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Addressing the challenges of data scarcity and privacy, synthetic data generation
offers an innovative solution that advances manufacturing assembly operations
and data analytics. Serving as a viable alternative, it enables manufacturers to
leverage a broader and more diverse range of machine learning models by
incorporating the creation of artificial data points for training and evaluation.
Current methods lack generalizable framework for researchers to follow and
solve these issues. The development of synthetic data sets, however, canmake up
for missing samples and enable researchers to understand existing issues within
the manufacturing process and create data-driven tools for reducing
manufacturing costs. This paper systematically reviews both discrete and
continuous manufacturing process data types with their applicable synthetic
generation techniques. The proposed framework entails four main stages: Data
collection, pre-processing, synthetic data generation, and evaluation. To validate
the framework’s efficacy, a case study leveraging synthetic data enabled an
exploration of complex defect classification challenges in the packaging
process. The results show enhanced prediction accuracy and provide a
detailed comparative analysis of various synthetic data strategies. This paper
concludes by highlighting our framework’s transformative potential for
researchers, educators, and practitioners and provides scalable guidance to
solve the data challenges in the current manufacturing sector.
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1 Introduction

The convergence of digitization, automation, and the Internet of Things (IoT) under the
umbrella of Industry 4.0 continues to influence the evolution of modern manufacturing.
Having the right data at the right time is still a significant challenge for manufacturers
seeking to enhance their decision-making processes (Whitley, 2022). The global synthetic
data generation market, valued at $168.9 million between 2021 and 2022, is anticipated to
reach $3.5 billion by 2031, reflecting an impressive growth rate of 35.8% (Shrawanty, 2022;
Research, 2023). Recognizing this remarkable opportunity and necessity, various industries
have integrated data-driven applications, propelling foundational research towards
synthetic data. Many studies, for instance, utilize synthetic data to enhance
manufacturing processes, including process monitoring (Fecker et al., 2013), quality
inspection (Nguyen et al., 2022), production scheduling (Andres et al., 2021), and
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process optimization (Apornak et al., 2021). Despite considerable
progress in enhancing production efficiency, reducing waste, and
improving product quality, notable challenges remain in generating
synthetic data for the development and validation of innovative
assembly models and algorithms, particularly with real-world
production data (Tao et al., 2018). Therefore, there is a
significant need for the development of novel, data-driven
applications, and an expansion of the utilization of artificial
intelligence in manufacturing processes.

Having a large, accurate, and reliable data repository is crucial
for scaling up the production system or conducting large-scale
simulations. However, it often leads to challenges such as data
scarcity, costs, quality, and proprietary constraints (Gao et al.,
2020). Generating synthetic data for manufacturing assembly
systems proves challenging due to the complexity, realism, size,
and cost considerations of these systems (Gao et al., 2020; Mubarak
et al., 2020). Creating a synthetic data generator can address these
difficulties by providing flexible solutions for generating test
instances (Mubarak et al., 2020). In addition, the process of
generating synthetic data demands a thorough understanding of
process mechanics and physics, along with substantial
computational resources. The use of incomplete or inaccurate
data can introduce bias, degrade model performance, and impede
both collaboration and innovation. Nevertheless, synthetic data,
offering publicly accessible variations in manufacturing assembly
processes (Tao et al., 2018; Mubarak et al., 2020), emerges as a potent
solution to these obstacles, accurately reflecting authentic
production patterns.

Enhancing the accuracy and utility of synthetic data in
manufacturing assembly processes entails addressing various
challenges. Current models have difficulty representing real-world
production processes accurately. Furthermore, there is a significant
knowledge gap regarding high-quality synthetic data generation,

despite its critical role in producing more realistic data. The absence
of a standardized method for the validation and testing of synthetic
data also constitutes a barrier, inhibiting the comparison of different
synthetic data generation methods. A final key challenge lies in the
need for more concentrated research into identifying and mitigating
biases in synthetic data generation, given its significant potential to
boost data accuracy and reliability. These multifaceted issues inspire
a set of research questions:

• What are the most effective methods for generating synthetic
data in production systems?

• How can an effective framework be designed for the
production, validation, and testing of synthetic data sets to
support Industry 4.0 practices?

• How can the proposed framework be implemented through a
case study to assess the effectiveness of synthetic data across
various performance trade-offs?

By addressing these research questions, this paper begins by
examining the existing literature on synthetic data generation in
manufacturing assembly systems and presents a framework for
generating synthetic data that simulates a variety of production
scenarios. The proposed framework provides a wide array of
production scenarios, proving beneficial for researchers,
educators, and industry practitioners. This work enhances the
design and evaluation of synthetic data generation, and aids in
assembly systems transformation through data-driven approaches,
thereby providing substantial benefits to researchers, educators, and
industry practitioners.

The rest of the paper is organized as follows: Section 2 presents a
systematic review of synthetic data generation, encapsulating the
current state-of-the-art approaches. Section 5 outlines a
comprehensive framework for generating synthetic data,

FIGURE 1
Systematic review search process.
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elaborating on data types and applicable synthetic data techniques.
Section 6 showcases a case study utilizing the proposed framework
and analyzed results. Lastly, Section 7 provides an overview of
potential future research directions in synthetic data generation
within the manufacturing domain.

2 Systematic review

Synthetic data generation plays a vital role in manufacturing,
fostering innovation and process optimization while safeguarding
data privacy. It facilitates diverse scenario simulations, empowering
predictive maintenance, and bolstering quality control. Importantly,
this approach trains machine learning models without risking
sensitive information and remedies real-world data’s limitations.
Consequently, synthetic data generation enhances efficiency,
reduces costs, and bolsters competitiveness—key components for
Industry 4.0 success.

2.1 Literature search and selection process

The purpose of this section is to narrow down the related
literature regarding synthetic data generation in assembly
production, as depicted in Figure 1. Various databases (e.g., Web
of Science and Google Scholar) were utilized as a resource for
discovering relevant papers. Initially, the keywords “Synthetic
Data” AND “Generation” AND (“Manufacturing” OR

“Production”) were used, yielding 35,400 articles. Refining the
search to focus specifically on manufacturing, unrelated articles
were eliminated. This yielded 10,600 articles primarily about
manufacturing, a field that employs diverse techniques and
equipment for product creation, including phases like design,
engineering, prototyping, and testing (Blau et al., 1976). By
excluding keywords not associated with production—a
comprehensive term encompassing all activities related to goods
or services creation—the results were further refined to articles
specific to the research topic. This process led to a greater
understanding of synthetic data applications in assembly
processes. Incorporating the keyword “Assembly Line” refined
the search to 309 relevant articles. After assessing titles for
duplication and screening abstracts for their relevance, a total of
61 pivotal papers were identified. These were divided into two
categories: 33 papers on synthetic data generation and 28 on
the application of synthetic data in research. The first category
revolves around the creation of simulated data sets mirroring
real-world data, while the second category exploits synthetic data
for experimental and analytical purposes, offering an insightful
framework to comprehend the diverse applications of synthetic
data in research.

2.2 Synthetic data generation methods

Upon reviewing 61 papers, the studies, organized in Table 1, can
be classified into two primary categories. Two distinct topics for

TABLE 1 Literature on synthetic data generation.

Type of
data

Synthetic data generation method Application of manufacturing

Discrete Binary ADASYN Han et al. (2019), Random Sampling Kim et al. (2020),
Digital Twin Simulation Ademujimi and Prabhu (2022), GMM
Fecker et al. (2013), SMOTE Syafrudin et al. (2018)

Quality Control Han et al. (2019); Kim et al. (2020); Ademujimi and
Prabhu (2022), Syafrudin et al. (2018); Fecker et al. (2013)

2D
coordinates

GANs Sibona and Indri (2021) Human Robot Collaboration Sibona and Indri (2021)

Point-cloud IPS cable simulation and Blender Nguyen et al. (2022) Quality Control (Automated optical inspection) Nguyen et al. (2022)

Multi-class Simufact additive software Biczó et al. (2021) Quality Control Biczó et al. (2021)

Time-series By varying parameters Laxman et al. (2007); Andres et al. (2021),
GANs Malekzadeh et al. (2017), Promodel-PC simulation Bikes et al.
(1994), Simul8 simulation Guner et al. (2016), SIMIO simulation
Sisca et al. (2015), Fiasché et al. (2016), Hidden Markov Models
Mubarak et al. (2020), Simpy Library Martin et al. (2020), Virtual
Factory Prototype Jain et al. (2018), Taguchi simulation Apornak
et al. (2021), and Wiener Process, Gaussian Noise and by varying
standard deviation Cai et al. (2021)

Quality Control Laxman et al. (2007), Production Scheduling Andres
et al. (2021), Activity Recognition Malekzadeh et al. (2017),
Component Delivery Bikes et al. (1994), Preventive Maintenance
Guner et al. (2016), Production Planning Sisca et al. (2015); Fiasché
et al. (2016), Pipe-Spooling Mubarak et al. (2020), Quality Control
Martin et al. (2020), Cycle-Time estimation Jain et al. (2018), Process
Optimization Apornak et al. (2021), Stream Processing Cai et al.
(2021)

Continuous Image Unity 3D and Revit software Zheng et al. (2020), Unity 3D and CAD
models Lai et al. (2020); Kohtala and Steinert (2021), Domain
Randomization Grappiolo et al. (2021), Geometric transformations
de la Rosa et al. (2022), By varying levels of environmental noise
Sikora et al. (2021), Through rotating and modifying the colors of the
images Singh et al. (2020), GANs Qian et al. (2022), and Blender
software and Domain randomization Ameperosa and Bhounsule
(2020), Blender software Maliks and Kadikis (2021)

Process Optimization Zheng et al. (2020) Increasing Productivity Lai
et al. (2020), Quality Control de la Rosa et al. (2022); Sikora et al.
(2021); Ameperosa and Bhounsule (2020); Maliks and Kadikis (2021),
Production Monitoring Kohtala and Steinert (2021), Operator
Guidance Grappiolo et al. (2021), Braille Display Singh et al. (2020),
Industrial Internet of Things Qian et al. (2022)

3D image Ksim9 Rio-Torto et al. (2021), Unreal Engine4 Outón et al. (2021) Quality Control Rio-Torto et al. (2021), Autonomous industrial
mobile manipulator Outón et al. (2021)

Video GANs da Silva et al. (2021) Defect detection da Silva et al. (2021)
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synthetic data generation are covered in these papers: physical
simulations and numerical modeling.

2.2.1 Physical simulation
Physical simulations, gaining increasing popularity in the

manufacturing and assembly domain, leverage mathematical
models to replicate real-world phenomena. This provides a
platform for researchers to generate synthetic data that faithfully
mirrors the system under study. By operating simulations under
varied parameters and configurations, researchers can generate
synthetic data conducive to the testing and refinement of assembly
processes, ultimately enhancing efficiency and productivity.

Recent years have seen an increasing use of physical simulations
to generate synthetic data for manufacturing and assembly
applications. These include the use of digital twin models for
fault diagnostics (Ademujimi and Prabhu, 2022) and ProModel-
PC simulation software for assembly system analysis (Bikes et al.,
1994). Data analytics approaches have also been compared using
simulation-based synthetic data (Jain et al., 2018), and machine
learning methods have been employed to predict additive
manufacturing process distortion (Biczó et al., 2021).

Synthetic data has found diverse applications such as
multispectral data classification in plastic bottle sorting (Maliks
and Kadikis, 2021), and autonomous navigation in unstructured
industrial environments using Unreal Engine 4 (Outón et al., 2021).
Virtual environments like ViTroVo have been employed for in vitro
assembly search (Grappiolo et al., 2021) and virtual prototyping has
been utilized for detecting modules in modular integrated
construction (Zheng et al., 2020).

Various research has used synthetic data generated from
discrete-event simulation models to develop hybrid models for
aggregate production planning (Sisca et al., 2015) and solve
flexible flow-shop scheduling problems (Apornak et al., 2021).
The same technique has also helped develop decision support
systems for plant-level maintenance (Guner et al., 2016).

In deep learning applications, synthetic data has been used to
train convolutional neural networks for quality control (Sikora et al.,
2021) and enable deep learning in automotive wiring harness
manufacturing (Nguyen et al., 2022). It has also been used in a
hierarchical approach for automatic quality inspection in the
automotive industry (Rio-Torto et al., 2021) and to train deep
learning models in a smart augmented reality instructional
system for mechanical assembly (Lai et al., 2020).

While the use of physical simulations for generating synthetic
data and optimizing assembly processes requires significant
expertise and resources, the approach can lead to considerable
improvements in manufacturing and assembly industries.

2.2.2 Numerical modeling
The recent upsurge in generating synthetic data to facilitate

machine learning applications in industrial settings represents a
promising development. The synthetic data, created by simulating
real-world conditions on assembly systems via data-driven
methodologies, enables training and evaluation of machine
learning models, optimizes their performance, and mitigates the
time and cost involved in securing labeled data.

Studies have showcased synthetic data generation’s efficacy in
enhancing machine learning models’ performance by balancing data

sets and enriching training data (Han et al., 2019; Kim et al., 2020).
Synthetic data sets have also been used to evaluate algorithm and
model performance (Laxman et al., 2007; Andres et al., 2021). To
complement limited real-world data for model training, a
Generative Adversarial Network (GAN) is utilized for synthetic
data generation, improving defect detection in models (da Silva
et al., 2021).

Synthetic data can optimize human-robot collaborative systems
(Sibona and Indri, 2021) by training models to anticipate collision
probability and optimize robot motion. Furthermore, synthetic data
generation can economize memory usage for stream join operations
(Cai et al., 2021), support process improvement and optimization
efforts in various industries (Martin et al., 2020), and create balanced
data sets for detecting abnormal events in assembly operations
(Syafrudin et al., 2018).

Overall, numerical models for generating synthetic data have
become instrumental across various research domains. These
techniques provide a holistic understanding of complex systems
and facilitate training and assessment of machine learning
algorithms. Despite their distinct advantages and challenges, both
physical simulations and data-driven algorithms are pivotal in
generating synthetic data.

3 Data challenges

This study, synthesizing insights from physical simulations and
numerical modeling literature, identifies four key challenges in
synthetic data generation for manufacturing: Firstly, data scarcity
and high costs of collection and labeling, a significant hurdle for
small to medium-sized enterprises. Secondly, quality control issues,
particularly in ensuring realism and adherence to standards in
synthetic data. Thirdly, the imperative of safeguarding sensitive
manufacturing data, highlighting the need for secure data
connectivity. Lastly, the high cost of collecting substantial real
data often becomes a barrier for researchers implementing data-
drivenmodels. These challenges, crucial in the context of generating,
storing, and analyzing unstructured data, such as 2D and 3D images,
underline the importance of addressing them for the successful
development and deployment of robust, data-driven industrial
applications.

3.1 Data scarcity

The challenge of data scarcity significantly hampers the
generation of accurate synthetic data for assembly processes
(Sibona and Indri, 2021; Ademujimi and Prabhu, 2022). The
problem is often caused by a lack of data on specific production
scenarios, unique worker behaviors, or a lack of quality labeled data
required to construct supervised learning models. Solutions to this
issue may include identifying and prioritizing critical data needs,
installing additional sensors, fostering collaboration with other
organizations, or using unsupervised learning techniques or
transfer learning methods for labeling. By addressing data
scarcity, the accuracy of synthetic data can be enhanced to better
reflect actual assembly processes, thereby understanding
manufacturing operations.
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3.2 Data quality

Maintaining data quality is imperative to produce dependable
synthetic data for assembly systems, as this data is instrumental in
training machine learning models. Factors influencing source
data quality include incomplete data, data errors, biases,
and data normalization impact (Tayi and Ballou, 1998).
Mismanagement of these factors can result in inaccuracies in
synthetic data, potentially leading to process control challenges
and diminished efficiency. Hence, it is valuable to utilize precise,
comprehensive, and representative source data, possibly requiring
data cleansing, standardization, and augmentation techniques.
Moreover, machine learning models should be resilient to errors
and biases to yield accurate and reliable synthetic data. The
inherent biases in the data used for training models can
significantly influence the outcomes. When data reflects certain
predispositions, the resulting models may perpetuate and amplify
these biases, leading to skewed or unfair results. It is crucial to
recognize and address these biases to ensure the models developed
are fair and unbiased.

3.3 Proprietary data

The complexity of creating synthetic data to augment
manufacturing processes often increases when data is spread
across various departments or companies (Esposito et al., 2016).
Entities may hesitate to disclose proprietary information or be
constrained by ethical and legal boundaries. To navigate these
obstacles, it is beneficial to establish explicit guidelines on data
ownership, access, and usage, possibly through data-sharing
agreements or ethical directives. Employing methods like data
anonymization or differential privacy can help preserve privacy
while maintaining the synthetic data quality. Tackling these issues is
essential for successfully generating synthetic data that accurately
reflects real assembly processes.

3.4 Data costs

The generation of synthetic data in manufacturing can be a
significant financial undertaking, requiring extensive computational
resources and specialized expertise. This process involves the
development of a large data repository through the use of
advanced simulation algorithms and high-performance computing,
both of which come with substantial operational costs (Koren et al.,
1999). Particularly for smaller manufacturing organizations with
constrained budgets, these costs may be prohibitive. Furthermore,
the financial implications can escalate due to the requirement to store,
manage, and process the vast quantities of data produced.

In sum, the data used in model training encompasses a variety of
characteristics and patterns. Recognizing these hidden patterns in
real data enables the creation of high-quality synthetic data, assisting
researchers in developing more data-driven models for targeted
analysis and model advancement.

4 Synthetic data generation in
assembly: data types and opportunities

To harness the unique characteristics of assembly systems for
streamlined manufacturing processes, an exhaustive overview of
synthetic data generation is provided in Table 2. This resource
enables stakeholders to systematically assess and compare a range of
strategies and opportunities. The table summarizes examples,
methods, and potential avenues for growth, supported by a
comprehensive classification of the collected data types.

4.1 Multidimensional importance of
synthetic data

This section reviews the applications of synthetic data in
experimental research across various disciplines. As synthetic data

TABLE 2 Examples, techniques, and opportunities for synthetic data generation across various data types in assembly applications.

Type of
data

Example in the assembly
station

Synthetic data generation
method

Opportunities

Discrete Binary Presence of the operator, Station is
active or not

Random sampling, SMOTE, ADASYN, ROS,
SLSMOTE, BLSMOTE, GMMs

Assessing assembly line uptimes, downtimes, and
process reliability

Image Inventory images, Operator’s image,
Final product image

GANs, VAEs, StyleGAN, DBNs, CAE,
PixelCNN, Generative Flow Networks

Inventory component identification, operator identity
verification, and quality control

Point cloud Human positions, Robotic arm
equipped with machine vision
camera

PointNetGAN, DCGANs, VAE-GAN, VAEs,
Autoencoders

Object detection, human-robot collaboration for
obstacle detection, and assembly phase classification

Continuous Time-series Assembly time, Production count,
Biomedical data (EEG data,
Wristband data)

TTSGANs, Hidden Markov Model, ARIMA,
LSTM, RNN, VAE, CGAN, DCGAN, VAE,
GMM, RNNs

Cycle time acquisition, production efficiency tracking,
correlation assessment with various data types

3D Image
(RGB + D)

Final product images GANs, VAEs, CNNs Quantify the number of assembled parts by the
operator and assess quality deficiencies

Video Operators’ interactions GANs, RVAE, CVAE Operator identity verification, operator count
determination in the assembly process, operator’s
emotional state, and object detection
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continues to gain prominence across various domains, it delivers
significant advantages such as cost reduction, increased accessibility,
and reinforced privacy protection, thereby underscoring its pivotal role
in contemporary research paradigms. Its utilization is evident in the
discovery of causal relationships in manufacturing processes
(Marazopoulou et al., 2016), predictive maintenance training in
digital twins (Mihai et al., 2021), automotive manufacturing
applications (Luckow et al., 2018), anomaly detection (Shetve et al.,
2021), and production scheduling optimization (Georgiadis et al., 2022).

Its role in the realm of big data analytics for future smart
factories has been highlighted (Gao et al., 2020), along with its
potential for improving quality and efficiency in the casting industry
(Sun et al., 2021). Other studies focus on the use of synthetic data for
scene text recognition (Zhang et al., 2021), performance
enhancement of industrial systems (Bécue et al., 2020), object
recognition and tracking (Godil et al., 2013), and harmonizing
digital twins (Cimino et al., 2021).

The value of synthetic data in exploring CAD models
(Ramanujan and Bernstein, 2018), training digital twins (Mihai
et al., 2022), and empirical evaluation of optimization algorithms
(Rardin and Uzsoy, 2001) has been underscored. Its significance is
evident in industrial machine learning applications (Bertolini et al.,
2021) and in testing algorithms’ ability to discover injective episodes
(Achar et al., 2012).

Further, synthetic data proves crucial in the creation of digital
twins (Thelen et al., 2022) and implementing deep learning
techniques in smart manufacturing (Xu et al., 2022). It is also
beneficial in the simulation of blockchain-based digital twins
(Suhail et al., 2022) and improving hardware trust and assurance
(Botero et al., 2021).

Researchers also propose the use of GANs to generate synthetic
data for the Industrial Internet of Things (Qian et al., 2022) and
infrastructure maintenance (Mahmoodian et al., 2022).
Additionally, synthetic data aids in statistical quality control
procedures (Flores et al., 2021), machine creativity (van Doorn
et al., 2020), and factor misallocation analysis in firms (Asturias
and Rossbach, 2023).

Several studies successfully trained models using existing
synthetic data sets or simulated data, negating the need for
custom synthetic data generation. The absence of sufficient
training data for the synthetic data generation methods used by
these researchers raises a number of concerns about the potential
quality and validity of the produced data. The prevalent lack of
transparency, compounded by potential data quality concerns,
creates a widespread need for a standardized framework for
synthetic data generation and evaluation.

5 Data generation framework

This section introduces a framework designed for generating
synthetic data in assembly processes, crucial for analysis and
prediction tasks. Figure 2 provides a visual representation of this
framework. The framework details several techniques at each step,
assisting researchers in creating high-quality synthetic data for their
projects. The process initiates with 1) data collection from embedded
sensors in assembly systems, followed by thorough data cleaning to
correct errors. This step ensures the integrity and reliability of the initial
dataset. Next, 2) data preprocessing techniques are applied to minimize
noise and outliers, thereby enhancing the real data’s quality. An

FIGURE 2
Synthetic data generation framework.
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example of this is the exploratory data analysis phase, where raw
data undergoes cleansing to remove duplicate entries, ensuring
dataset uniqueness and accuracy. Subsequently, 3) depending on
the target features’ types, various synthetic data generation
techniques are selected and assessed. For instance, the
Generative Adversarial Network (GAN) model is a popular
choice in the literature for generating synthetic data points. 4)
The next phase involves evaluating the synthetic data’s quality,
focusing on its realism and similarity to the original data. For
example, synthetic images produced by a GANmodel are assessed
against real images using the Structural Similarity Index (SSI),
which quantifies visual similarity. Moreover, 5) the framework
includes a validation step to address potential data biases and
fairness issues, which are common in many datasets. The aim
here is to counteract the amplification of biases or unfairness in
the collected dataset. This is particularly important as overrepresentation
of certain features or patterns due to training data imbalances can lead to
discrepancies in model performance. Such biases can result in
misclassifications or inaccurate predictions in real-world applications.
Finally, 6) the last step involves preparing and amalgamating both
synthetic and real data for downstream analysis. For instance, blending
synthetic and real images enriches the dataset, enabling the development
of machine learning models with optimal performance. These models
benefit from exposure to a broader range of scenarios and conditions,
which enhances their generalization capabilities and interpretation of
new, unseen data. Iterating through these steps, this framework
effectively addresses the challenges in dataset generation for various
assembly systems and outlines strategies to enhance the quality of
synthetic data.

5.1 Step 1: data collection

The development of synthetic data accurately mirroring real-
world assembly data requires careful data source selection, drawing
from various inputs such as sensors and cameras. To generate high-
quality synthetic data, which closely emulates the original dataset,
precision and reliability of the gathered data must be ensured.
Considerations such as data collection duration and frequency,
along with strategic sensor and equipment placement,
significantly impact the accuracy and dependability of the data.
Rigorous evaluation of these factors is crucial to yield synthetic data
that faithfully represents the original, as overlooking these aspects
may introduce errors with potentially detrimental effects on the
synthetic data output (Luckow et al., 2018).

5.2 Step 2: data pre-processing

Following data collection in the synthetic data generation
framework for assembly systems, the subsequent step is pre-
processing. This phase refines and formats the collected data,
ensuring its suitability for synthesis, which is pivotal for
maintaining data precision and authenticity. Pre-processing
methodologies vary based on the nature of the data and typically
encompass data cleaning, transformation, normalization, feature
selection, and integration. These processes handle the removal of
missing or flawed data, conversion into a usable format,

standardization for comparative purposes, relevancy-based feature
selection, and integration of data from various sources into a
comprehensive format for analysis. Applying suitable pre-
processing techniques, tailored to the data type and research
goals, improves the quality of the synthetic data, ensuring its
accuracy and reliability.

5.3 Step 3: synthetic data generation

Leveraging data obtained from assembly systems can furnish
useful insights into the efficiency and performance of the
manufacturing process. Various data types such as binary data,
point-cloud data, biomedical data, image data, time-series data, 3D
image data, and video data can be gathered and scrutinized to refine
the assembly process.

5.4 Step 4: evaluation

Evaluating the quality and relevance of synthetic data for
assembly processes is crucial before its use in analysis or model
development to ensure it can reliably replace the original data. This
evaluation largely concentrates on two factors: fidelity, indicating
how closely the synthetic data resembles the original, and utility,
demonstrating the effectiveness of the synthetic data in intended
applications.

5.4.1 Fidelity
Fidelity, in the context of synthetic data, refers to the degree to

which the synthetic data replicates or mirrors the original, actual
data. This is a critical factor, particularly in machine learning
applications, where synthetic data is often used to augment
training sets or generate additional data sets that are statistically
similar to the original ones (Figueira and Vaz, 2022). The
importance of fidelity lies in its influence on the performance of
models. If synthetic data does not accurately reflect the
characteristics of the actual data, models trained on such
synthetic data might underperform when tested against the
original data. Thus, ensuring high fidelity in synthetic data is
essential to maintain model accuracy and robustness. As a
practical matter, several techniques may be combined, such as
visual examinations, statistical tests, or domain-specific metrics,
to assess the authenticity of synthetic data.

When assessing synthetic data generation, the concepts of
fidelity and reliability are intricately interconnected. Synthetic
data reliability can be assessed through various methods. One
approach uses statistical tests, such as Kolmogorov-Smirnov and
Anderson-Darling (Santos et al., 2021), to compare synthetic
and real data properties, with matching distributions suggesting
synthetic data dependability. Another method involves training
models with synthetic data and evaluating them using original
data, often done in fields like speech recognition or image
classification using domain-specific metrics. Lastly, metrics
like the F1 score and ROC-AUC score can measure the
accuracy of downstream tasks by comparing the performance
of models trained on synthetic data with those trained on the
original data (Hand and Till, 2001). Equation (1) is employed to
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determine the Area Under the Curve (AUC) of a classifier
specifically designed for binary classification scenarios.

Â � S0 − n0 n0 + 1( )/2
n0n1

(1)

where n0 and n1 indicate the number of positive and negative
samples, respectively. S0 = ∑ri, where ri is the ist positive
example in the ranked list. High congruence in scores indicates
trustworthy synthetic data.

5.4.2 Utility
Assessing the utility of synthetic data, its applicability and

effectiveness in a specific context, is critical for its successful
deployment in applications like training machine learning models
(Khan et al., 2022). Various methods can be used to gauge synthetic
data’s utility, including:

• Similarity metrics: These allow comparisons between
synthetic and original data distributions using metrics like
mean squared error or correlation coefficient.

• Classification accuracy: Training a classifier on original data
and testing it on synthetic data can validate the utility of the
synthetic data, provided the accuracy levels are similar.

• Regression error: Analogously, training a regression model on
original data and testing it on synthetic data allows for a
measure of utility—if the error levels are comparable, the
synthetic data’s utility is affirmed.

• Clustering: Similar groupings in synthetic and original data
following clustering techniques signify comparable data
structures and relationships.

• Visual inspection: A subjective assessment of synthetic data
can establish whether it retains key features and characteristics
of the original data.

The utility of synthetic data can be evaluated using similarity
metrics, classification accuracy, regression error, clustering, and
visual inspection to ensure its adequacy for the intended purpose.

5.5 Step 5: assessing and addressing
potential biases

In addition to fidelity and utility, mitigating potential biases is
also crucial for enhancing the quality of synthetic data.

• Modify training data and re-generate synthetic data: By
modifying the training data used for synthetic data
generation and subsequently re-generating the data, this
strategy can help reduce biases present in the original
training data, which may have been transferred to the
synthetic data. For instance, if synthetic data is biased
towards a certain group, broadening the range of examples
in the training data can help to reduce this bias.

• Adjust the synthetic data generation algorithm: This strategy
involves adjusting the algorithm that generates synthetic data
to better align with the target outcome, then re-generating the
data. If the synthetic data’s fidelity is insufficient, you can fine-
tune the algorithm to better mirror the original data. If the

utility of the synthetic data is lacking, enhancing the algorithm
to incorporate more essential features or variables can increase
model accuracy.

• Apply post-processing on synthetic data: This strategy
involves modifying the synthetic data post-generation to
address any identified issues. Techniques such as data
smoothing or imputation can improve the quality, utility,
and confidentiality of the synthetic data if its fidelity is
found to be inadequate.

5.6 Step 6: downstream analysis

Generating high-quality synthetic data through an iterative
evaluation process allows for the leveraging of both synthetic and
real datasets in downstream analysis. Incorporating varying ratios of
these data types enables the development of more comprehensive
machine learning models, expanding exploration of the solution
space. Such integration supports the study of foundationmodels that
demand large training datasets, ultimately yielding more accurate
and robust results. Increased utilization of synthetic data also
mitigates the need for labor-intensive tasks and costly manual
data collection processes.

6 Case study

This section presents a use-case study employing high-quality
synthetic data, generated through the iterative evaluation process
shown in Figure 2, and combines this data with real datasets for
subsequent analysis. The integration of synthetic and real data
facilitates the training of more comprehensive machine learning
models, expanding the scope of predictive capabilities. This
combined approach is particularly beneficial for large models that
require extensive training data sets, leading to improved accuracy
and robustness in the results. Moreover, the increased utilization of
synthetic data can alleviate the burden of labor-intensive tasks,
thereby reducing the necessity for costly and time-consuming
manual data collection processes.

6.1 Dataset

In this proposed case study, the Parts Manufacturing
Industry Dataset1 sourced from Kaggle was utilized. The
dataset encompasses data on 500 parts manufactured by
20 operators within a designated timeframe, featuring
parameters such as length, width, height, and operator ID, as
illustrated in Figure 3. The normal variables of length, width, and
height define the dimensions of manufacturing parts designed for
packaging purposes. This dataset exemplifies our synthetic data
generation framework’s ability to classify dimensions of parts for
potential anomalies.

1 https://www.kaggle.com/datasets/gabrielsantello/parts-manufacturing-

industry-dataset
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6.2 Data pre-processing

We conduct an exploratory data analysis to streamline the
manufacturing dataset by eliminating unnecessary features and
identifying outliers for a subsequent classification task. The
initial step involves discarding irrelevant attributes such as
“Item_No” and “Operator”. We define outliers as data points
that fall outside the 95% confidence interval, under the
presumption that they significantly deviate from standard
manufacturing tolerances. Following this, we categorize each
data point as either “perfect” or “defective”, transforming our
task into a binary classification problem. Figure 4 illustrates the
distribution of dimensions, where parts deviating by more than
two standard deviations from the mean are marked as defective.
This approach effectively pinpoints anomalies and generates
labels for further classification analysis.

The predominant class is classified as “perfect,” comprising
480 samples (96%), while the ‘defective’ minority class
includes 20 samples (4%). O rectify this, synthetic data
generation was employed to even out the class distribution
to 50–50. This approach involves understanding the
distribution of the minority “defective” class distribution
and generating additional samples to enhance the robustness
of subsequent analysis.

6.3 Synthetic data generation

Following Figure 2’s subsequent step for synthetic data
generation, this section employs the techniques outlined in
Table 2 for binary classification. Methods like SMOTE,
ADASYN, ROS, BLSMOTE, SLSMOTE, and GMM generate
synthetic “defective” samples, with SMOTE and ADASYN
interpolating to augment the minority class—ADASYN
particularly for complex cases. ROSE leveraged diverse
resampling methodologies to generate synthetic samples for
the minority class. BLSMOTE and SLSMOTE targeted the
creation of synthetic samples for borderline instances between
minority and majority classes; BLSMOTE concentrated on
instances nearer to the majority class, while SLSMOTE
focused on those closer to the minority class. Lastly, GMM
created synthetic data by fitting the original data to a mixture
of Gaussian distributions and sampling from these distributions.
Through these methods, a balanced dataset was achieved via
synthetic data generation. For this evaluation, fidelity and utility
are used to identify the optimal method for generating synthetic
data for the manufacturing dataset.

6.4 Fidelity evaluation

To assess the fidelity of various synthetic data generation
techniques, accuracy, F-1 score, and ROC-AUC score were
employed as performance metrics, as illustrated in Table 3.

FIGURE 3
Samples of manufacturing parts with varying features.

FIGURE 4
Box plot distributions of manufacturing feature dimensions.
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To conduct a comparative evaluation, a logistic regression
model was utilized in two distinct scenarios, with
consideration given to its general assumptions. Initially, the
model was trained and validated on real data, serving as a
baseline. Subsequently, it was trained on synthetic data and
tested on real data, to demonstrate the model’s performance
under these conditions. The best model performance is
highlighted in bold.

Our findings indicated that the GMM outperformed other
synthetic data generation techniques, indicating high-quality
synthetic data that closely resembled real data. GMM’s
advantage lies in its flexibility to model intricate and non-
linear data distributions by combining multiple Gaussian
components. Unlike other techniques that rely on simple
heuristics or oversampling approaches, GMM leverages a
probabilistic modeling framework to learn the data
distribution and generate synthetic samples accordingly. This
allows GMM to generate data that better represents the original
data set, leading to improved performance in terms of accuracy,
F-1 score, and ROC-AUC score.

6.5 Utility evaluation

To evaluate the utility of GMM-generated synthetic data for
enhancing model precision, a random forest model with
stratified 10-fold cross-validation was employed. Three case
scenarios were conducted: 1) training and testing solely on real
data sets, 2) training on hybrid data sets and testing on real
data, and 3) training and testing on hybrid data sets. Model
performance was assessed using metrics such as accuracy,

precision, recall, F1 − score, and ROC − AUC score, as
detailed in Table 4. Equations (2)-(5) describes these metrics
as follows:

accuracy � TP + TN

TP + FN + TN + FP
(2)

precision � TP

TP + FP
(3)

recall � TP

TP + FN
(4)

F1 − score � TP

TP + 1
2 FP + FN( ) (5)

where TP (true positive) denotes the number of correctly classified
positive instances, TN (true negative) represents the number of
correctly classified negative instances, FP (false positive) is the count
of negative instances incorrectly classified as positive, and FN (false
negative) indicates the number of positive instances that are
misclassified as negative.

The results showed that the random forest model, when trained
and tested on real data, achieved high accuracy and precision but
lower recall, indicating missed positive cases. Training on a hybrid
dataset and testing on real data, the model excelled in accuracy,
precision, recall, F1-score, and ROC AUC score, showcasing
effective generalization and minority class identification. The
third scenario, trained and tested on hybrid data, also displayed
high performance across all metrics. These outcomes are anticipated
as the inclusion of synthetic data, generated from a GMM, adds
more information to train the model, naturally enhancing
performance. To maximize the benefits, it is advisable to
experiment with different ratios of synthetic to real data when
training for the most effective model performance.

TABLE 3 Fidelity comparison.

Train and test on real data Train and test on synthetic data

Accuracy F-1 score ROC-AUC score Accuracy F-1 score ROC-AUC score

SMOTE 0.97 0.98 0.75 0.91 0.95 0.72

ADASYN 0.97 0.98 0.75 0.91 0.95 0.72

ROS 0.97 0.98 0.75 0.91 0.95 0.72

BLSMOTE 0.97 0.98 0.75 0.93 0.97 0.81

SLSMOTE 0.97 0.98 0.75 0.91 0.95 0.72

GMM 0.97 0.98 0.75 0.95 0.95 0.96

TABLE 4 Utility comparison.

Train and test on real data Train on hybrid and test on real data Train and test on hybrid data

Accuracy 0.98 0.98 0.94

Precision 0.97 0.98 0.92

Recall 0.50 0.97 0.96

F1-score 0.67 0.97 0.94

ROC-AUC score 0.75 0.95 0.94
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7 Conclusion

This study presents a systematic review of synthetic data
generation techniques used in manufacturing systems,
delineating data challenges within the manufacturing
domain and corresponding data-driven techniques for creating
synthetic data for both discrete and continuous data types.
Based on these findings, a framework for generating synthetic
data in machine learning applications is proposed, which
includes mitigation strategies for data generation, quality
evaluation, and bias reduction. The practicality and
effectiveness of this framework is tested through a case study
that explores its application to imbalanced manufacturing
part data sets. A performance comparison, based on fidelity
and utility tests, illustrates the impact of incorporating
synthetic data alongside real data. Results indicate that
models trained on a hybrid data set and tested on real
data outperform those trained solely on real data. This
study, therefore, expands opportunities for researchers to
devise more data-driven approaches in manufacturing
applications.

Future work involves testing the framework in more
complex manufacturing scenarios, exploring novel
synthetic data techniques, and validating the framework
with real data from manufacturing assembly systems.
Additionally, investigating the potential of combining
synthetic and real data to enhance machine learning
model performance in assembly applications could
significantly benefit manufacturing productivity and
product quality.
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