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The complexity of design problems compels the collection of rich process

data to understand designers. While some methods exist for capturing

detailed process data (e.g., protocol studies), design research focused on

design activities still faces challenges, including the scalability of these

methods and technology transformations in industry that require new

training. This work proposes the Large Data for Design Research (LaDDR)

framework, which seeks to integrate big data properties into platforms

dedicated to studying design practice and design learning to offer a new

approach for capturing process data. This technological framework has

three design principles for transforming design platforms: broad

simulation scope, unobtrusive logging and support for creation and

analysis actions. The case is made that LaDDR platforms will lead to three

affordances for research and education: capturing design activities, context

setting and operationalization, and research design scalability. Big data and

design expertise are reviewed to show how this approach builds on past

work. Next, the framework and affordances are presented. Three previously

published studies are presented as cases to illustrate the ways in which a

LaDDR platform’s affordances manifest. The discussion covers how LaDDR

platforms can address the aforementioned challenges, including advancing

human-technology collaboration and how this approach can be extended to

other design platforms.

KEYWORDS

design research methods, big data, design platforms, supporting learning,
sociotechnical systems

1 Introduction

Research in engineering design has established that design problems are

simultaneously complex in structure (Summers and Shah, 2010), ill-defined

(Simon, 1996), under-determined (Dorst, 2004) and allow for multiple viable

solutions (Crismond and Adams, 2012; Yilmaz et al., 2016a). Consequently, it is

often necessary to collect detailed design process data to understand designers more
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fully. This need is particularly salient in the study of design

activities or strategies used by designers which involve an

iterative and intentional process to transform an initially ill-

defined problem into a communicable design concept (Dym

et al., 2005; Atman et al., 2007; Razzouk and Shute, 2012).

Additionally, this need impacts the study and practice of

engineering design education, which itself is inextricably

linked to design research (Dym et al., 2005, pp. 10). The

need for detailed process data raises several challenges for

research, including: 1) adequately collecting comprehensive

and relevant data, 2) time-costs for data preparation and

analysis, and 3) subsequent constraints on advancing

substantive and pedagogical understanding and applied

efforts. More concretely, this need is tightly coupled with

two major ongoing challenges in design research. First, a

methodological challenge stems from the fact that many of

the procedures used for collecting detailed process data, such

as protocol studies where a designer thinks “outloud” while

completing a task (Coley et al., 2007), require data to be

collected serially from isolated designers and therefore

greatly limits the number of participants (Chiu and Shu,

2010). This places constraints on what types of analytical

approaches are usable (i.e., those requiring more participants)

for studying design activities and may limit some design

research and education progress. Second, a technology and

training challenge stems from rapid and widespread advances

in smart technologies and their impact on industry and

training new engineers (National Science Foundation, 2020;

Jiao et al., 2021). As Jiao et al. (2021) explain, we are moving

into industry 4.0 where advances in AI, cyber-physical

systems, and human-technology collaboration are

transforming our industry, manufacturing, and design,

making it imperative to incorporate these technologies into

training future engineers. Moreover, this change opens new

opportunities to deploy these smart technologies to study and

support practicing designers and support the learning of new

generations of engineers. In this manuscript, a technological

framework is proposed that aims to fuse techniques from big

data methods into design platforms (e.g., computer-aided

design or CAD) that are used to study designers or design

learning. In so doing the framework aims to create an

approach that can capture detailed design process data in a

highly scalable manner.

Big data approaches typically leverage information systems

to collect and subsequently analyze extensive and detailed

datasets to enable discovery (Chen et al., 2014, pp. 4),

modeling (Pietsch, 2016) and associated applications. In

educational fields, big data methods have been used to

investigate similarly complex learning processes (Siemens,

2013), such as meta-cognition (Sonnenberg and Bannert,

2016). However, big data approaches have seen slower

adoption in design research that studies designers and design

learning, with the majority of existing work focusing on design

platforms that support the automatic logging of design actions

for constrained tasks (Jin and Ishino 2006; Ritchie et al., 2008;

Sung et al., 2012; Alelyani et al., 2017; McComb et al., 2017; Song

et al., 2020; Phadnis, Wallace, and Olechowski, 2021).

We call our proposed framework for fusing big data

methods and design platforms for studying designers the

Large Data for Design Research (LaDDR) framework. At its

core, the LaDDR framework is a set of software design

principles for reimagining these platforms. There are three

major principles: 1) a broad scope of simulated actions, 2)

unobtrusive logging of designers’ actions, and 3) support for

creation, transformation, and analysis actions. Following

these principles, a LaDDR design platform records a

detailed log of designers’ actions within the system,

including their transformations to an artifact(s) and the

production of information about the artifact(s). This record

of sequential design actions forms a design process action or

activity stream from which design activities may be inferred.

In other words, this action stream provides a trace of a

designer’s ongoing activities as they explore the problem

and generate solutions. This work follows past research

that uses observable design actions to understand how

people think as they design (Rahman et al., 2019a; Hay

et al., 2017, pp. 8-9; Boyle et al., 2009; Kruger and Cross

2006; Sim and Duffy 2003).

The central contribution of this work, the LaDDR

framework, aims to afford researchers and educators a new

approach to platforms that fuses big data methods and design

platforms to address the specific challenges raised by needing to

collect design process data to study design actitivies. This

framework is intentionally moderately general so that it can

be applied and adapted across different technical and problem

areas. In so doing, this work seeks to advance the community’s

research capacity to study design sctivities and ability to support

the human-technology partnership key to the future of work.

This paper is forward-looking as it describes this framework,

what it affords research and education, illustrates its use, and

then envisions how it could help address the challenges presented

above.

The remainder of the paper is structured as follows. Big

data methods and design expertise research are reviewed. The

review ends with the proposal of the LaDDR framework and

what distinguishes it from past work. Next, the framework’s

software design principles are presented as well as the

affordances LaDDR platforms provide. After this, the

platform that inspired the framework is outlined. This is

followed by a description of three brief case studies

(Schimpf and Xie, 2017; Schimpf et al., 2018a; Schimpf

et al., 2018b) that used this approach to illustrate its

affordances. The discussion first examines what the LaDDR

cases demonstrate for research design, and then explores how

LaDDR platforms can help in addressing the aforementioned

challenges in studying and supporting designers, training a
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new generation of engineers, and enhancing human-

technology collaboration. Second, it presents considerations

for how the LaDDR framework can be extended to other

design platforms. Lastly, conclusions address limitations of

the approach and broader implications for the field.

2 Literature review

2.1 Big data

A common definition of big data emphasizes three aspects of

the data: volume, variety, and velocity (Laney, 2001). While big

data is sometimes used to refer to data capturing and storage

systems, many authors use big data to refer to both data capture/

storage systems, and the analysis applied to the data (e.g., see

Kitchin, 2014, pp. 2); for example, analysis through data mining

(Miller 2010; Wu et al., 2014) or machine learning (Qiu et al.,

2016).

In addition to the aspects of big data outlined above,

Kitchin (2013), Kitchin (2014) synthesizes several

definitions of big data to create a more comprehensive

definition of the approach. Two attributes are of particular

interest for engineering design research: exhaustive and fine-

grained. Exhaustive means capturing all possible relevant data

for a given problem (for the present study, this would include

all the unique strategies or task actions different designers

employ), whereas fine-grained means collecting data of the

highest granularity possible. Thus, big data includes capturing

and analyzing data, where the data is voluminous, exhibits

variety, is generated at a steady rate, attempts to be exhaustive

in scope, and is fine-grained in detail.

Design research has seen considerable attention to big data

methods. Some areas in which big data has been applied or

studied include analyzing customer requirements and

preferences to guide new or revised product design (Shi

and Peng, 2021; Chiu and Lin, 2018; Lin et al., 2016), using

a fully integrated internet of things approach to new product

design (Lee et al., 2022), assisting with planning and

coordinating the manufacture of large-scale products (Bao

et al., 2018), and assisting engineered system optimization or

optimization of system components (Bostanabad et al., 2019;

Xiong et al., 2019). For instance, Chiu and Lin (2018) used text

mining and Kansei engineering (Nagamachi, 2002) on online

customer reviews to extract key terms to predict consumer

preferences for future products. These approaches are aligned

with data-driven design, where big data, smart technologies

and analytical innovations are applied to advance parts of the

design process, decision-making, manufacturing, and

associated areas (Kim et al., 2016; Jiao et al., 2021).

While there is a substantial and growing body of work on

big data and data-driven methods for design research, these

methods have not been fully applied in design research

focused on studying designers or how designers learn, in

specific. In this area, researchers have employed automatic

data-logging systems in engineering design software, such as

CAD platforms, to unobtrusively collect designers’ actions

while they complete a task (Jin and Ishino 2006; Sung et al.,

2012; Sivanathan et al., 2015; Alelyani et al., 2017; McComb

et al., 2017; Rahman et al., 2019b; Rahman et al., 2020; Song

et al., 2020; Phadnis et al., 2021; Deng et al., 2022). Studies in

this area predominantly present designers with relatively

constrained tasks and consequently capture design actions

with minimal variety or fine-grained detail. Researchers have

also used automatic data-logging to capture other types of

data from designers, such as eye-tracking to capture where

designers are focusing their attention (Li et al., 2019; Kwon

et al., 2020) or web camera and emotion detection software to

capture designers’ emotional states (Phadnis et al., 2021).

However, these data capture methods require extra physical

equipment and software and may be more disruptive to

designers, which impacts the scalability of these tools.

Returning to design software that logs design actions, in

terms of analysis, this work has employed machine learning

approaches like artificial neural networks (e.g., Rahman, et al.,

2020), data mining approaches like cluster analysis (Jin and

Ishino, 2006) and more traditional statistical methods like

regression (e.g., Alelyani et al., 2017; McComb et al., 2017).

While this work represents a promising start for leveraging big

data approaches to study designers and design learning, there

remains considerable room for growth.

2.2 Design expertise

Design expertise is a core topic in design research. For

example, past work has uncovered that design experts are

solution-driven, using preliminary solutions to reason

through problem and solution possibilities (Lloyd and

Scott, 1994) or use abstract knowledge schemas to make

analogies between the current problem and past problems

encountered (Ball et al., 2004). In terms of expertise

development, there is a considerable amount of research

that analyzes novice and expert differences (Atman et al.,

1999; Kavakli and Gero, 2002; Ho, 2001; Ball et al., 2004; Cross

2004; Ahmed et al., 2003; Atman et al., 2007; Bjorklund, 2013).

Some work has distinguished several broad design expertise

stages (Lawson and Dorst, 2009, pp. 99), however they do not

provide clear indicators to identify when a designer has moved

from one stage of expertise to another (e.g., in their

terminology, from advanced beginning to competent). One

study provides clearer indicators is Crismond and Adams

(2012), whose comprehensive literature synthesis revealed

nine critical design practices or activities (e.g., idea scarcity

vs. idea fluency) that can act as indicators to distinguish

novice, intermediate (what Crismond and Adams call the
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informed stage) and expert stages. Data-driven platforms

could prove particularly useful for developing quantitative

measures for these indicators.

2.3 Developing the large data for design
research framework

The present work seeks to build on past research and

platforms that logged design actions as well as research that

leveraged novel methods for analyzing big data sources. To do so,

it draws on several attributes of big data covered above. First,

following Laney (2001) and Kitchin (2014), logged design actions

should exhibit high variety and fine-grained detail to enable a

thorough record of any given designer’s process. Most

contemporary computer-aided design (CAD) or computer-

aided engineering (CAE) simulate a wide variety of granular

design actions but often do not record these. Second, following

the same authors, the volume (or number) of designers whose

actions are captured should be high and capture should seek to be

exhaustive in recording all unique manifestations (see Pietsch,

2016, pp. 141) of designers’ processes. Many current platforms

used in scholarly engineering design research (e.g., Sivanathan,

et al., 2015; McComb et al., 2017) support collection from large

numbers of designers and their unique processes through

automatic action logging, but these platforms are typically

limited in the variety and detail of design actions captured. In

brief, few existing platforms embody high variety and granular

design actions with unobtrusive logging. In this space, the Large

Designer Data (LaDDR) framework is proposed as a set of

software design principles to integrate these big data attributes

more fully into platforms for studying designers and to expand

the scope of what design actions and designers’ unique processes

are captured. This framework is intended to be adaptable across

different technical and problem areas.

3 Large data for design research
framework

This section describes the LaDDR framework in terms of its

design principles and the affordances it offers researchers and

educators. This section presents the design principles first and

then its affordances (see Figure 2). These principles were derived

from research and development with a design platform with

extensive logging capability and research results from other

design platforms.

3.1 Design principles for large data for
design research platforms

This section explains three core design principles (Fu et al.,

2016) for creating design platforms that enable the three

affordances in Figure 1. It is important to note that the design

principles covered here are not meant to be exhaustive; in future

work these may evolve, or new principles may emerge. Instead,

these principles aim to cover the minimal core conditions for

creating a LaDDR design platform.

The first design principle concerns simulation scope. The

design platform should simulate a wide array of recordable

actions within a domain(s) where design can be undertaken.

The design platformmust simulate a domain in which design can

be undertaken so that designers can interact with that domain.

Simulations rely on models of their real-world counterparts

(Landriscina 2013). Models can represent a broader or

narrower set of elements and actions from a domain. To

allow for a wide array of actions in a designable domain, the

simulation should model a sufficiently large phenomenon, such

as an elaborate system or system of systems (Boardman and

Sauser 2006) like a vehicle or microgrid. More formally:

A � P{subsys1, subsys2, . . . subsysn}

Where A is the set of all recordable actions in the platform and P

is a partition of A into nonoverlapping subsystems within the

domain where actions are being recorded. It is important to note

that the size of a simulated domain is highly correlated to its

design space. As we move into industry 4.0, the scope of design

problems continues to expand and may include actions or

activities from other business operations that are integrated

with design, such as finance and marketing. For example,

designing an energy efficient house may necessitate striking a

FIGURE 1
LaDDR Framework: Design Principles and Affordances. The
outer boxes depict the LaDDR framework’s design principles. The
inner triangles depict the affordances. Each affordance is colored
according to the design principles that shape it.
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balance between energy efficiency, cost, and aesthetics to create

the “best” solution (e.g., see, Goldstein, Adams, and Purzer, 2021)

Design platforms that provide interaction with small domains

such as a system component (e.g., a truss) or constrained systems

will not allow for the same depth of activity. A wide simulated

design space also provides designers with the flexibility to

reconfigure the space as desired or identify various criteria/

constraints depending on their experience or objectives. In

other words, a sufficiently large, simulated design space

supports designers’ distinct design processes.

The second design principle concerns unobtrusive logging.

The design platform should surreptitiously log designers’ actions

at a granular level throughout their design process. Surreptitious

data collection means that the design platform records designers’

actions without any additional user input such as verbalization or

journaling, i.e., unobtrusively (Jin and Ishino 2006; Sung et al.,

2011). Design actions here refer to the smallest possible actions in

the platform that either transform the design artifact or provide

the designer with new information. For example, the first type

could be the addition of or change to a subcomponent of the

artifact, and the second type could be performance calculation

after a single change to the artifact. Design actions should be

highly granular and can be aggregated into higher-level practices,

strategies, or other categories. Similar aggregation techniques

have been used with smaller sets of actions in previously

presented studies (e.g., see Deng et al., 2022; Jin and Ishino

2006) and other fields (e.g., see Hilbert and Redmiles, 2000).

Based on this data-logging approach, an explicit data schema for

recordable actions should be constructed. Finally, the design

platform should log data with timestamps to preserve the

designer’s complete process.

The third design principle, concerns design action types. The

design platform should consist of actions for creating/

transforming design artifacts(s) and analyzing design

artifacts(s) relevant attributes. More formally:

D � {d1, d2, . . . dn}
DA � {da1, da2, . . . dan}

D ∩ DA � {∅}

WhereD is the set of design/creation actions andDA is the set of

analysis actions and both are nonoverlapping. While this principle

may appear self-evident, many design platforms as previously

mentioned, such as CAD systems, primarily focus on creation

actions. Incorporating analysis actions allows more stages of the

design process to be simulated, such as optimization. Subsequently, a

platform following this principle will enable engagement in a fuller

scope of the design process. Analysis is also part of several design

practices, including iteration (Schimpf and Xie, 2017), design

experiments (Vieira et al., 2016) and trade-off decisions

(Goldstein 2018; Goldstein et al., 2018). Thus, the inclusion of

analysis actions further enables designers to undertake a broader

array of design activities in a platform.

3.2 Affordances of large data for design
research platforms

This section covers the affordances the LaDDR framework

offers design research. Each affordance is also related to the big

data attributes, reviewed in Section 2.1 (see, Kitchin, 2014).

3.2.1 Capturing design activity
Observing and capturing design activities is the central

affordance of a LaDDR platform and pertains to the ability to

infer designers’ strategies and reasoning from their interaction

with a platform. Said differently, the action stream data collected

by a LaDDR platform leave a trace of designers’ cognitive

processing used to navigate the problem and solution space.

This affordance is shaped by all three design principles. In

terms of the first design principle, capturing design activity is

enabled by supporting a wide array of actions and thus providing

a sizeable and flexible design space in which to work. The second

principle emphasizes capturing a thorough record of designers’

processes. In regard to the third design principle, the broad action

types of creating, modifying, and assessing the design allow for

greater inference about designers’ activity throughout their

process, for example from conceptual design to testing.

Finally, this affordance embodies the fine-grained, velocity,

and variety aspects of big data. Collecting designers’ processes

through the platform produces a detailed, real-time rendering of

their numerous actions for studying design activity.

3.2.2 Context setting and operationalization of
design activity constructs

The context setting and operationalization affordance is the

ability for researchers/educators to adaptively scope the bounds

of the design space (context) within a LaDDR platform and

define metrics for measuring the central design constructs

(operationalization). Setting the bounds of the design space

establishes a context for creating design tasks; for example, by

focusing on different substantive areas of the space or simplifying

a challenge for novices by constraining the design space/stages.

Thus, setting the context can support different research or

education goals. Care needs to be taken to avoid unduly

constricting the design space as this may reduce the strategies/

practices designers need to use and diminish their creativity in

addressing the challenge. After setting the context, granular

actions can then be aggregated into categories that

operationalize different design activity constructs (e.g., several

building actions may be categorized as modeling).

This affordance emerges from all three design principles. In

terms of context setting, the first principle (i.e., a large designable

space) and the third design principle (i.e., support for creation

and analysis action-types to support different design activities),

combine to allow for creating different design tasks. In terms of

operationalization, defining metrics for the central design activity

constructs(s) is enabled through the near real-time capture of
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designers’ processes from the second principle, in conjunction

with different action types emphasized in the third principle.

This affordance embodies the variety and fine-grained big data

attributes. Context setting and operationalization rely on various

actions across creation and analysis types, which need to be fine-

grained to scope different design challenges and serve as building

blocks for design activity constructs, respectively.

3.2.3 Research design scalability
The research design scalability affordance of LaDDR platforms

enhances and extends the capability of research studies by

augmenting data collection, data processing, and data

comparability efforts. In this framework, scalability refers to

specific aspects of research design listed above. Data collection is

widened, supporting collection from a large number of designers,

including those with the same skills/experience and those with

different skills/experience. Data processing is facilitated through

the automation of retrieval, preparation, and/or formatting of

captured data. Greater data comparability is facilitated through a

shared design ontology (Štorga et al., 2010), enabling more direct

comparisons within and between designers’ processes.

The scalability affordance emerges primarily from the second

design principle. Unobtrusive data collection simplifies data

collection and supports collection from multiple designers

simultaneously. It may also be deployed remotely. The second

principle also covers developing a data schema for logging

actions. Typically, these data schemas use a generic machine-

readable format, like JSON or XML, which can be run through a

script or program to automate data cleaning, processing, and

some analyses to arrive at results more quickly. In light of the

wide simulation scope discussed in the first design principle, the

data schema provides a consistent but broad and adaptable set of

design actions that promote comparability across designers’

processes. In other words, the data schema provides a design

ontology for what designers can do within a particular LaDDR

platform. Finally, this affordance embodies the volume and

exhaustiveness of big data attributes, as it supports collection

from a larger sample of designers and seeks to capture all unique

manifestations of designers’ processes.

4 An example large data for design
research platform: Aladdin

Aladdin is a CAD platform that supports architectural,

photovoltaic (PV), and concentrated solar power (CSP)

system design (Xie et al., 2018). The LaDDR framework

evolved out of research and development with this platform.

Here Aladdin is presented, and discussion focuses on how it

demonstrates the LaDDR principles. The platform originally

entailed energy-efficient home (e.g., Purzer et al., 2015) and

some PV system design (e.g., Goldstein et al., 2015), See also

Figure 2A. Subsequently a larger suite of PV systems, such as

solar farms (Figure 2B) were added. Moreover, concentrated

solar power systems (see Figure 2C) were added. These systems

may be designed separately or integrated within a task. The

simulation scope or design space is therefore sizeable.

Early in its development, Aladdin incorporated an

unobtrusive logging system to capture designers’ actions in

JSON, a widely used machined readable data format. Each

logged entry includes a timestamp, filename, the design action

taken, and relevant metadata. For example, Figure 3 displays two

logged entries, showing what is logged when a user adds a solar

panel rack and when they run a system annual energy analysis.

The “Add Rack” metadata includes a unique ID and the

coordinates of the rack within the design platform. The full

data schema contains over 200 unique actions relating to the

design of buildings, PV, and CSP systems (Xie 2016). The log for

a single designer “may exceed” 2,000 actions depending on the

nature of the design challenge.

Finally, Aladdin has a built-in physics engine that emulates solar

energy and heat transfer processes to estimate building heating/

cooling as well as energy production for PV and CSP systems.

Aladdin’s energy estimates have been validated against the building

energy simulation test (Gajewski and Pieniążek 2017). The platform

likewise includes cost estimation for all designed systems. Thus,

both creation and analysis actions are supported.

While Aladdin simulates a wide design space, researchers

using it are constrained to work within its simulation scope. The

LaDDR framework seeks to abstract from this platform so that

other platforms may be able to capture rich design actions for

inferring design activity.

5 Results: Three illustrative cases

Aladdin is presented as an exemplar LaDDR platform for

investigating design activities. Several studies have been

conducted with Aladdin. Three studies are presented here: 1)

micro-iterations, 2) design team analytics, and 3) design action

sequences (summarized in Table 1). Each study has been

previously published, and as such only the key details relevant

for this manuscript are provided. These studies were selected to

illustrate some of the ways a LaDDR platform can exhibit their

three affordances, namely capturing design activities, context

setting and operationalization of concepts of interest, and

research scalability.

These cases were intentionally selected to emphasize the

variety of ways a LaDDR platform may be applied to design

research.

5.1 Case 1: Micro-iterations

This study sought to identify the micro-iterations of

novice designers (Schimpf and Xie, 2017). On scalability,
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data was collected from three-ninth grade classes for a total of

60 students, with 27 students from one section used in this

study. These students were tasked with modeling their home

and designing an adjoining solar array that generates

sufficient energy to meet their household demand while

also balancing budgetary constraints. This study used

sequence mining, a data-mining approach for discovering

nontrivial patterns and relationships in sequential data

(Han et al., 2012, pp 588-589). The analysis was

exploratory and sought to identify and characterize micro-

iteration sequences. The central phenomenon of interest,

iteration, can be defined as an intentional, goal-directed

strategy (Adams and Atman, 2000) where designers reapply

part of the design process to advance their design’s

development Wynn and Eckert (2017) a more recent piece.

Iteration has been analyzed as design stage cycles (meso-scale,

e.g., see Chusilp and Jin, 2006; Adams and Atman, 2000) and

as full artifact cycles (macro-scale, e.g., see Smith and Tjandra

(1998). This study narrows the scale of iteration to a relatively

unexplored area of micro-iteration (Schimpf and Xie, 2017) or

cycles consisting of small design actions or operations. Several

rules were established, discussed more below, for identifying

iterations. Micro-iterations patterns were clustered into

groups based on similarities in iteration patterns. Clustered

iteration sequences were shared with an independent design

expert to evaluate their soundness and consistency;

differences were discussed and resolved.

Briefly, the results uncovered 20 micro-iterations, which

were clustered into four major types: 1) solar panel system

capacity testing, 2) solar panel location analysis, 3) solar

FIGURE 2
Examples of Design Artifacts Created in Aladdin: (A) an architectural model of a high school, (B) a PVmodel of a solar farmwith solar panel racks,
(C) a CSP model of a power tower with heliostats that reflect sunlight to a central energy storage.
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simulations with panel placements, and 4) investigating the

Sun’s path across seasons. Around 41% 11) of the students

used at least one micro-iteration and about 22% 6) engaged in

two or more. While not commonly exhibited by these novices,

the results verified the presence of micro-iterations and some

forms they may take.

In terms of context setting for this challenge, the design

space was primarily scoped to include photovoltaic system

creation and analysis. The logs revealed 98 different actions,

including home modeling, photovoltaic design, and other

platform actions. Of these, 15 of the actions related to the

micro-iterations, specifically actions for creating photovoltaic

systems (e.g., adjusting solar panel efficiency) and both

quantitative (e.g., annual kWh generation) and qualitative

(e.g., tracing the sun’s path) analysis tools. The majority of

these actions were related to home modeling and not design as

the goal was a fixed model outcome. As such these modeling

actions and some system-control actions (e.g., save) were not

part of the analysis.

To operationalize micro-iterations, a system of constraints

was defined to demarcate valid iteration sequences. Given:

Sol � {sol1, sol2, . . . soln}
NSol � {nsol1, nsol2, . . . nsoln}

Si � (si1, si2, . . . sin)
Where Sol is the set of solar actions (both analysis and PV

creation), NSol is the set of non-solar actions and Si is Student i’s

sequence of design actions, a micro-iteration MIij is identified

when the following constraints are met:

MIij ≥ 3 and si1, si2 ∈ Sol and si1≠ si2

∀xik ∈ MIij, xik ∈ NSol< 3

∃sik ∈ MIijand sik ≥ 2 and sik � sik

Where MIij is the jth micro-iteration and a subsequence of Si’s

design action sequence, where this subsequence contained at least

two distinct solar actions and one repeating solar action (as

outlined in the first and third constraint, respectively). The

FIGURE 3
Examples of Aladdin Logged Design Actions: (A) adding a rack of solar panels (B) analyzing the annual kilowatt hour (kWh) production of a
system.

TABLE 1 Empirical case studies at a glance. This table highlights key aspects of each case.

Micro-iterations Design team analytics Design action sequences

Designers High School students (N = 27) Engineering juniors and seniors (N = 17) High school students (N = 33). Junior high students (N = 152)

Working alone or in a team Alone Team Alone

Design challenge Solarize your home Solarize your community Net-zero energy home

Study period 2 weeks of in-class time 2 days 2 weeks of in-class time
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second constraint allows for a small number of non-solar actions

within a micro-iteration subsequence to mitigate instances of

user error (e.g., clicking on the wrong part of the model) from

disqualifying an otherwise valid iteration. From this system of

constraints, a set of micro-iterations subsequences were

identified.

Having covered context setting and operationalization, an

example micro-iteration is presented in greater depth to

illustrate the captured design activities. In Figure 4, yellow

nodes represent solar analysis and blue nodes represent

photovoltaic system construction. Arrows around a node

indicate repetition and additional information is presented

below nodes. The micro-iteration in Figure 4 exemplified

several iterations by designers where they cyclically tested,

modified, and tested again. In this particular example, the

performance of the system is tested, panels are added,

removed, or adjusted leading to greater system

performance. Two more cycles lead to progressively lower

energy-generation and cost. More generally, this and related

patterns were reflected efforts to balance cost and energy

FIGURE 4
A Micro-iteration: System Capacity Testing. Reprinted from Schimpf and Xie, 2017.
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production through evaluating alternative design

configurations.

5.2 Case 2: Design team analytics

This study compared design teams’ processes with particular

emphasis on modeling, evaluation, and optimization, and these

practices relationship with teams’ artifact performance (Schimpf

et al., 2018b). On scalability a group of 28 undergraduate

engineering students from a medium-sized university were

tasked to meet the energy demands of their campus by

designing photovoltaic systems on a series of community sites

(e.g., the local high school). Designs were assessed by four

criteria, energy production, cost-effectiveness, cost, and

aesthetics; each had weights to promote trade-off opportunities.

Methodologically this work draws on data visualization. Data

visualization is a data mining approach (Han et al., 2012, pp

602) where visualizations are used to represent complex, multi-

dimensional data for analysis. Several visualization techniques

were applied (e.g., see Gleicher et al., 2011) such as overlaying

modeling and optimization to show their collective trajectories

and juxtaposing evaluation as a subplot to enable comparisons

and identify transitions. Modeling, evaluation, and optimization

are later stages of design, which designers must navigate to realize

and refine design alternatives (Atman et al., 1999; Dym and Little.

2003). Past research has focused heavily on early-stage

conceptual design (Dinar et al., 2015; Hay et al., 2017), with

fewer studies about these later stages.

Briefly, after removing teams with non-consenting members,

four teams were analyzed (N = 17). Two teams, A and D,

submitted multiple sites whereas other teams submitted single

sites. Each team’s design process was visualized. The analysis

revealed two connections between teams’ activities and the

design performance. First, a regular pattern of alternating

between modeling and optimization was associated with

greater cost-effectiveness in the teams’ designs. Second, partial

or absent evaluation of design sites was associated with lower

cost-effectiveness. This work demonstrated the potential of this

analysis for generating holistic and multivariate visualizations

that can reveal complex interrelationships between design

activities and final design performance.

In terms of context setting, the design space was scoped to

photovoltaic system creation, manipulation, and analysis. The

logs showed 40 different actions, including date/time changes,

photovoltaic system, and other system actions. Design action logs

were analyzed to partition actions into subsets E, M, and O,

representing evaluation, modeling, and optimization. While

evaluation actions were straightforward to identify, a

distinction was made between actions involving the initial

setup of a system and system parameter adjustments, as

modeling and optimization, respectively. In total these

accounted for 17 of the recorded actions. Due to

advancements in Aladdin to support solar racks, there were

more PV actions than the micro-iterations case.

Design teams’modeling, optimization and evaluation actions

were operationalized following Figure 5. Note that this figure

displays fewer than 17 actions from above, as several actions can

be applied at multiple artifact levels resulting in different action

labels. For simplicity and readability, these are collapsed in

Figure 5. Modeling included basic setting, sizing, and editing

of teams’ PV systems and optimization included adjustments to

the types of panels used, rack tilt, and heading (azimuth).

Evaluation focused primarily on annual analysis of their

system including full system or group analysis, where a

subsection of panels was analyzed.

A select team is now presented to illustrate the captured

design activities. Team C’s design process is visualized in

Figure 6. Their process is divided into sessions based on

visible breaks in activity from their log. The lower graph

plots modeling and optimization and the top displays

evaluation. The y-axis displays the number of actions and

the kWh production, respectively. Evaluation may be for the

full system or a subset, all year or partial year. The dashed

vertical line indicates shifts between design sites. For the first

site, an elementary school, the team spent time alternating

between modeling and optimizing the system. After

evaluating its energy performance, the team switched to a

high school with a much larger roof-space. Here they created a

more extensive model and used their last session to iteratively

modify and evaluate their system, resulting in a large-scale

optimization cycle. Ultimately Team C submitted this single

design, which performed the highest in energy production and

aesthetics. By plotting these three sets of activities on a shared

timeline, this example reveals interconnections between

activities and how they relate to the design performance.

5.3 Case 3: Design action sequences.

For this study, Markov chains were used to model students’

design processes as a series of design sequences to facilitate

comparisons and reveal design dynamics (Schimpf et al.,

2018a). On scalability a 152 junior high and 33 high school

students were tasked with designing an energy-efficient home

which has annual net-zero energy use and stayed within budget.

Additional structural constraints included area specifications and

window-to-wall ratios.

Markov chains are used for modeling systems with multiple

states, where future states depend on the current state; this

method has received growing attention in design (Gero and

Peng 2009; McComb et al., 2017; Rahman et al., 2019a). Markov

chains are another type of sequence analysis (Cornwell 2015).

Here states are designers’ actions, and the full model contains all

transitions between design actions. Transitions are displayed in a

transition matrix, with entry αij of the matrix representing the
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probability of transitioning from design action i to j. This is

calculated by αij = aij/ai, where aij is the number of times design

action j follows action i, and ai is the total number of times action

i occurs. Design sequences can reveal designers’ strategies, such

as what activities are associated with evaluation. Psychology

researchers argue that sequences are central to many skills

(Destrebecqz, 2005; Clegg et al., 1998) and some design

research has found that learning sequences improves design

performance (McComb et al., 2017). Thus, design sequences

can give insight into how designers navigate problems.

Briefly, this preliminary study analyzed ten of the most

engaged novice designers; five designers were sampled from

each group. It was found that both groups had high levels of

within-action sequences for modeling actions, e.g., windows,

suggesting they focused on individual home subsystems

sequentially. The two groups of students exhibited differences

in what components of the building they interacted with; junior

high students ignored insulation whereas high school students

ignored foundations. Both groups had design sequences that

concentrated on energy production or energy production and

passive solar design. The high school students had more

sequences connecting evaluation to other actions, for example

note-taking. This work gave evidence that design sequences can

help characterize similarities and differences between groups of

designers.

In terms of context setting, the design space was scoped to

include house construction, landscape layout, PV systems, energy

analysis, and note-taking. The log revealed 95 unique actions

from high school designers and 121 unique actions for junior

high designers. Unlike the previous two examples, analysis for

this challenge involved estimating solar panel generation and

household energy-use. System controls and actions unrelated to

the challenge were discarded from analysis. This resulted in a set

of 54 unique design actions.

Due to the large number of design actions for this challenge,

it was necessary to consider how to best operationalize key design

activities. Given houses several components, actions were

partitioned into subsets reflecting house subsystems as well as

different analysis tools. For example, the “Building” subset B =

{“Move Building,” “Resize Building,” “Rotate Building,” “Add

Components.”} The data schema is presented in Figure 7. The

enclosed boxes contain actions subsets, with the category title

atop the box.

Next, a detailed example of one student’s transition matrix is

presented to illustrate captured design activities. As shown in

Figure 8, this junior high student had high levels of within-

subsystem transitions, particularly with notetaking, solar panels,

and windows. This represents a logical decomposition strategy to

focus on individual subsystems. Furthermore, this student

showed a weaker across-action sequence (probability = 0.33)

FIGURE 5
Design team analytics schema. Each higher order category subsumes the actions beneath it.

Frontiers in Manufacturing Technology frontiersin.org11

Schimpf and Goldstein 10.3389/fmtec.2022.971410

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2022.971410


FIGURE 6
TeamC’s Design Process. Adapted from, Schimpf et al. (2018b). The plot is broken into subplots across the X-axis, representing different design
sessions; subplots across the Y-axis represent modeling and optimization and evaluation, respectively.

FIGURE 7
Design Sequence Data Schema. Each box contains multiple actions which were categorized according to the title above the box.
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between evaluation to tree placement, suggesting this student was

trying to use tree placement to improve the efficiency of their

home. There is also a weak transition between evaluation and

solar panels, reflecting PV system testing. The graph tab, which

shows information about a design’s cost and attributes, was often

reviewed before evaluation (probability = 0.60). As this example

illustrates, design sequences can give a window into designer’s

activities and can serve as a general model for comparing

designers.

6 Discussion

In the first section of the discussion, we synthesize how the

affordances operated across cases to examine the range of

possibilities LaDDR platforms offer research design. Three

dimensions emerge: Setting the design problem complexity,

selecting design activities of interest, and recruiting study

subjects.

The second section revisits the two challenges facing design

research. The challenges are briefly restated and the discussion

explores how LaDDR platforms can address or leverage

opportunities associated with these challenges. In particular,

discussion of the second challenge emphasizes the promise

LaDDR platforms hold for enhancing human-technology

collaboration and details why these platforms are well

positioned to advance work in this area. The third section

presents considerations for extending and scaling the software

framework to other design platforms.

6.1 Large data for design research for
research design

6.1.1 Setting the design problem complexity
Summers and Shah (2010) proposed three metrics for

measuring design problem complexity: the number of

variables, the number of connections between variables and

the solvability or difficulty of finding a solution. Setting design

problem complexity is primarily shaped by the design context

and operationalization affordance. First, as shown in the cases, it

is possible to set a design problem’s complexity from a greater to

fewer number of design variables or actions, thereby decreasing

or increasing the solvability of the challenge designers face. For

FIGURE 8
Novice Designer’s Design Action Markov Chain Transition Matrix. The plot should be read from the Y-axis representing the first action, and
entries on the X-axis representing the section action.
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example, by including more variables by which solar panels can

be manipulated, more connections between variables may

emerge and solvability will require more domain knowledge,

as seen with panel type and rack angle in the design team

analytics case. In contrast, the micro-iterations case only had

panel type and therefore increased solvability. The ability to set

the problem complexity can also vary by changing the number of

artifacts designers are responsible for, as seen in the design team

analytics case where designers could select several sites for

creating PV systems.

6.1.2 Selecting design activities of interest
Selecting a design activity of interest is shaped by both the

capturing design activity and design context and

operationalization affordances. In selecting a design activity to

study, the case show support for defining and measuring well-

established design activities, such as evaluation, modeling, and

optimization processes covered in the design team analytics

review. Moreover, new or understudied design activities may

be uncovered, as was demonstrated in the micro-iterations case.

The cases also demonstrate how these platforms can be used

to study design activities at multiple scale levels, from small two-

action design sequences to middle range micro-iterations to full

design process analysis in the design team analytics case.

6.1.3 Recruiting study subjects
This dimension of recruiting study subjects’ is shaped both

by the scalability and design context affordances. Turning first to

scalability, a LaDDR platform can be run with a small or a large

number of participants, with the design sequence study

highlighting the relative ease of collecting logs from nearly

200 participants. In particular, the relative ease of data

collection stems from the unobtrusive nature of LaDDR,

allowing for simultaneous data collection across many

participants without concern for cross-contamination or

interference between designers engaged in a design challenge.

This aspect lends itself well to university, school or workshop

settings where there may be many designers available to

participate at the same time. Finally, in regarding design

context, different design challenges can be created for

different levels of design experience and expertise, as reflected

in the distinct problems in the cases.

6.2 Addressing design research challenges

This section returns to the twomajor challenges facing design

research and elaborates how the LaDDR framework, when

applied to platforms, provides an innovative toolset that opens

new research directions for design. Recall, there was a

methodological challenge centered around methods that

collect rich design process data (e.g., protocol studies) only

being able to collect data from a relatively small number of

designers. This constrains the research questions studied in

design research and subsequently stymies advances in said

research. There was also a technology and training challenge

centered around smart technologies transformations on modern

industry and design, and the need to train a new generation of

engineers for these changes and support current practicing

engineers. This challenge also raises opportunities to deploy

these same technologies to revolutionize how designers are

studied and supported and how students learn.

This leaves the community with a partial view on several

fundamental topics, including the variety of ways design

expertise may manifest, the different forms of greater or lesser

mastery, and how practices may evolve as designers gain

experience.

6.2.1 Methodological challenge
For the methodological challenge, a LaDDR platform opens

new opportunities by enabling data collection from many

designers simultaneously through unobtrusive logging. This

expanded data collection could support the use of a wider set

of research methods, particularly data mining and machine

learning methods, to answer new and underexplored

questions. For example, data mining methods such as

sequence analysis or decision trees (see Han, Kamber, and Pei,

pp 331-336) could be used to uncover new design activities or

practices or draw out distinctions in practices, as was

demonstrated in the micro-iterations case. Alternatively, work

could use cluster analysis (e.g., k-means or hierarchical

clustering, see Jain, 2010) to discover or characterize distinct

subgroups of designers, at varying or similar levels of experience,

who employ different practices or strategies while designing. In

terms of machine learning, a new direction may involve building

models of designers’ activities for a task using a neural network

(see Rahman et al., 2019a). After training the model with an

initial group of designers, researchers could predict new

designers’ relative design outcome success or forewarn of the

difficulties they may encounter.

6.2.2 Technology and training challenge
As industry 4.0 (Jiao et al., 2021), the future of work and the

potential for human-technology collaboration has received

growing attention, there has been increased interest in how AI

and associated smart technologies can be used to support design,

both in terms of practitioners (Zhang et al., 2021; Song et al.,

2020; Khan and Awan, 2018) and learners (Schimpf et al., 2019;

Chen et al., 2020). LaDDR platforms open up new opportunities

for integrating AI support into design platforms. Much of the

existing work that incorporate some form of AI assistance into a

design platform have AI that operate on artifact permutations or

the state space of design artifacts (e.g., Khan and Awan, 2018;

Schimpf et al., 2019; Chen et al., 2020). In contrast, a LaDDR

platform could inform AI systems by providing designers’ action

stream, representing their design activities. Operating on
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designers’ action stream, AI techniques, such as deep learning

(Raina et al, 2019), could be built to recognize creative or effective

design strategies designers use and provide targeted feedback to

struggling designers, similar to design heuristics (Yilmaz et al.,

2016b). This approach could be leveraged in professional settings

as well, for example by extracting strategies from a broad range of

engineers and providing these as alternatives to a target designers

current strategy. These strategies could also be incorporated into

computational design agents that support novice designers with

difficult parts of the design process or increase the efficiency of

practitioner teams by adding computational agents to the team

trained on specialized strategies from technical domains not

represented on the team. Some work has begun to use actions

logged by smaller-scope design platforms to inform or create AI

support systems (Zhang et al., 2021; Raina et al., 2019; Egan et al.,

2015), creating AI systems from LaDDR action logs could build

upon this work.

LaDDR platforms also hold promise for expanding

human-technology collaboration as these platforms are

versatile across different levels of designer experience and

age. There are two major factors that make LaDDR platforms

widely accessible. First, they use a consistently shared design

action schema or what can be considered a design ontology

(Štorga et al., 2010) for describing all possible actions in the

simulated space. This eliminates any inconsistencies that may

emerge when data collections rely on designers’ idiosyncratic

verbalizations, self-reporting, or subjective impressions.

Second, LaDDR platforms’ context-setting affordance

allows researchers or instructors to shape the nature of the

design task assigned to be appropriate for the skill-level and

experience of the tested population (e.g., simplified tasks for

novices or more open-ended tasks for experienced designers).

While many studies have looked at undergraduate trainees or

professionals (Kavalki and Gero, 2002; Cross, 2004; Atman

et al., 2007; Björklund, 2013), there has been increased interest

in targeting young population in K-12 with engineering design

activities because of the broad utility of engineering design

skills (NRC 2012; NAE and NRC, 2014) and need to reach

students early to fully support their development as designers

(NAE and NRC, 2009; Cunningham and Lachapelle, 2014). In

short, LaDDR platforms offer a more complete pipeline for

supporting development, ongoing professional training and

active practice in engineering design skills and strategies.

6.3 Extending the large data for design
research framework to other design
platforms

The LaDDR framework and its design principles were

written to be sufficiently general to be applied to a large

selection of design platforms. These design principles could

be incorporated into new design platforms, such as those

created by researchers, or into existing platforms such as

computer-aided design (CAD), computer-aided engineering

(CAE) or computer-aided manufacturing (CAM), or hybrid

platforms. For existing platforms with large simulation

scopes, to avoid extensive or costly changes, the

unobtrusive principle may be incorporated through

auxiliary scripts or applications that capture actions users

take (Gopsill et al., 2016; Hu and Taylor, 2015; Jin and Ishino,

2006). For instance, Jin and Ishino (2006) presented the

DAKA framework as a method for: monitoring CAD

activity, capturing design events, and processing the events

into design activities for analysis.

A critical decision when applying the LaDDR framework is

deciding how action stream data will be stored. Two possible

storage formats include relational databases or document

storage. Document storage formats such as JSON and XML

offer adaptable and flexible means to capture action streams

into documents that automatically retain the sequence in which

actions happened. Many programming languages support

formats like JSON and XML allowing them to be used across

most existing or new platforms. These formats are less structured,

however. Relational databases offer a more structured way to

store data, facilitating querying and analysis, but these formats

require maintenance as the program evolves and new actions are

added or removed. Moreover, if each entry in the database is an

action taken by designers, this will result in a very sparse database

and inefficient use of storage resources. These points should be

taken into consideration when implementing the framework’s

principles. Extending the number of LaDDR platforms would

expand the benefits of this approach to more design research and

education efforts.

7 Conclusion and limitations

7.1 Limitations

While research using LaDDR platforms is an emerging

approach with considerable potential for studying design

activity, two major limitations exist. First, LaDDR

platforms only capture actions within their environment.

Actions, such as running cost estimates on a calculator or

sketching ideas on scrap paper will not be captured. Given this

limitation, effort should be made to limit the number of

actions designers take outside of the platform or data

quality may be damaged. Second, regarding LaDDR

platforms themselves, developing a LaDDR platform or

modifying an existing platform to implement the LaDDR

framework will require additional resources for research.

There are existing LaDDR platforms and other platforms,

such as the open-source FreeCAD (Falck and Colette 2012),

which can be modified to operate like a LaDDR platform but

employing any of these will require time investment.
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7.2 Conclusion

The primary innovation proposed by this work is the Large

Data for Design Research (LaDDR) framework, a set of design

principles that can be applied to a design platform to allow for the

study of design activities. The design principles are: 1) broad

simulation scope, 2) unobtrusive logging of designers’ actions,

and 3) enabling both creation and analysis design actions types.

These principles lead to three affordances for research and

learning: 1) capture of design activity, 2) context setting and

operationalization, and 3) research design scalability.

Collectively, these create a big data-inspired approach to

design and designer research.

We used three case studies to illustrate the variety of ways

research with a LaDDR platform may manifest. The discussion

focused on what LaDDR platforms can bring 1) research

design, 2) the study of human-technology collaboration,

and 3) how this approach can help address two key

methodological and technology and training challenges

present in design research.

The framework’s design principles are intentionally generic

to make them highly transportable to other platforms used to

study designers and design learning and broaden the impact of

this methodological innovation. Moreover, LaDDR platforms

provide a toolset for design researchers and educators that

opens new directions for addressing the aforementioned

challenges and enhancing how design is taught, studied, and

supported in practice. Access to more designers’ processes with

different levels of experience through detailed action streams,

facilitated by this approach, can help lead to more reliable

quantitative indicators of design expertise and inform tools

for supporting student’s development as designers or

practitioner’s engagement in design, impacting design

research, design education, and design practice.
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