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The digital twin (DT) concept plays a crucial role in Industry 4.0 and the
digitalization of manufacturing processes. A DT is a virtual representation of a
physical object, system, or process, designed to accurately reflect its real-world
counterpart. In manufacturing, existing process data are often incomplete and do
not qualify as a DT. However, with the help of specialized communication
frameworks and cheaper, easier-to-use sensors, it is possible to integrate the
existing manufacturing execution system (MES) and enterprise resource planning
(ERP) data with the missing data gathered from the shop floor to create a
comprehensive DT. In this paper, we present a digital shop floor decision
support system (DSS) for non-linear aluminum manufacturing production. The
system is split into five main components: digitization of shop floor orders;
merging and sorting of MES, ERP, and shop floor data; custom and genetic
optimization algorithms for the aging furnace production step; layout
construction mechanism for optimal placement and stacking of orders in the
furnace; and a user-friendly graphical user interface (GUI). The system’s
performance was evaluated through three tests. The first test measured the
efficiency of digitization, the second aimed to quantify time saved in finding
packets in the hall, and the last test measured the impact of the optimizer on
furnace productivity. The results revealed a 23.5% improvement in furnace
capacity, but limitations were identified due to usability and human intervention.
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1 Introduction

The current industrial production faces the challenge of manufacturing products “just in
time,” with the number of production steps and complexity constantly increasing (Lennon
Olsen and Tomlin, 2019; Habib et al., 2022). Depending on the product and the production
method, many production steps can be arranged in an arbitrary sequence or in a predefined
sequence combination. Customer requirements, the limitations of production sites, and the
increasing number of products in circulation are complicating the tasks of operators. For the
selected use case at Constellium, the aging furnaces represent a bottleneck in production,
making it crucial to optimize or increase its capacity.

This paper aims to demonstrate the creation of a digital twin (DT) for existing products
and processes, incorporating manufacturing requirements from the manufacturing
execution system (MES) and enterprise resource planning (ERP) system and optimizing
a specific production step through simulations. The decision support system (DSS) is
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dynamic, meaning it provides suggestions that the operator can
evaluate and adapt on a case-by-case basis (Zhang et al., 2022).

Digitalization has been identified as the main growth vector for
the future of industries worldwide (Marr, 2016). This led to the term
“Industry 4.0” being coined (Lasi et al., 2014), and it quickly gained
widespread popularity (Columbus, 2018). Separately, physical
duplicates have long been used to drive complex systems. In the
late 1960s, NASA’s Apollo program extensively used them for
training and also during the Apollo 13 mission’s dramatic
accident and return to Earth (David et al., 2018). Dr. Grieves
first presented the two notions together, expanded the concept,
and coined the term “digital twin” (Grieves, 2011; Grieves, 2016).

Because it is a relatively new and highly dynamic field, the
current definition of DT is still evolving (Negri et al., 2017; Aheleroff
et al., 2021). However, some key characteristics are undisputed:

1. There exists a physical system (PS) and its digital counterpart
(Shafto et al., 2010; Glaessgen and Stargel, 2012)

2. There exists a level of granularity in the DT representation
adequate with the application (Boschert and Rosen, 2016;
Schleich et al., 2017; Matthews, 2018)

3. There exists a bidirectional (Brenner and Hummel, 2017;
Deloitte, 2018; Madni et al., 2019) real-time association
(Uhlemann et al., 2017; Guivarch et al., 2019; Stavropoulos
and Papacharalampopoulos, 2022) between the PS and its DT

4. This real-time association endures throughout the life cycle of the
PS (Tuegel, 2012; Tao et al., 2018; Stavropoulos, 2022)

5. Multiple source sensors and operation data allow the DT to
constantly reflect the state of the PS, as best as possible (“The
Mirroring”) (Cai et al., 2017; Haag and Anderl, 2018; Trauer
et al., 2021)

6. Most importantly, the DT must include an intelligent agent able
to further understand and learn from the DT’s past and present
states. This agent is also able to reason, simulate, and predict
future states of the PS based on the stimuli of potential controls
and the physical environment of the system (Majumdar et al.,
2013; Nikolakis et al., 2019). This aims toward autonomy and
self-optimization of the system (Zhou et al., 2019)

7. Finally, the agent is able to feed optimal stimuli to the PS (Tao
et al., 2018; Pickl et al., 2019; Zhou et al., 2019)

A DT is, therefore, valuable, not because it exists as a digital
representation of the PS but owing to its existence as a whole:
encompassing cyber-physical systems, data, and most
importantly, its intelligent agent. As a result, DT has now
been identified as a top disruptive trend (Pettey, 2017) that
represents the largest opportunity for digitalization driving
Industry 4.0 (Gartner, 2022).

2 Methods

To bring a generic and reusable DT onto the shop floor, multiple
different problems need to be solved together. First, an appropriate
use case was evaluated and found within Constellium, a major
aluminum manufacturer for extruded aluminum products.

Aluminum extrusion components are essential in day-to-day
life. They are used in planes, trains, cars, and many more

applications. They help reduce the environmental impact of
transportation and many other applications due to the fact that
aluminum is a light, machinable but still strong and long-lasting
material. In total, there are about 23 steps in the production process
of aluminum extruded elements. In addition, aluminum has the
unique ability of being indefinitely recyclable.

The aging furnace production step was identified as critical and
has significant potential for optimization. To modify the physical
characteristics of the aluminum profiles, we should artificially age
the metal using a so-called aging furnace. The products stay inside
these furnaces between 5 and 24 h. This is the reason why there is a
multitude of furnaces on the shop floor. Smaller orders with a higher
frequency cannot be combined and placed within these furnaces
efficiently. Bottlenecks can, therefore, arise easily at this production
step. Figure 1A shows the active furnaces for the year 2018, including
the downtimes in between. The two big breaks around September at
furnaces 67 and 49 were identified as furnace maintenance. The
smaller gaps are weekends, and the even smaller breaks are
unloading/loading operations as well as downtime. The data from
2018 were taken and used to calculate optimum planning. The
loading and unloading operations were estimated to last 30 min. If
the furnaces were used in a quasi-optimal setting, the full workload
for 2018 could have been completed by September (Figure 1B).
Another identified problem is the communication between work
shifts.

To resolve the mentioned problems, the DSS is split into three
major components. Each contributes its part in creating a dynamic
production planning. First, the products on the shop floor must be
digitized and tracked in real-time. Second, the database created must
be enhanced with additional metadata from the ERP and MES
systems. Third, the optimizer can use this DT to run simulations to
create the quasi-optimal product combination and furnace filling at
a given time.

2.1 Shop floor digitization

To provide information about the packets on the shop floor that
are ready to be baked as well as their location, a pan-tilt-zoom (PTZ)
camera, as well as Lidar, were used. Overhead cranes were equipped
with multiple sensors facing the shop floor. Since the overhead
cranes are used to transport all the products, they are constantly in
use and perform a back-and-forth scan motion. The selected
overhead crane covers an area of 3,780 m2 at a height of 7.15 m.
Using this approach, the whole area was covered with only four
scanners instead of 88, which were theoretically necessary.

2.1.1 Product detection
The Lidar scanners were placed at a distance of 3.1 m from each

other. This ensured that no product could cast a shadow onto
another product without being covered by the next scanner. The
scanner placement must be analyzed and adapted in each
application case. It depends not only on the product to be
digitized but also on the field of view (FoV) of the used scanners.

The x location of the scanners is known, and the y-axis
(direction of the crane movement) can be read from the
overhead crane system itself. The products to be digitized can be
represented as boxes.
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The data from all the scanners are merged, and a point cloud of
the shop floor beneath is created. A noise filter algorithm runs in
three steps: cutting out the envelope of the noise, filtering outliers,
and, lastly, discriminating the points that are part of the ground
from other points. For outlier smoothing, a custom algorithm based
on a statistical approach is used.

Once the point cloud has been cleaned, a layer smoothing
algorithm is used to further remove noise in the different z-axis
layers. This algorithm is based on a statistical approach similar to
the outlier smoothing algorithm. With the help of the
aforementioned algorithms, ground plane and top product
planes could be located.

The object detection is then performed in three additional
steps: detecting planes with the random sample consensus
(RANSAC) method, converting the point cloud to a 2D
grayscale image for finally performing a bounding box
algorithm. The resulting data are stored as a JavaScript Object
Notation (JSON) object containing all x–y–z locations of the
packets within the sensor area.

2.1.2 Packet tracking
Since the overhead cranes perform a sweeping motion over

the shop floor and the FoV of the sensors is limited to a small
area, the temporal information needs to be combined to create a
complete shop floor product map. Once the packets are isolated,
the end of the packets will be detected to deduce the start and end
position of any packet. Due to the FoV problems of the scanners,
up to four products, depending on their size, can be stacked on
top of each other. The scanners do not recognize the subpackets,
but only the top plane.

This leads to another temporal condition to localize packets:
there can be multiple products at any given location on the store
floor. With each scan of the crane, the map is analyzed for each
detected package, and whether and with which probability one of the
following operations has taken place is determined:

• None: no change
• Insert: a new product has been added or an existing product
has been repositioned to another pile

• Stack: a product has been stacked on top of another one
• Remove: a product was removed
• Unstack: a product was removed from a stack

For each operation, there are one to four possible scenarios,
depending on whether there is already none, one, or multiple
packets on the shop floor. Using this algorithm, a map of the
store floor is created, which is continuously updated in real-time.

2.2 Optimization problem

Five containers, here the furnaces, of different capacity are available
to perform the aging process of the aluminum products. Each furnace
can be configured individually with a specific aging curve. These aging
curves, defined in terms of temperatures and durations, which we call
“recipes,” are preconfigured in the machine and can be selected by an
operator at the beginning of the process. On the other side of the
problem, we have a certain number of items, here the aluminum
products, which need to be aged in the furnaces with a specific recipe.
Finally, each item has a predefined delivery date that needs to be
adhered to, and one product can be aged with more than one recipe.

2.3 Optimization algorithm

An algorithm for the optimization of the furnace’s usage has
been developed and is presented in this paper. The specific problem
we try to address is the container loading problem. It consists of
packing a set of rectangular objects into a larger rectangular
container in such a way so as to optimize some criteria while
satisfying a set of constraints. In our case, the goal is to optimize
the filling of the furnaces in order to maximize their efficiency. A
dedicated and personalized solution has been implemented by
incorporating the specific loading constraints and mechanics
applied by Constellium during this process. Figure 2 shows the
quasi-optimal loading of all five furnaces during the production trial.

The realization of the algorithm starts by modeling the problem
and integrating the aforementioned definition and constraints. The
first phase of the development has focused on the implementation of
a genetic algorithm (GA). Before being treated by the algorithm,
each product gets converted into a rectangular box with the
dimensional characteristics of the recommended U-shaped
support for that product and its original length. A list
representing the recipes the product can be aged with is
constructed and assigned to this list. The operation of the

FIGURE 1
Optimization possibilities of different aging furnaces. (A) Unoptimized and (B) optimized.
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algorithm is essentially to group items sharing similar recipes and
start the filling of the furnaces with the items that have only one
recipe in the largest group. The items that could not be placed are
generally those with more than one recipe and, thus, can be used in a
second pass to fill the furnaces with another recipe, starting with the
largest group of that recipe. Items with more than one recipe have
less priority and can be considered stopgap elements. As the total
number of possible recipes for a product does not exceed 2, the
groups are big enough to easily fill the furnaces. We can achieve a
quasi-optimal solution in very few seconds compared to our
experience with the GA, which takes longer and does not
necessarily provide better results. The choice of using a greedy
algorithm over GA is further justified by the fact that there are
generally many items available from which the algorithm can pick to
fill the remaining space. The last step of the algorithm, namely, the
scheduling of the furnaces with their contents, is realized by a
scheduler. This ensures the sequential use of the furnaces by
considering the delivery date of each product and its availability.

2.4 Implementation

The final solution is implemented as a Python program that
reads the products from a database periodically and constructs
optimized planning of the furnaces. Communication with the
program is made possible through a Message Queuing Telemetry
Transport (MQTT) interface. During each run, the program sends
the planning in JSON format in a retainedMQTT topic that could be
read any time by an external program. For an easy understanding of
the solution, a 3D visual representation of the furnace and its
content is attached to the message. The user can interact with
the application to validate the solutions proposed by the
algorithm or to specify when a product should not be considered
by the algorithm. The proposed furnaces that are not fully filled can
be discarded by the operators and treated another day when more

products are available. Finally, for the usability of the program, the
required input parameters such as the type of recipes and the
configuration of the furnaces have been made available to the
user through configuration files.

2.5 System architecture

The complete DSS consists of five different main components.
Four Lidar sensors are installed on the overhead crane and
connected to two edge devices via Ethernet. All point cloud
analyses are performed on site using the Robotic Operating
System software framework.

Three different subprograms run on the central server. First,
an MQTT broker is used to ensure communication between the
crane system and the user’s tablet; second, the actual digital twin
of the shop floor map; third, the optimizer with its connection to
the ERP system. Figure 3 shows a schematic overview of the
architecture.

The operator receives the information and controls the system
using an industrial tablet computer. This allows the operator to
interact with the DSS in a harsh environment, even when wearing
gloves, with the help of a stylus. One part of the DSS is the interactive
map with all the products that can be viewed. With the help of the
built-in camera in the tablet computer, the map can be modified by
scanning the QR code on the products. Thus, the employees can
adapt the map subsequently. The current production schedule is
communicated to the employee via a timetable. Here, too, the
employee can independently plan or prevent the planning of
products with the help of the built-in optimizer functions. The
optimization algorithm is started automatically if the map or
product information changes.

3 Results

The system’s performance was evaluated in three
independent manners. The component “product digitization”
was evaluated with the Lidar sensors and the overhead cranes.
This aimed to measure the efficiency of the digitization. The
second component was the optimizer, and it was evaluated with
existing real and artificial data. The last component was to
measure the performance of the complete system. Therefore,
at the end of the project, the system was deployed and used
during production for a 4-week trial period. During that period, it
was closely monitored and evaluated. The results from the tests
are shown in Section 3.1 and Section 3.2.

3.1 Shop floor digitization

The first test aimed to measure the efficiency of digitization. To
do this, the system started from an empty representation of the test
area and then performed various measurement maneuvers. The test
location was covered by the biggest overhead crane of Constellium,
reaching 3,780 m2. The result of this first test highlighted the
difficulties of having reliable Lidar data. However, the test was,
nevertheless, considered a success: above 80% of the products on the

FIGURE 2
Graphical representation of production planning for all five
furnaces.
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observed shop floor section were correctly identified. This made it
possible to detect problematic situations. Errors in the map were all
resolved by operator actions and the add, remove, and modify
functions provided by the application.

The second test quantified the time saved in finding unknown
products in the hall. As a case study, four workers received a set of
three customer orders to be found in the hall. The average search
time to find products without the map system was 15 min. Using our
system, the average time to find an order was reduced to an average
of 1 min 28 s, resulting in a 90% reduction in the time required.

3.2 4-week production trial

The goal of the trial period was to use the system to optimize the
use of five furnaces in parallel. The entire production plan was
created using the DSS. The operators were instructed that the
created plan must be followed as closely as possible. In event of
deviations, these were noted. The generated raw data were compared
with historical data. There are several fluctuations that can affect the
results, such as

• Quantity: if the number of products is not high enough, the
planning cannot be improved

• Part size: if the size of the products is in such a way that
furnaces cannot be combined, the optimization gain will be
diminished

• Bake recipes: only parts with the same or similar recipes can be
combined

• Use by operators: the operators must be trained to use the
system; wrong usage can slow or diminish the optimization
effects.

To reduce the impact of these factors, the following points are
considered:

• Quantity: the selected trial period is historically considered to
be neither a weak nor a strong month in terms of product
quantity processed

• Parts size: the parts have maximal sizes, and they fit predefined
containers; thus, the baking furnaces have been chosen to be
fed with multiples of those containers

• Bake recipes: testing is carried out on five different furnaces, so
parts can be dispatched between furnaces; they also have a
wide heating range, which means that many different recipes
are possible

• Use by operators: the chief operator has followed the project,
advising on the use of the system; prior to the beginning of the
tests, the operators were informed about using the system.

Four data features were evaluated and represented hereafter:

• Weight per hour: this represents the productivity of the
furnace. The bigger the value, the better the productivity

• Produced weight: in close relation with the filling percentage,
it represents the weight of the parts being baked; the bigger the
value, the better the furnace performance.

3.2.1 Capacity gain
Figure 4A shows the weight per hour in the furnaces for the 4-

week trial as well as the average of the years 2014–2020. A total of
3 out of the 4 weeks were ranked the highest in terms of “weight per
hour in a furnace” over the last 7 years’ production data. Figures
4B–F show the processed products in tons per month of all five
furnaces. The red line represents the values during the test period.
We performed a one-tailed paired t-test (α = 0.05) on ovens 45, 49,
65, 67, and 68. We obtained a p-value = 0.0021 for increased weight
per hour in a furnace and a p-value = 0.0043 for produced weight.
This shows a statistically significant improvement.

During the 4-week test, the average weight per load increased
from 34.5 tons to 42.6 tons, an increase of 23.5%. All furnaces
surpassed the third quartile in terms of processed products in tons.

4 Discussion

The resulting application was integrated into the Constellium
Cyber–Physical Production System (CPPS) and supports the

FIGURE 3
Overview of the system and communication architecture.
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operators in furnace planning. The system adapts to the needs of the
operators. They can either accept and implement, only partially
implement, or ignore the suggestions. The dynamically generated
production plan can be influenced by delay and selection functions
for the optimizer andwith add, remove, ormodify functions for the shop
floor map. The system is currently used for production planning.
Figure 2 shows a graphical representation of the production
planning for all five furnaces at a specific time during the trial period.

The project was a success since the importance and savings of the
project were demonstrated during the trial phase. The furnace capacity
was increased by 23.5% in a historical comparison. The DSS is still used
after the end of the project for daily planning of the furnaces. The
advantage of such a system is to combine the knowledge and decision-
making ability of the employees with the foresight and speed of the
simulation of the digital twin.

Nevertheless, some limitations of both subsystems (optimizer
and digitization) have been identified. In its current version, the
optimizer is limited to one of twenty-three production steps. The
optimization factor can be increased as soon as more steps are
considered. As an example, the products could already be optimally
placed in the hall for the next production step.

The sensors used for product digitization are working at their
specified limit; during the trial period, many packages were not
detected or were detected in a different form. Some of these detection
problems could be traced back to reflections and noise which can be
observed on the sensors.

Finally, the tablets’ use and interface were criticized by the
operators.

5 Conclusion

The feedback from the operators showed that having a reliable
digital twin alone does not result in increased production or capacity.
Specific algorithms and a proper user interface must be developed and
implemented to solve clearly defined problems. In addition, the
operators must be trained correctly so that they do not fall back
into old habits and the digital twin can achieve its full effect.
Although the tablet can be used with a stylus pen, it has limitations
when operated with gloves. In addition, both hands are used, which
does not leave a free hand for crane control. Fixed operator stations or a
transportation system adapted to their needs could solve the problem.

The results from the operator feedback indicate that simply having a
dependable digital twin does not lead to improved production or capacity.
To fully utilize the potential of a digital twin, specific algorithms and a
user-friendly interface must be designed and implemented to tackle well-
defined issues. Moreover, operators must receive proper training to avoid
reverting to previous practices and maximize the benefits of the digital
twin. The current tablet, while it can be used with a stylus pen, has
limitations when operated with gloves.

Future work on this project includes exploring opportunities to
further improve the usability of the system, which should emphasize

FIGURE 4
(A) Comparison of furnace performance from the trial period to the years 2014–2020. (B–F) Processed load of the five furnaces historically; the red
line shows the value of the trial period.
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operator training as an important factor in maximizing the potential
of a digital twin, as well as investigating ways to minimize human
intervention. Additionally, research will be conducted to integrate
predictive maintenance techniques into the DSS to improve furnace
productivity and efficiency. The scalability and adaptability of the
DT concept in manufacturing will also be evaluated to determine its
potential for wider implementation in the industry.
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