � {y i,j( )
t , t � 1, 2, . . . , n} (2)

If there are K critical process parameters (CPPs), we will denote
the kth CPP time series as follows:

X i,k( ) � {x i,k( )
t , t � 1, 2, . . . , n} (3)

We will define the golden batch time series for the jth CQA
as follows:

G
j( )

cqa � {g j,cqa( )
t , t � 1, 2, . . . , n} (4)

where g(j,cqa)
t � 1

I∑
I

i�1y
(i,j)
t , t � 1, 2, . . . , n.

Similarly, we will define the golden batch time series for the kth

CPP as follows:

G k( )
cpp � {g k,cpp( )

t , t � 1, 2, . . . , n} (5)

where g(k,cpp)
t � 1

I∑
I

i�1x
(i,k)
t , t � 1, 2, . . . , n.

3.2 Normalized batches and golden
batch profile

To measure the deviation between two time series,
normalization is necessary to eliminate the unit factor and ensure
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comparability. For any batch i, where i = 1, 2, . . ., I, the normalized
time series of the jth Critical Quality Attribute (CQA) is denoted
as follows:

Y
i,j( )

norm � {y i,j,norm( )
t , t � 1, 2, . . . , n} (6)

If the distribution of the jth CQA time series
Y (i,j) is similar to a normal distrobtuinonwith a mean μ(j), and a
standard deviation is σ(j), the normalization of jth CQA time series is
given by:

y
i,j,norm( )

t � y
i,j( )

t − μ j( )
σ j( ) , t � 1, 2, . . . , n. (7)

If the distribution deviates significantly from a normal
distribution, Min-Max Scaling is employed:

y
i,j,norm( )

t �
y

i,j( )
t − Min

t y
i,j( )

t( )
Max
t y

i,j( )
t( ) − Min

t y
i,j( )

t( )
, t � 1, 2, . . . , n. (8)

Similarly, the kth Critical Process Parameter (CPP) time series
X (i,k), is normalized and denoted as X(i,k)

norm:

X i,k( )
norm � {x i,k,norm( )

t , t � 1, 2, . . . , n} (9)

The time series G(j)
cqa is normalized and denoted as G(j)

cqa,norm:

G
j( )

cqa,norm � {g j,cqa,norm( )
t , t � 1, 2, . . . , n} (10)

Similarly, the time series G(k)
cpp is normalized and denoted as

G(k)
cpp,norm , where k = 1, 2, . . ., K:

G k( )
cpp,norm � {g k,cpp,norm( )

t , t � 1, 2, . . . , n} (11)

3.3 Deviation from the golden batch profile

If the batch process analytics platform detects an anomaly with
out-of-trend or out-of-spec non-conformance, it will trigger the root
cause analysis process. Tomeasure the deviation of the current batch
from the golden batch profile, we will utilize the symmetric mean
absolute percentage error (SMAPE), which is commonly used to
measure the deviation between prediction values and actual values in
machine learning model evaluations.

For the jth Critical Quality Attribute (CQA) time series, where j =
1, 2, . . ., J, we define the deviation of the specified batch from the
golden batch profile as follows:

Deviation j,cqa( ) � 1
n
∑
n

t�1

y
i,j,norm( )

t − g
j,cqa,norm( )

t

∣∣∣∣∣∣
∣∣∣∣∣∣

y
i,j,norm( )

t

∣∣∣∣∣∣ + g
j,cqa,norm( )

t

∣∣∣∣∣∣
∣∣∣∣∣∣

∣∣∣∣∣∣
(12)

If y(i,j,norm)
t � 0 andg(j,cqa,norm)

t � 0, The item in the sum of the
right equation will be skipped, and n will be replaced with n − 1.

For the kth Critical Process Parameter (CPP) time series, where
k = 1, 2, . . ., K, we define the deviation from the golden batch profile
as follows:

Deviation k,cpp( ) � 1
n
∑
n

t�1

x i,k( )
t − g

k,cpp,norm( )
t

∣∣∣∣∣∣
∣∣∣∣∣∣

x i,k( )
t

∣∣∣∣ + g
k,cpp,norm( )

t

∣∣∣∣∣∣
∣∣∣∣∣∣

∣∣∣∣∣∣
(13)

If x(i,k)
t � 0 andg(k,cpp,norm)

t � 0, the item in the sumof the right
equationwill be skipped equationwill be skipped and n will be
replaced with n − 1.

3.4 Contribution of deviation of critical
process parameters from golden
batch profile

Emphasizing the importance of critical process parameters, we
elucidate their role in contributing to deviations and the root cause
of anomalies. Understanding these contributions is key to effective
root cause analysis.

After calculating the deviations for all Critical Quality Attributes
(CQAs), we will define the contribution to the deviation of the
golden batch profile for the jth CQA (j = 1, 2, . . ., J) as follows:

Contribution j,cpp( ) � Deviation j,cqa( )
∑J
j�1
Deviation j,cqa( )

(14)

After computing the deviations for all CPPs, we will delineate
the contribution to the deviation of the golden batch profile in the
following manner:

Contribution k,cpp( ) � Deviation k,cpp( )
∑K
k�1

Deviation k,cpp( )
(15)

3.5 Upper bound and lower bound of the
golden batch profile

We generated the golden batch time series for the critical quality
attributes and critical process parameters, such as penicillin
concentration, temperature, by considering all selected normal
operational batches (e.g., batch 61–90). For a critical quality
attribute or critical process parameter, the bounds were
determined using the normal distribution, ensuring that 99.7% of
the data observed at sample time t falls within 3 standard deviations
(σt) of the mean (μt) at that sample time. The upper bound is
calculated as μt + 3σt, and the lower bound is calculated as μt − 3σt.

The upper and lower bounds at sample time “t” within the golden
batch serve as indicators for detecting anomalies in the upcoming batch,
initiating a quality anomaly alert. Subsequently, these bounds can be
utilized to conduct a detailed analysis for each critical process parameter,
pinpointing the occurrence, location, and nature of the root cause.

3.6 Root cause analysis method

We provide a detailed account of our root cause analysis method,
encompassing the use of the golden batch profile, deviation from the
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golden batch for critical quality attributes, and contribution of deviation
from the golden batch for critical process parameters. This section offers
transparency into the analytical tools and processes employed.

In the flow diagram depicted in Figure 1, the process for
conducting root cause analysis on the golden batch profile
unfolds as follows:

FIGURE 1
Illustrates the framework of root cause analysis guided by the golden batch profile.

FIGURE 2
Comparison of penicillin production deviation across batches 99, 92, and 96 against golden batch standard.
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1) Establish a golden batch profile to embody the idealized notion
of routine variation. This helps construct a controlled process
with consistent outcomes over time. Also, see Sections 3.1–3.6.

2) Monitor the industrial batch system for exceptional variations
in Critical Quality Attributes (CQA) or key quality Key
Performance Indicators (KPI) to detect and quantify

variation. If a process is identified as out of control in the
Figure 1 flow diagram, it may lead to unpredictability over
time. Additional details are available in Figure 2.

3) Analyze the contribution of Critical Process Parameters
(CPPs) to identify trending or out-of-specification CPPs.
For a more in-depth understanding, refer to Figure 3.

FIGURE 3
Key contributors to deviation in penicillin production for batches 99, 92, and 96.
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4) Delve into the CPP with the highest contribution to determine
when, where, and how the root cause analysis occurred (refer
to Figure). Further details can be found in Figure 4.

4 Experiment and results

4.1 Overview of IndPenSim data

The IndPenSim dataset comprises a comprehensive collection of
time-series industrial process data, consisting of 100 distinct
batches, each lasting approximately 230 h. Measurements were
recorded at 12-min intervals, resulting in 113,934 observations
across all batches. To ensure alignment for analysis purposes,
each batch initiates at 0.2 h.

Within this dataset, 33 batches have been identified as
unhealthy, characterized by penicillin concentration yields falling
below the target threshold of 20 g/L. These specific batches are
numbered 3, 4, 6, 9, 10, 18, 19, 24, 25, 28, 30, 33, 34, 36, 37, 40, 42, 43,

44, 45, 47, 49, 51, 54, 59, 60, 91, 92, 94, 95, 97, 99, and 100.
Additionally, 67 batches, numbered 1, 2, 5, 7, 8, 11, 12, 13, 14, 15, 16,
17, 20, 21, 22, 23, 26, 27, 29, 31, 32, 35, 38, 39, 41, 46, 48, 50, 52, 53,
55, 56, 57, 58, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 93, 96, and 98,
are labeled as healthy. To create the golden batch, we first
determine the duration with the highest frequency (1,150) and
subsequently truncate the healthy batches with a duration length
greater than 1,150. This is done to add more consistency to the
trend analysis.

4.2 Creation of the golden batch

For the IndPenSim dataset mentioned above, utilizing Equations
1–15, we construct the golden batch profile. We elaborate on the
process of establishing a benchmark for normal operational
conditions. This ensures a standardized reference for
subsequent analyses.

FIGURE 4
Analysis of topmost significant contributor to deviations over time for penicillin production batches 99, 92, and 96.
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4.3 Root cause analysis for batches
with anomalies

Wewill utilize our golden batch profile to examine the problematic
batches 92 and 99, identifying the root cause and determining when,
where, and how it occurred. Additionally, we will explore the healthy
batch 96 to investigate any deviations from the golden batch.

Figure 2 presents a comparison of penicillin production across
three different batches, numbered 99, 92, and 96, against a Golden
Batch profile, which serves as a quality standard. The golden batch is
represented by the orange line in each graph, while the individual
production batches are depicted in blue. Batch 99 shows the earliest and
most considerable deviation from the golden standard starting around
100 h into production, resulting in a significant 54.03% overall
deviation. Batch 92 begins to diverge from the expected results
much later, around 160 h, and exhibits a lower overall deviation of
24.05%, indicating a closer adherence to the golden batch but still falling
short of the quality benchmark. The last healthy batch, batch 96,
exhibits the least deviation, starting around 180 h, with a final
deviation of just 11.52%. Although this batch manages to stay
within the acceptable quality threshold by the end of its production
cycle, it does exhibit someminor inconsistencies when compared to the
golden batch. These deviations are crucial for understanding the
production quality and consistency of penicillin batches.

To understand the process variables that have the most
significant contribution to these deviations, we present the
contribution plots for the variables.

Figure 3 illustrates the main factors that affect the production
quality of penicillin for three different batches when compared to the
ideal production scenario (golden batch). In batch 99, the pH level and
the amount of dissolved oxygen were the biggest issues, contributing
85 and 80 of the deviation, respectively. This indicates that these areas
need to be closely examined to determine why they are so far off from
the desired standard. For batch 92, the base flow rate and the amount of
dissolved oxygen were the primary concerns, with contributions of
65 and 48. This suggests that adjustments in these parameters could
bring the batch closer to the golden batch quality. Finally, batch 96,
which did meet the overall quality threshold, still had notable variances
in pH and base flow rate, at 70 and 60 contributions to deviation. Even
though batch 96 was within the acceptable range, understanding why
these deviations occurred is important for maintaining consistent
quality in future batches.

Focusing on the top two contributors for each batch, we evaluate
the trend of the batch with respect to the golden batch statistics. This
analysis is critical for operators to pinpoint and rectify issues in the
penicillin production process.

Figure 4 shows the trajectory over time of the top key variable,
i.e., pH, base flow rate, and pHwhich significantly impact the quality
of penicillin produced in batches 99, 92, and 96 respectively. For
Batch 99, we notice that the pH levels (depicted in blue) rise well
above the acceptable range (indicated by the red line) at
approximately 100 and 135 h into the process. These surges are
linked to the batch failing to meet the required penicillin
concentration standards. The golden batch, which represents the
target performance, is marked by an orange line, with the acceptable
upper and lower limit shown in red and green.

In Batch 92, the base flow rate (also in blue) exceeds the upper
limit of the golden batch (red line) multiple times between 80 and

180 h. These excessive rates are likely the reason why this batch’s
penicillin quality was below the desired threshold. With this
information, the production team can investigate specific stages
in the manufacturing process that may be causing these deviations.

Lastly, Batch 96 (also in blue) exhibits a smaller, yet noticeable peak
in pH above the golden batch’s upper bound around 190 h. Although
this did not significantly affect the batch’s quality, identifying and
understanding even these minor deviations can help refine the
production process for future batches, ensuring a consistently high-
quality product. This detailed tracking allows operators to focus on
process improvement andmaintain standards within the defined limits.

Figure 5 shows the trajectory over time of the second most
Significant contributor to deviation for batches 99, 92, and 96. For
Batch 99, it is clear that the oxygen levels (blue line) dipped below
theminimum required (green line) quite early in the process, around
20 h, which may have caused the penicillin to be out of the desired
specification. This is a matter of concern and could be a key area to
investigate for quality improvement. For Batch 92, the oxygen levels
slightly exceeded the golden batch’s maximum limit (red line) for a
brief period at around 160 h. However, the deviation was minor and
did not majorly impact the batch’s overall quality. Similarly, for
Batch 96, the base flow rate remained mostly within the acceptable
range defined by the golden batch, indicating that the process was
well-controlled with respect to the base flow rate levels.

Since Batches 92 and 96 showed deviations that were mostly within
the target range for their second most significant variable, it suggests
that the production team should prioritize their efforts on investigating
and optimizing the most significant contributing factor.

The above analysis uses a golden batch profile to investigate
deviations in problematic batches 92, 99, and the healthy batch 96.
Batch 99 deviates significantly early on, while Batch 92 shows a later
but still considerable deviation. The healthy batch 96 exhibits the
least deviation. Key contributors are identified for each batch, and
the trajectory over time reveals critical points. Focusing on the most
significant contributors is recommended for process improvement,
with batches 92 and 96 showing deviations mostly within the target
range for their second most significant variable.

4.4 Comparison with the existing methods

In Table 1, we list the strengths and limitations of current RCA
methods. This section provides deeper dive in comparing Statistical
Process Control (SPC) and Principal Component Analysis (PCA)
methods with our solution (Gunther et al., 2007; Goldrick, et al.,
2019; Duran-Villalobos, et al., 2020; Banner et al., 2021; Goldrick
et al., 2014; Nomikos and MacGregor, 1995).

In the batch processing industry, analyzing and determining
anomalies in a batch is a long and redundant process, especially
executed manually and with significant gaps between test points.
These anomaly detection processes rely on PCA-based Hotelling
(T2) and Squared Prediction Error (SPE, also known as Q),
comparing these KPIs with predetermined thresholds to detect
anomalies during the batch process (Gunther et al., 2006, 2007;
Goldrick, et al., 2019; Duran-Villalobos, et al., 2020). However, those
approaches tend to produce some false positives and false negatives,
which reduces anomaly detection accuracy (Gunther et al., 2007;
Duran-Villalobos, et al., 2020). These limitations, along with the
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complexity of their method, made it challenging to explain their
model results to operators for root cause analysis.

In contrast, our proposed methodology, centered around the
golden batch, offers unique strengths. By aggregating around
multiple good batches to identify the golden batch profile, we
create a representative profile of the normal batch process and
transparency into the analytical processes. Additionally, by using
operator-defined CQAs and CPPs, normalizing the data, and
calculating deviations, we provide only relevant insights that can
quickly help operators identify the root cause of faults in the batch
process. Finally, we calculate the contribution from each parameter
to the calculated deviation, and demonstrate the significance of
CPPs in root cause analysis.

5 Conclusion

The paper introduces a comprehensive methodology centered
around the Golden Batch Profile, serving as a benchmark for

identifying deviations and root causes in subsequent industrial
batches. This involves defining time series for CQAs and CPPs,
normalizing the data, and calculating deviations. The contribution
of each parameter to the deviation is analyzed, emphasizing the
significance of CPPs in root cause analysis. The detailed root cause
analysis method provides transparency into the analytical tools and
processes. Additionally, the integration of an innovative data-driven
golden batchmodel and automated root cause analysis is highlighted
for its potential to significantly reduce manual process time. The
automated calculation of top contributions of deviation, especially in
cases of the loss of a critical quality attribute, proves valuable.
Moreover, the utilization of deviation of critical process
parameters for anomaly detection expedites root cause
identification, pinpointing where, when, and how the root cause
occurs occurred.

The paper offers a robust approach for analyzing industrial
batch processes, utilizing innovative concepts, and demonstrating
effectiveness through the application to the IndPenSim dataset. By
introducing golden batch modeling and leveraging advanced

FIGURE 5
Analysis of second most Significant contributor to deviations over time for penicillin production batches 99, 92, and 96.
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analytical techniques, we contribute to the ongoing efforts to
enhance the reliability and efficiency of bioprocess monitoring
and anomaly correction.

Although this research is based on rigorously-designed and well-
controlled simulated data (Goldrick, et al., 2019) to establish the
initial foundational understanding, we fully recognize the
importance of validating our approach with real-world data,
therefore, we are in the process of securing partnerships with
industry collaborators to obtain real customer datasets. In the
future work, we will carry out comprehensive experimental tests
with non-simulated data and verify our method for real-world
scenarios. We will publish these results in subsequent studies,
providing a comprehensive evaluation of our method’s
performance in practical applications.

Finally, in this work, we highlighted a simplistic approach of
truncating the batch duration outside the batch duration with the
highest frequency to bring batches into alignment before applying our
proposed model. While this approach proved sufficient in our study, in
future research we intend to investigate more established batch
alignment methodologies such as Dynamic Time Warping (DTW)
and Indicator Variable techniques (Brunner, et al., 2021; Chin-Chia
Michael Yeh et al., 2019). DTW expands, contracts, or translates the
time axis of the datasets in such a way that the shape of the variable
trajectory is largely preserved, landmarks coincide in time and all
datasets have a uniform number of measuring points. On the other
hand, Indicator Variable techniques replace the time scale with an
alternative scale, the indicator variable. This indicator variable can be
either a real (physical) process variable or an estimated process progress,
often referred to as a maturity index or percentage of completion.
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