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The shift of traditional mass-producing industries towards mass customisation

practices is nowadays evident. However, if not implemented properly, mass

customisation can lead to disturbances in material flow and severe reduction in

productivity. Moreover, manufacturing enterprises often face the challenge of

manufacturing highly customized products in small lot sizes. One solution to

adapt to the ever-changing demands, which increases resource flexibility, lies in

the digitization of the manufacturing systems. Furthermore, the distributed

manufacturing environment and the ever-increasing product variety and

complexity result in reduced time-to market, ubiquitous data access and

sharing and adaptability and responsiveness to changes. These requirements

can be achieved through smart manufacturing tools and especially Wireless

Sensor Networks (WSN). Thus, the aim of this position paper is to summarize the

design and development of solutions based on cutting-edge technologies such

as Cloud Computing, Artificial Intelligence (AI), Internet of Things (IoT),

Simulation, 5G, and so on. Concretely, the first part discusses the

development of a Cloud-based production planning and control system for

discrete manufacturing environments. The proposed approach takes into

consideration capacity constraints, lot sizing and priority control in a

“bucket-less” manufacturing environment. Then, an open and interoperable

Internet of Things platform is discussed, which is enhanced by innovative tools

and methods that transform them into Cyber-Physical Systems (CPS),

supporting smart customized shopping, through gathering customers’

requirements, adaptive production, and logistics of vending machines

replenishment and Internet of Things and Wireless Sensor Networks for

Smart Manufacturing. To that end, all the proposed methodologies are

validated using data derived from Computer Numerical Control (CNC)

machine building industry, from European Metal-cutting and mold-making

SMEs, from white goods industry and SMEs that produces solar panels.
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1 Introduction

In the realm of the Industry 4.0, the manufacturing landscape

is undergoing a series of changes. Modern market demand has

been transitioned towards the mass personalization of products

and services (Mourtzis, 2016; ElMaraghy et al., 2021), including

Product-Service Systems (PSS) (Angelopoulos and Mourtzis,

2022). Therefore, demand is driven by quality, quantity and

variety of products and services. Furthermore, as it became

obvious in the last couple of years, modern manufacturing,

and production systems, although they are capable of coping

with the volatile customer demand, they suffer from resiliency

(Ameri et al., 2022). In other words, taking into consideration of

the analogue of the spring/damper system, manufacturing

systems can be realized as the spring/damper couple, and the

external excitations are the system disturbances (Makkonen,

1999). Due to the insufficient damping effect, external

excitations cannot be dampened adequately (in a short time

horizon), and by extension self-excited vibrations occur, thus

leading the system to its limits/failure. However, engineers are

equipped with several digital technologies as well as new

techniques (e.g., Artificial Intelligence-AI, Extended Reality-

XR), which facilitates the improvement of business models,

productivity and revenue rates as well as to ensure high

competitiveness (Papakostas and Ramasubramanian, 2022). In

this research work the current advances in the topic of scheduling

to CMfg focusing on Industry 4.0 implementations are presented

and discussed in an attempt to build an adequate theoretical

background. In continuation, insightful feedback will be parsed

from the practical implementation in real-life modern industrial

use cases (Mourtzis et al., 2022a). The contribution of this

research work extends to the provision of recommendations

on bridging CMfg to Scheduling (Mourtzis, 2020a) and DT

(Stavropoulos and Mourtzis, 2022).

Many promising and innovative technologies, such as cloud

manufacturing (CMfg) and Digital Twin (DT), have risen to

prominence as a result of Industry 4.0, while existing

technologies, such as scheduling, have thrived as well

(Mourtzis et al., 2020a). Complex hybrid logical and terminal

constraints, non-stationary process execution, and complex

interrelationships between process design dynamics, power

utilization, and system configurations all emerge as unique

scheduling issues in Industry 4.0 and CMfg (Ivanov et al.,

2018). Key technologies of industry 4.0, particularly cloud

manufacturing, enable flexible production, particularly with

CPS and highly customized assemblies, and on-demand

manufacturing services (Ivanov et al., 2018; Dolgui et al.,

2020). As a result of the flexible use of services rather than

fixed allocations of machines and operations, process design and

job scheduling are integrated in digital manufacturing.

Furthermore, services are formed dynamically based on

available machines and operations. The services can be built

using almost any combination of machines and operations. The

emergence of cloud computing is considered as the primary

enabler for cloud manufacturing to replace traditional

manufacturing methods (Xu, 2012). Companies are reshaping

their business models in order to maintain high product quality

and integrate customization into their production models as the

demand for customized products grows (Zhang et al., 2019). To

that end, the current literature contains innovations and

techniques based on cloud technologies (Doukas et al., 2014;

Mourtzis & Vlachou, 2016; Mourtzis & Vlachou, 2018). The

increased demand for customized products has prompted

original equipment manufacturers (OEMs) to decentralize,

according to Mourtzis et al. (2012a). The authors have also

proposed a methodology for identifying efficient supply chains

in decentralized production environments in this publication.

Effective scheduling, as a fundamental issue in manufacturing,

can reduce the time it takes to complete specific tasks, increase

resource efficiency, and thus maximize profits. Manufacturing

paradigms shift as a result of new technology and manufacturing

requirements, and scheduling modes shift accordingly. This

paper also emphasizes the importance of scheduling in the

design, control, and operation of MFG systems, as well as the

main issues that engineers face. The following is a summary of

the issues: The generation of requirements, the processing

complexity, the scheduling criteria, and the scheduling

environment are all factors to consider. As a result, research

efforts have centered on developing innovative solutions for

integrating existing scheduling techniques with recent

technological advancements and changes in the global market

schema. There are more than 30 advanced production

paradigms, according to the International Society of

Production Engineering (Esmaeilian et al., 2016), including

the Toyota production system, computer integrated

manufacturing system, flexible manufacturing system, lean

production, agile manufacturing, reconfigurable manufacturing

system, cloud manufacturing, network manufacturing, and

intelligent manufacturing. The transformation of production

modes causes changes in scheduling modes, as shown in

Figure 1 (Jiang et al., 2021).

As shown in Figure 1, production scheduling has evolved

through a series of paradigms, first gaining prominence in the

early 20th century with the use of the Gantt chart (1916).

However, it took another 40 years for Johnson (1954) to

publish his paper, which was the first in the field to

introduce the mode of two-machine flow shop scheduling.

It is commonly regarded as the starting point for scheduling

research (Pinedo, 2016) and the starting point of the classic

scheduling theory (Potts and Strusevich, 2009). Scheduling

can be realized as the series of actions undertaken by engineers

in order to distribute and allocate the available resources

(including materials, machines, and human operators), in a

predefined time horizon, aiming towards the optimization of a

single or multiple objectives (Pinedo, 2016; Stecca, 2014).

However, due to the increased volatility of market demand
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(see Mass Customization and Mass Personalization

paradigms), manufacturing and production has transitioned

to models producing a wider variety of products in smaller

quantities. On the other hand, considering the recent

advances in digital technologies under the framework of

Industry 4.0 (e.g., ICT and Data Analytics), engineers are

capable of designing, developing, and implementing new

scheduling approaches, which consider external system

disturbances, and their effect on the (manufacturing)

system behavior, and thus adapt the system’s parameters in

order to continuously satisfy the company’s objectives. The

above-mentioned approaches fall under the term Adaptive

Scheduling. Since then, scheduling has grown into its own

discipline within Operations Research (OR). Due to the rapid

advancement of information technology in the 1980s,

distributed and decentralized scheduling emerged; in 2010,

cloud manufacturing, a service-oriented manufacturing mode,

gained traction. Scheduling was modeled as a mathematical

combination optimisation problem that needed to be solved

using exact algorithms, such as dynamic programming and

integer programming, from the 1950s to the 1970s. It was later

classified as NP-hardness specific questions (Garey et al.,

1976). The Palmer method (Palmer 1965), CDS method

(Campbell et al., 1970), RA method (Dannenbring 1977),

and NEH method (Nawaz et al., 1983) are examples of

approximate methods (e.g., constructive and iterative

heuristics) that have been used to find near-optimal

solutions. Over 100 heuristic approaches had been

proposed by 1977 (Panwalkar and Iskander 1977). A

variety of metaheuristic algorithms, Artificial Intelligence

(AI) methods, and simulation methods/applications have

been used in scheduling, as shown in Table 1. Some

scheduling issues, such as flexible manufacturing system

scheduling and distributed multi-factory scheduling, have

arisen as a result of the shift in manufacturing paradigm.

As a result of the widespread use of personal computers in

manufacturing facilities since the 1980s, scheduling has advanced

rapidly. In scheduling modeling, incorporating machine

reliability into an energy-efficient production plan is a

common practice (Hermann J.W., 2006). Furthermore,

Mourtzis (2020b) has presented a comprehensive review of

the current state of the art and new trends, as well as major

historical milestones in the development of simulation

engineering for manufacturing systems and recent business

approaches and studies in key industrial areas. This study

summarizes the fundamentals of cloud manufacturing

scheduling, as well as common work on cloud manufacturing

service composition and related scheduling issues, as well as

research challenges, techniques, and methodologies. Rossit et al.

(2019) present Smart Scheduling, a new decision-making scheme

that employs an effective screening process to produce flexible

and efficient manufacturing schedules while taking advantage of

the advantages of both centralized and decentralized production

systems. Rolón and Martínez (2012) also present an adaptive

decision-making system that supports distributed execution

control and emergent scheduling. Finally, in terms of

Supervisory Control and Data Acquisition (SCADA) in

manufacturing systems, SCADA is a technology that allows

one or more remote installations to collect data while sending

limited control instructions to those installations (Boyer, 2004).

Mourtzis et al. (2019) proposed a methodology for deriving main

scheduling decisions for the exploitation of machine data in near-

real-time machine condition monitoring to that end. Moving on

to supply chain simulation, a model was implemented in the

form of an Internet-enabled software framework, offering a set of

features such as virtual organization, scheduling, and monitoring

FIGURE 1
History of production scheduling.
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to promote cooperation and flexible planning and monitoring

across extended manufacturing enterprises (Mourtzis, 2011).

Finally, Mourtzis et al. (2021b) present an integrated

production and maintenance scheduling method, that is,

supported by AR technology and real-time machine

monitoring (2021b). Modern production systems must take

advantage of as much data from the shop floor as possible in

order to respond quickly to any disruption. The developed

system is based on a mobile device that collects and uses

sensor data for Condition Based Maintenance (CBM). The

proposed system is implemented as a mobile application,

taking advantage of mobile devices’ increased mobility and

accessibility, making it easier for shop-floor operators to

perform CBM operations using AR instructions. The system

receives all necessary data from sensors in order to monitor the

machine’s status, remaining operating time between failures, and

proper connections. It also has the capability of detecting

available time slots on the current machine schedule in order

to plan the maintenance task schedule. Furthermore, the

operator’s ability to improve his performance is aided by the

connection to the Cloud AR instructions database. Furthermore,

the machine schedule is constantly updated by sending feedback

based on the duration of the maintenance task, resulting in a

significant reduction in system response time. Finally, factory

personnel can perform maintenance operations using AR

instructions, reducing the need for specialized Original

Equipment Manufacturing (OEM) maintenance support.

2 State of the art

2.1 Classification of scheduling problems

Scheduling can be classified as cloud manufacturing

scheduling (CMS), decentralized scheduling, distributed

scheduling, and centralized scheduling in an object-oriented

system, as shown in Figure 2. The most traditional scheduling

method is centralized scheduling, which always involves single-

factory scheduling. Next, decentralized scheduling results from

the decentralized architecture of production systems and

distributed scheduling is the result of distributed production

environments and the use of multi-agent systems (MAS), which

includes distributed flow shop and job shop scheduling, among

other things (Mourtzis et al., 2022b).

The goal of centralized and distributed scheduling is to

efficiently allocate resources to tasks in order to achieve one

or more objectives at the same time while working within

processing and resource constraints. CMS, on the other hand,

aims to match and select the best service for the job. Exact

algorithms, simulation methods, AI methods, metaheuristic

algorithms, and heuristic algorithms are examples of

centralized scheduling methods. Meanwhile, methods like

hierarchical task networks and semantic based matching are

used in CMS to solve task decomposition and task-service

matching. Finally, metaheuristic algorithms and AI methods

are used to solve service composition optimization and cloud

manufacturing resource scheduling problems.

2.1.1 Centralized scheduling
The most traditional scheduling problem, centralized

scheduling, has been the subject of research for more than

half a century, and related studies have yielded promising

results. Johnson’s rule was used to solve the two-machine flow

shop scheduling problem with the shortest makespan. The

simulation method was first applied to dynamic job shop

scheduling in 1957 (Jackson 1957). Reiter (1966) was the first

to propose the concept of batch scheduling and Graham et al.

(1979) summarized prior research and used the triple α|β|γ| to
present a scheduling problem. According to the literature,

centralized scheduling problems can be classified based on a

TABLE 1 Production scheduling approaches (adapted fromJiang et al.,
2021; Fera et al., 2013).

Scheduling method

Artificial intelligence method Artificial neural network

Fuzzy logic

Reinforcement learning

Expert system

Multi-agent system

Simulation method Flexsim

Plant simulation

Witness

Petri net

Ant colony optimization algorithm

Meta-heuristic algorithm Simulated annealing algorithm

Artificial immune algorithm

Genetic algorithm

Tabu search algorithm

Harmony search algorithm

Heuristic algorithm Shortest process time

Earliest due date

Nawaz, Enscore and Ham (NEH) method

Credit default swap (CDS) method

Johnson rule

Palmer method

Biogeography optimization method

Mathematical programming method Branch and bound

Mixed Integer Programming

Lagrangian relaxation
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variety of factors, including the operating environment, system

goals, and resource constraints.

2.1.1.1 Operating environment perspectives

The assembly flow shop model and its methods were studied

by Komaki et al. (2019). Next, the literature on non-permutation

flow-shop scheduling problems was examined by Rossit et al.

(2018) and the deterministic job shop scheduling problem was

studied by Jain and Meeran (1999) from the perspectives of

problem representation, solution method, and benchmark.

2.1.1.2 Objectives and constraints

Behnamian (2016) rearranged the findings of the relevant

literature on fuzzy shop scheduling problems, while Akbar and

Irohara (2018) focused on sustainable manufacturing scheduling.

In terms of methodology, Amjad et al. (2018) performed a

statistical analysis of the literature on flexible job shop

scheduling using genetic algorithms, Muhamad and Deris

(2013) summarized existing literature on artificial immune

systems in job shop scheduling; and Çaliş and Bulkan (2015)

summarized AI methods in shop scheduling.

2.1.2 Cloud manufacturing scheduling
Cloud technologies have become a requirement for modern

manufacturing systems as a result of the fourth industrial

revolution, which was followed by the introduction of

digitalization and automation in the industrial domain. Cloud

Manufacturing (CMfg) is defined by Li et al. (2010) as an

advanced manufacturing paradigm that improves resource

utilization and efficiency while responding to a wide range of

customer needs. The CM is defined as a computer and service-

oriented manufacturing model that was created using enterprise

information technologies and existing advanced manufacturing

models with the help of the Internet of Things, Cloud computing,

advanced computing technologies, virtualization, and service-

oriented technologies. Kuman et al. support the same definition

(2016).

Li et al. (2010) were the first to coin the term “cloud

manufacturing.” They define CMfg as an advanced

manufacturing paradigm capable of increasing resource

utilization while responding quickly to a variety of customer

needs. Cloud computing’s emergence could be viewed as a major

enabler for the replacement of traditional manufacturing

methods from CMfg (Xu X., 2012). Companies are

undoubtedly reshaping their business models to meet the

growing demand for customized products as well as the

demand for high-quality products, but customers are also

expressing an increased desire to participate in the production

of goods (Zhang et al., 2019). As a result, there is a growing need

for new approaches to the pursuit of improved manufacturing

techniques. It can be deduced from previous published works by

Rauschecker et al. (2011); Wang and Xu (2013); and Lu and Xu

(2019) that with the adoption of CMfg, customers effectively

become part of the design and production phases, with their

specialized requirements taken into account. However, CMfg

adoption is not without its challenges.

Another important aspect of CMfg is the problem of local

pickup and delivery (LPDP). A long list of contributions can be

found in the published literature suggesting optimization

algorithms to address the issue. Chen et al. (2013) contributes

to the body of knowledge by proposing a Dispatching System

based on data mining. The proposed system provides a

simulation platform for strategic decision making and

analysis, and the results obtained from historical data can be

combined with an optimization algorithm to improve the

LDPD’s outcome. Machine Learning (ML) is a subset of the

Artificial Intelligence domain (AI), which has benefited from

technological advancements over the last few decades. In fact, ML

can be a strategic solution for integrating advanced

manufacturing processes. Sharp et al. (2018) conducted a

thorough investigation into the use of ML in the field of

smart manufacturing in their comprehensive review. Last but

not least, Kusiak, (2018) presents a comprehensive vision of

smart manufacturing. In CloudManufacturing, task composition

refers to the selection of appropriate services from the CM

platform and their combination to complete the task. The

primary goal is to achieve the expected results (Wu et al.,

2013). With various performance measures, the composition

FIGURE 2
Classification of scheduling problems.
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problem is one of the most important functional issues in CM,

and several researchers have discussed it. Tao et al. (2013)

developed a parallel intelligent algorithm that took into

account time, cost, energy, reliability, maintainability, trust,

and function similarity. Price, time, availability, and

reputation were used as performance measures by Zhou and

Yao (2017), who then aggregated them using weights for each

measure before combining the modified artificial bee colony and

cuckoo search algorithms for the problem at hand. Furthermore,

Ahn et al. (2019) consider a task guided acyclic graph and

propose graph-based algorithms for calculating the cost, time,

quality, and reliability of a task with multiple composition

patterns. Furthermore, they use the Kano model to model the

problem of task composition by introducing cost and execution

time as performance attributes, as well as quality and reliability as

basic attributes.

2.1.3 Decentralized scheduling
Production systems are expected to respond as quickly as

possible to products’ short life cycles and changing market

demand in the context of globalization. However, centralized

production systems are unable to meet such demands,

necessitating the development of a decentralized architecture

(Toptal and Sabuncuoglu 2010). Decentralized scheduling was

eventually developed, with the holonic manufacturing system,

agent-based manufacturing system, fractal manufacturing

system, and bionic manufacturing system serving as the

foundation. Production systems have become more

decentralized, reconfigurable, self-organizing, and adaptive

thanks to new technologies (Wang et al., 2017). Decentralized

scheduling, as opposed to centralized scheduling, is better suited

to dynamic production systems with frequent disruptions and

rescheduling. Each resource or task in the production system can

be thought as an agent, an intelligent decision-making entity that

acts like a human and communicates with each other to

formulate a scheduling plan based on the internal state and

the external environment. To avoid chaos, this process

necessitates collaboration among the systems. As a result, an

agent will frequently make a near-optimal decision for itself to

achieve a larger goal. The interactive negotiation process is used

to make decisions between agents to solve the decentralized

scheduling problem. Although it cannot always guarantee an

optimal scheduling scheme, it does improve scheduling flexibility

significantly.

2.1.4 Distributed scheduling
Science and technology advances, particularly in information

technology, provide the foundation for the management of

distributed production systems. The manufacturing model has

shifted from single factory to multi-factory coproduction

(distributed manufacturing). Distributed manufacturing can

take advantage of the resources of multiple factories, allocate

resources more efficiently, and improve product quality while

lowering production and transportation costs and reducing

management risks. Distributed scheduling is more difficult

than centralized scheduling because the decisions to be made

in the process are interrelated (e.g., specifying the appropriate

factory for each job and arranging the job processing sequence

for each factory). Distributed scheduling is classified as an NP-

hard problem in theory, but in practice, a good schedule scheme

can significantly reduce the production cycle or costs. Next, exact

algorithms, heuristic algorithms, and metaheuristic algorithms

are themost common distributed scheduling methods (Chan and

Chung, 2013).

2.2 Advances in scheduling
methodologies

Chryssolouris (2013) defined Manufacturing Systems as

“the combination of humans, machinery, and equipment that

are bound by a common material and information flow.”

Scheduling is critical for the design, control, and operation

of manufacturing systems, as evidenced by the preceding. The

main scheduling challenges that engineers face are listed as

follow: 1) requirement generation, 2) processing complexity,

3) scheduling criteria, and 4) scheduling environment. As a

result of recent technological advancements and changes in

the global market schema, research efforts have focused on

developing innovative solutions for improving existing

scheduling techniques. To that end, scheduling is a

complex problem that lends itself to extensive research.

The provision of an energy-efficient production plan by

incorporating machine reliability is a common practice in

scheduling modeling.

Production scheduling allows a manufacturing system to

allocate resources efficiently and at a low cost. However, for

production scheduling, pure mathematical methods are

commonly used, which are not understandable or practical

for different domain engineers. Furthermore, heterogeneous

information during production scheduling can lead to

ambiguity in communication or a delay in information.

Furthermore, the lack of a unified expression of production

information limits the interaction and reuse of production

data. To help with production scheduling, a model-based

systems engineering (MBSE) approach based on the

satisfiability modulo theory (SMT) has been proposed by

Chen et al. (2022). The authors evaluated their approach in

package production line case study. During the COVID-19

pandemic, the scheduling goal was to maintain high

production efficiency, reduce working time and worker

costs while increasing working distances. The outcome of

the case study was that the multiple architectural view

modeling language KARMA enables a unified description

of modeling production scheduling and optimization of

scheduling schemes (Figure 3).
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As a result, Chen et al. (2019) developed a mathematical

programming model based on the ant-colony optimization

method with the goal of minimizing both tardiness and

energy costs. Mourtzis (2020) also presents a comprehensive

review of the state-of-the-art and new trends in simulation

engineering for manufacturing systems, as well as major

historical milestones in the development of simulation

engineering for manufacturing systems and recent approaches

to business and study in key industrial areas. Furthermore,

Yongkui et al. (2019) discuss the current state of the art and

research challenges in cloud manufacturing scheduling. This

research summarizes the fundamentals of cloud

manufacturing scheduling, as well as typical work on service

composition and scheduling in cloud manufacturing, as well as

related scheduling issues and research challenges, techniques,

andmethodologies. Additionally, Rossit et al., 2019 present a new

decision-making schema called Smart Scheduling that uses an

efficient screening procedure with the goal of yielding flexible

and efficient production schedules that take advantage of the

features of both centralized and decentralized manufacturing

systems.

Maintenance activities are a constant feature of

manufacturing systems. Maintenance, on the other hand, can

create uncertainty because the occurrence of a malfunction

cannot always be predicted or even avoided. Furthermore,

maintenance activities could be classified as multi-mode due

to the increased complexity of modern manufacturing

equipment. Moradi and Shadrokh (2019) present a heuristic

algorithm that they designed and developed for selecting

maintenance activities in the production schedule, taking into

FIGURE 3
Problem statement of production scheduling (Chen et al., 2022).
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account the effect of entities on system reliability as well as their

importance value. A product-service system (CARM2-PSS) is

also proposed, which includes a Cloud-based platform for

condition-based preventive maintenance, as well as a shop-

floor monitoring service and an Augmented Reality (AR)

application (Mourtzis et al., 2017a and 2017b). Next,

machines play an important role in custom IoT

manufacturing environments. Xu et al. (2019) conducted a

study to fill the gaps in the literature for new algorithms that

take advantage of such technologies. The authors proposed a

system in which workers with stochastic workloads arrive at a

computer at random and their workload (enabled by IoT) is

revealed when they arrive.

Although this technology is not new to the market, a

methodology for deriving scheduling decisions is introduced

by Mourtzis et al. (2016) for the exploitation of machine

information in near real-time machine condition monitoring.

Similarly, in a batch order-based manufacturing environment, an

attempt is made to translate five generic key performance

indicators (KPIs) into a continuous real-time cost function.

Microelectronics and hard metal composite manufacturers

were given the task of controlling and optimizing resource

utilization, production efficiency, product-process quality,

environmental impact, and inventory. Thus, Psarommatis

et al. (2022) aim to make decision-making easier by

converting data from operations management into dynamic

financial cost models. The process of converting engineering

data from the physical level and operations management level

into financial metrics establishes a common language among

engineers, managers, and financial departments of a company, all

of whom have their own priorities but share the same goal of

increasing profitability. Additionally, defects are unavoidable

during manufacturing processes, and scholars have invested a

great deal of time and effort into improving defect prevention.

Zero Defect Manufacturing (ZDM) (Psarommatis et al., 2020a)

aims to eliminate manufacturing flaws. Furthermore,

technological advancements have made it possible to repair

defective products (Mourtzis et al., 2021a). This necessitates

more frequent rescheduling of productions in order to

account for the actions required to repair defective parts. To

that end, Psarommatis et al. (2020a) research focuses on ZDM

detection and repair strategies. The authors use a newly

developed hybrid Decision Support System (DSS) that detects

defects using data-driven and knowledge-based approaches

before automating the necessary decision-making processes.

To describe the production domain and enrich the available

data with contextual information, the system uses an ontology

based on the MASON ontology.

As far as the supply chain (SC) simulation is concerned,

Makris et al. (2011) present an extended presentation of supply

chain control logic in simulation. Furthermore, according to

Mourtzis (2011), modern manufacturing companies must

collaborate with their business partners throughout the

development, production, distribution, and after-sales service

processes. In addition, a model in the form of an Internet-

enabled technology system has been introduced, which offers

a variety of features such as digital organization, scheduling, and

monitoring to promote collaboration and flexible planning and

monitoring through extended manufacturing companies.

Regarding the Design and Planning of manufacturing

networks, existing systems also fail to address the numerous

issues of manufacturing network management in a systematic

comprehensive way as they apply to data and context not directly

related to manufacturing (e.g., long-term strategic planning vs.

short-term operational scheduling) as presented by Si et al.

(2011).

2.3 Adaptive or dynamic scheduling

In literature the term “Scheduling in manufacturing/

production” is considered as the preparation of a good quality

optimized baseline schedule, that is, constructible and easy to

maintain (i.e., Predictive Scheduling). Even this is correct;

however, in industrial world, real-time events severely disrupt

schedule integrity. Schedules can quickly become neither

optimized nor realistic if the responsible project management

team does not act dynamically to mitigate the impact of these

events. Accordingly, for the successful implementation of project

planning, the presence and implementation of a predefined

Adaptive or Dynamic Scheduling strategy to mitigate real-

time event disruptions is a necessity. Adaptive or Dynamic

Scheduling is the process of absorbing the effect of real-time

events, analyzing the current status of schedule, and

automatically modifying the schedule with optimized

measures in order to mitigate disruptions and ensure

resiliency (Mourtzis et al., 2021c).

Any of the above-mentioned real-time events could have a

significant impact on the efficiency or even the correctness of a

predefined schedule, necessitating a complete rescheduling of the

project in some cases. Dynamic Scheduling (DS) specifies the

strategy for generating the initial baseline as well as the strategy

for responding to real-time events (Fahmy et al., 2014). The three

main DS categories (or strategies) are presented in Figure 4.

There are some prerequisites to enable adaptive scheduling.

They must have the ability to, first, choose alternative resources

for various operations, and, second, allow variable throughput

time components based on shop floor conditions. As a result, the

adaptive scheduling requires the following inputs: 1) expected

shop floor conditions at the time of planned production, 2)

resource capabilities, and 3) throughput time components of the

various operations. The operations of the production orders are

assigned to the available resources in the first step of scheduling.

Here, the capabilities of the resources are matched to the product

requirements. When multiple resources are available to meet the

demands, the selection is made based on predefined criteria (e.g.,

Frontiers in Manufacturing Technology frontiersin.org08

Mourtzis 10.3389/fmtec.2022.937889

https://www.frontiersin.org/journals/manufacturing-technology
https://www.frontiersin.org
https://doi.org/10.3389/fmtec.2022.937889


shortest operation time, cheapest processing). The utilized

throughput time components are chosen based on the

expected shop floor conditions at the time of production. In

this way, when compared to planning with static master data, the

scheduling results are much more in line with the actual situation

on the shop floor (Reinhart and Geiger, 2011).

3 Applied innovations of scheduling in
cloud manufacturing

Engineers have seized the opportunity to improve existing

scheduling techniques and invent new ones as a result of the

introduction of digitalization. However, research has

progressed from theoretical discussions to the practical

implementation of the proposed solutions, with early

adopters providing feedback. Through several real-life use

cases, the following paragraphs will attempt to reflect the

impact of scheduling innovations in modern manufacturing

systems. Many promising and innovative technologies, such

as cloud manufacturing (CMfg) and digital twin (DT), have

risen to prominence as a result of Industry 4.0, while existing

technologies, such as scheduling, have thrived as well

(Mourtzis et al., 2021b). Complex hybrid logical and

terminal constraints, nonstationary process execution, and

complex interrelationships between process design dynamics,

power utilization, and system configurations all emerge as

scheduling issues in Industry 4.0 and cloud manufacturing

(Ivanov et al., 2018). Industry 4.0 key technologies,

particularly CMFg, enable flexible production, particularly

with CPS and highly customized assemblies, to deliver

manufacturing services on demand (Dolgui et al., 2020).

Data generation in ever-increasing volume, variety, and

speed, also known as Big Data, is one of the most

important outcomes of the emergence of IoT. The modern

mass customization range is built on the analysis of this data,

which means meeting the needs of individualized consumer

markets. The analysis of this data is necessary for the

improvement of knowledge repositories and decision-

making (Renu et al., 2013). Shukla et al. (2019) also discuss

next-generation smart manufacturing and service systems

that use big data analytics.

Tao et al. (2018) also present a conceptual framework and

typical application scenarios that address the role of big data in

supporting smart manufacturing. Aside from the positive

outcomes of IoT paradigms and Industry 4.0 examples, the

complexity is a significant challenge. Many methods for

quantifying complexity have been developed, based on

heuristics, statistics, and probabilities (ElMaraghy et al., 2012

andMourtzis et al., 2013a). Mourtzis et al. (2019) aim to fill in the

gaps in the literature on complexity quantification methods. To

that end, Figure 5 presents the Industry 4.0 model, which is based

on Information Theory and quantitatively assesses the

complexity and capacity of Industry 4.0 systems.

3.1 Decision making applications for smart
scheduling

Decentralized decision-making and real-time reaction to

unexpected developments, which occur frequently in both

manufacturing and consumer environments, are two

important factors that affect a production chain’s flexibility in

meeting demand. Papakostas et al. (2012) present an agent-based

approach to real-time and hierarchical manufacturing decision-

making problems. The global market landscape has changed in

recent decades, and hierarchical mass production appears to be

unable to meet the changing demand demands imposed by

globalization. Mourtzis et al. (2012b) examine the

performance and viability of centralized and decentralized

production networks under heavy production conditions in

order to contribute to this shift. To assess the quality of

automotive production networks under highly diversified

consumer demand, discrete-event simulation models (DES)

have been developed. Thus, multiple conflicting user-defined

parameters were used in the evaluation, including lead time, final

product price, versatility, annual production volume, and

environmental impact due to product transportation. Mourtzis

et al. (2013b) presented the mass customization paradigm in

conjunction with efficient manufacturing configurations.

Figure 6 shows the architecture tool for designing and

planning centralized and decentralized production networks.

The proposed approach is validated through a real life case

acquired from the CNC machine building industry.

FIGURE 4
Three main adaptive/dynamic scheduling categories (or strategies).
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As regards the validation of the proposed framework,

Decentralised Manufacturing Network (DMN) has a clear

advantage over Centralised Manufacturing Network (CMN)

based on utility values obtained from computer experiments

for the Exhaustive Search (EXS) and Intelligent Search Algorithm

(ISA). DMN has a clear advantage over CMN based on utility

values obtained from computer experiments for the EXS and ISA

(Mourtzis et al., 2013b; Figure 7). Table 2 shows the calculated

criteria values for the DMN and CMN. Table 1 shows the

calculated criteria values for the DMN and CMN.

The ISA results for the DMN case are 2.4 percent worse than

the EXS results, but they take 15,295 times less time to compute.

When compared to the EXS results, the ISA results are of high

quality, ranking in the top 1% of the highest utility value

solutions. As a result, ISA has a clear advantage over the EXS.

In most cases, DMN values are superior to CMN because DMN

allows for the formation of alternatives where suppliers can

perform assembly tasks, reducing total transportation distance

and thus lowering costs, CO2 emissions, and energy

requirements (Mourtzis et al., 2013a).

Two approaches are used in the decision-making process: an

exhaustive search and a smart search algorithm. Multiple

conflicting user-defined parameters, such as lead time, cost of

production, versatility, annual volume of production, and

environmental impact, are used to evaluate alternative

production and transportation schemes. The smart search

method’s performance is investigated using statistical design

of experiments (SDoE). Also included is an intelligent

algorithm calibration technique. Mourtzis et al. (2015a)

examine the performance of decentralized manufacturing

networks using the Tabu Search and Simulated metaheuristic

methods in conjunction with the Artificial Intelligence method in

order to contribute to the globalization paradigm. The decision

support system (DSS) enables the development and evaluation of

alternative production network configurations based on a set of

conflicting user-defined cost, time, performance, and

environmental impact criteria. The proposed solution is

explored through a probabilistic framework to guide the

decision-maker in selecting the values of the variable control

parameters to achieve high-quality network designs for

manufacturing.

The overall performance of manufacturing systems is

influenced by product complexity, particularly in highly

personalized markets. Production scheduling is an important

part of the decision-making process when dealing with the

challenge of high flexibility. As a result, Mourtzis et al.

(2015b) proposed a knowledge-rich short-term job-shop

scheduling mechanism that could be integrated into a mobile

app. The proposed approach is validated through a real-life case

acquired from European Metal-cutting and mold-making SMEs

(Figure 8). The operating principle focuses on short-term

scheduling of machine shop resources using an intelligent

FIGURE 5
Cyber physical systems in Industry 4.0 model adapted from Mourtzis et al. (2019).
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algorithm that generates and compares alternate resource

allocations to tasks. The adaptive calculation procedure results

in the need for a new order in order to evaluate alternative

schedules and make a quick decision. It also allows for the

presentation of the derivative schedule on mobile devices.

Mourtzis and colleagues present the method’s overall

workflow (Mourtzis et al., 2016b). Furthermore, a collection of

mobile apps designed to aid consumer integration during the

service design phase and subsequent network design is presented.

Real data from a high precision mold making machine shop

is used in the case study. The mold-shop is best suited to the

engineer-to-order (ETO) business model, which involves

designing and manufacturing custom molds and dies based on

specific customer requirements. This mold-injection molds are

one-of-a-kind, first-time-right products that vary greatly in terms

of quality requirements, tolerances, and, most importantly,

functionality. Mold-making is clearly a highly specialized and

knowledge-based industry. The shop floor consists of eight job

shops, each with 14 work-centers and a total of 40 individual

FIGURE 6
Workflow of the proposed design and operation method (Mourtzis et al., 2013a).

FIGURE 7
Comparison of the utility value and computation time of EXS
vs. ISA for DMN and CMN.
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resources (Figure 8). On the one hand, there are high-precision

CNC machines capable of milling, drilling, turning, electro-

discharge wire cutting, sinking, grinding, tapping, roughing,

polishing, and hardening operations and on the other human

operators that perform manually operations of design, fitting,

assembly, measuring, and polishing. The processing times, tasks,

sequences, and resources used for the manufacturing of thirty

(30) molds are included in the historical dataset. The information

was gathered over the course of about 3 years. According to the

analysis of historical data, five orders (moulds) are executed

simultaneously in the shopfloor on average. As a result, four

orders are currently being processed, and a new order enters the

system eight calendar days later. The schedules for these orders

have already been created and are in the process of being carried

TABLE 2 Criteria values for DMN and CMN obtained through EXS and ISA.

Criteria Units Decentralized
manufacturing
network -
exhaustive search
(DMN EXS)

Decentralized
manufacturing
network -
intelligent search
algorithm (DMN
ISA)

Centralized
manufacturing
network -
exhaustive search
(CMN EXS)

Centralized
manufacturing
network -
intelligent search
algorithm (CMN
ISA)

Product Transportation
Cost (PTC)

€ 168,238 168,326 168,215 167,505

Lead Time (LT) Days 53.390 54.380 53.710 54.040

Energy Consumption (EC) MJ 3.140 3.079 3.138 3.138

Carbon Emissions (CO) Tonne
CO2

942,979 953,512 941,712 947,338

Reliability (R) - 0.8909 0.8890 0.8815 0.8875

Quality (Q) - 76.73 74.38 77.60 76.80

FIGURE 8
Workflow of the knowledge-enriched short-term scheduling (KES) method. The method consists of two mechanisms, namely: (1) The
knowledge extraction and reuse mechanism and (2) the short-term scheduling mechanism (Mourtzis et al., 2016a).
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out. In order to accommodate the new order, the system must be

rescheduled. The identification number for the newmold order is

“13.23.” Table 3 lists the basic characteristics of “13.23,” as well as

the various components and tasks required for this mold.

The past case is the complete dataset of a previously

completed mold-making order, which includes the mold

specifications/attributes, scheduling parameters used, the

schedule followed (policy, sequencing, etc.), and

documented processing times and task sequencing. The

new order is compared to all 30 documented past cases in

the case study. For pairwise comparison of cases, Case Base

Reasoning (CBR) considers 10 attributes: Number of cavities,

type of hardening, injection side, mould size, core cap, ejector

rings, tamper evident, type of data, surface quality, and

number of basic components, with the following weight

factors: 0.15, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

0.1, 0.1, 0.1, 0.1, 0.1. The number of basic components that

must be manufactured has a direct impact on the required

number of manufacturing processes, so the attribute

“number of basic components” has a high weight value,

because the more required processes, the longer the

production flowtime. The shape of the stacks is another

important factor, that is, taken into account. Thus, there

are two options, moulds with cylindrical or rectangular

stacks. The attribute “length” is ignored during similarity

because the mould “13.23” has cylindrical stacks. The results

of a similarity calculation show that the moulds “13.23” and

“12.20” have an 83 percent similarity index. The planner then

adapts the latter’s process plan to prepare the dataset for the

former’s scheduling. The next most similar mold “11.38,”

which is 75% similar to “13.23.” The similarity mechanism is

then used in a second step to estimate the due date of the new

mould case. The pairwise comparison of previous and new

cases yields a ranked list of the most similar cases based on

the defined attribute weights. The estimated lead time for the

new case is then calculated by multiplying the manufacturing

lead time of the previous case by the similarity index. Thus,

based on the database of the company, Table 4 shows the

actual processing times for each mold. Furthermore, the

average set-up time required to perform a task is 30 min,

according to data retrieved from the mold-making industry

and analyzed. In order to reduce the complexity of the model,

the setup time is factored into the processing times (Mourtzis

et al., 2016a).

Then, the similarity index is calculated and two stored

cases “12.20” and “11.38” are the most similar to the new case

“13.23.” Following that, the case is adapted in order to

determine the manufacturing lead time. The similarity

measure between “12.20” and “13.23” is multiplied by the

lead time of the case “13.23” mold, and the result is divided

by 10. Lead time13.23 = 1209.6708 h is the resulting value for

the lead time estimation. When this lead time is converted to

calendar days, keeping in mind the working shifts of each

resource per day, the order’s due date is calculated to be

51 days. It should be noted that this estimate differed by only

3.15 percent from actual historical values, demonstrating the

accuracy of the lead time estimation method. It is also worth

noting that using a larger pool of previous cases improves the

method’s accuracy. The scheduling algorithm generates and

evaluates scheduling alternatives and their respective

performance indicators once the new case has been fully

adapted (Mourtzis et al., 2016a).

3.2 Cloud-based scheduling approaches

Another method for dealing with manufacturing shop-floor

disruptions and the growing number of product variants is to use

adaptive and flexible process planning methods. Mourtzis et al.

(2016b) describe a two-service cloud-based software platform,

that is, system-oriented. The first system uses a genetic algorithm

to generate non-linear process plans. The second service uses

sensors, operator inputs, and device schedules to collect data

frommachine tools. An information fusion technology processes

TABLE 3 Attributes of the compared mould cases (Mourtzis et al., 2016a).

Attributes Mould 13.23 Mould 12.20 Mould 11.38

Number of cavities 6 2 4

Type of hardening Very good Very good Very good

Side of injection Moving side Moving side Moving side

Mould size Medium Large Large

Core cap No Yes No

Ejector rings 6 2 4

Temper evident No No No

Type of data Idea Idea Idea

Surface’s quality Mirrors Mirrors Mirrors

Number of basic components 9 12 11
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monitoring data in order to feed the process planning system

with the status, requirements, and availability time periods of

machine tools (Figure 9). The proposed work is validated in a

white-goods industry.

In order to demonstrate the functionalities for monitoring

distributed manufacturing resources and performing remote

device control, as well as performing distributed and adaptive

process planning, the developed platform is implemented and

TABLE 4 Lead time estimation produced by the case based reasoning (CBR) mechanism (Mourtzis et al., 2016a).

Process time (h) Mould 11.38 Mould 12.20 Mould 13.23

Roughing 406.5 333.5 212.5

Finishing 87.0 296.5 221.8

Air and water circuit 81.0 80.0 89.5

Fitting 124.5 46.5 43.5

Polishing 69.5 33.0 41.5

Hardening 504.0 504.0 504.0

EDM 34.0 20.0 30.0

Electrodes 51.0 7.5 11.5

Other processes 61.5 23.5 10.5

Assembly 72.0 86.5 72.0

Design 40.0 12.25 12.3

Lead time in hours (days) 1531 (64) 1443.25 (60) 1249 (52)

FIGURE 9
Overall architecture of the proposed framework.
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validated in a pilot case involving three different machine tools

on three different shop floors. After the data acquisition is set up,

the sensor board collects data from the sensors and sends it to the

cloud via the microcontroller (Mourtzis et al., 2016d; Figure 10).

The data is then processed using an information fusion technique

that combines the Analytical Hierarchy Process (AHP) and

Dempster–Shafer (DS) theories of evidence. The DS theory of

evidence is directly applied on the spindle and axes statuses at the

low stage of fusion. The masses for both “Available” and “Busy”

statuses for the two sources are 0.5 and 0.9, respectively, at this

stage. The AHP is used because the higher stage of fusion

includes three heterogeneous sources that provide information

(i.e., sensory system, operator, and machine schedule). The

weights of each source are 0.4917, 0.3770, and 0.1313,

respectively, for sensory system, operator, and schedule.

Precision, synchronization, flexibility, error probability, and

prediction capability are some of the criteria used in the AHP.

During the operation of the system, the monitoring service

provides all of the required information to the adaptive

planning system regarding the availability of the machine

tools and their capabilities.

In order to meet the demands of mass personalization market

demand, companies need to change their supply chains

(Mourtzis, 2022). A new supply chain is required to respond

to the dramatic changes imposed by changing market conditions.

But in a world where natural disasters and pandemic crises are

becoming more common, such new supply chains must also take

environmental factors into account. Some researchers have

recently demonstrated how Industry 4.0 technologies can aid

this transformation (Ivanov et al., 2018). Under the Industry

4.0 concept, manufacturers face the challenge of producing

highly customized goods in small batches. One way to

respond to ever-changing demands and improve resource

flexibility is to digitize production processes. The integration

of Internet of Things (IoT) technologies in Automated

Customized Shopping to create a sustainable environment of

connected distribution and selling points is the solution to these

challenges. Yang et al. (2019) present a review of IoT technologies

FIGURE 10
Visualization of the monitoring service graphical user interface for the DMG DMF 260 milling machine.
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and systems, which are the drivers and pillars of smart

manufacturing data-driven developments.

The Fourth Industrial Revolution has elevated the

importance of efficient and adaptable manufacturing as a

research priority. Complex production lines are required to

meet the demand for personalized products. Due to increased

complexity, manufacturing process planning, and scheduling

seeks to identify near-optimal solutions to ensure quick and

precise decision making. Therefore, Mourtzis et al. (2020a) aim

to contribute to the field of adaptive scheduling by proposing an

algorithm that allows machines, workers, and the production

manager to collaborate in near real-time. An SME that

manufactures solar panels will present a framework for self-

adaptive scheduling in a real-world manufacturing case

(Figure 11). The proposed framework for self-adaptive

scheduling in a real-world manufacturing case is derived from

an SME that produces solar panels.

Data from a SME production line for solar panel heaters

was used to validate the proposed algorithm. Its goal is to mass-

produce a single heater model, which will change when a newer

model is designed and put into production. This Cellular

System is made up of multiple cells. The jacket, caps,

flanges, and sleeves of the final product are all made by

different cells. Semi-final assembly, final assembly, and

quality control stations are also available. Expected and

unexpected events can occur during the operation of a

manufacturing cell, necessitating immediate rescheduling.

One scenario involved an upcoming scheduled maintenance

operation, which necessitated the creation of a new adapted

schedule in order to reduce production latency. For the

proposed solution, the parameters of the algorithm were

adjusted as follows: Selected Number of Alternative (SNA) at

20% of the maximum SNA provided; Sampling Rate (SR) at

30% of the selected SNA and Decision Horizon (DH) at 2.

Furthermore, the different weight coefficients for calculating

utility values were set to 0.25, 0.5, and 0.75, respectively. The

results were compared to the results obtained from the SME’s

production system current scheduling method. The

comparison, as shown in Figure 12, revealed that the

proposed methodology provided 15% higher utility, resulting

in 15% better resource scheduling based on the previously

discussed criteria after the event had occurred and in

significantly less computational time.

According to the proposed findings, increasing DH may

have a negative impact on the utility as well as the convergence

of the solution. Furthermore, a sufficient parameterization of

the SNA and SR is at approximately 30% and 40%,

respectively.

FIGURE 11
Architecture of the proposed decision-making adaptive scheduling framework (adapted from Mourtzis et al., 2020a).
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Finally, due to the massive growth in available data, shop

floor decision making has become more complex than ever

before. Critical judgment and decision-making have become

critical requirements of modern manufacturing problems as

market demands for product quality and delivery times have

increased. Human decision-making has become insufficient, and

manufacturers are struggling to meet their objectives. The IoT

and CPS, which are cornerstones of Industry 4.0 smart factories,

can help with efficient decision making. Thus, one of the most

important issues that engineers must address is production

scheduling. The decision support tools of the Industry 4.0 era

help to schedule production effectively while taking into account

more data and constraints than ever before. To that end,

Mourtzis et al. (2020b) study proposes a production

scheduling method that checks resource and task status using

historical and near-real-time data, providing insight to

production engineers and enabling better decision making. A

case study in the structural steelwork industry validates the

findings.

3.3 Scheduling in cloud manufacturing

Based on the above-mentioned, order/task submission,

preliminary order/task processing, scheduling, result delivery,

and service assessment are the five phases of the entire scheduling

process in cloud manufacturing.

• Submission of orders/tasks: The entire scheduling process

begins with the submission of orders/tasks from

customers. Tasks can be classified into design tasks,

manufacturing tasks, test tasks, and so on, depending

on their functional requirements, or they can be

combined (Liu et al., 2017).

• Preliminary order/task processing: After orders/tasks are

submitted to a cloud platform, they must first be

processed, which includes classification, description,

analysis, decomposition, and other functions. Following

the preliminary processing, the requirements for each

task, including functional and non-functional

requirements, are clarified. The former refers to the

function that must be carried out in order to complete

the task (for example, a part or a product with a specific

function). The realization of the function necessitates the

invocation and execution of specific types of services. The

latter usually refers to a set of criteria (e.g., time, cost, and

quality) as well as the constraints that come with them

(Liu et al., 2017).

• Scheduling: The scheduling management module, with the

help of the scheduling supporting module, service

management module, and monitoring management

module, schedules tasks after preliminary order

processing. The core scheduling module is in charge of

creating optimal schedules and overseeing task execution.

The scheduling supporting module is in charge of

maintaining scheduling metrics, rules, methods, and

algorithms, as well as assisting the scheduling

management module (e.g., assisting the scheduling

management module in determining scheduling

methods). The service management module job is to

manage service-related activities like service

classification, search and matching, composition, and

assessment that are required for scheduling. The

monitoring managing module is critical for monitoring

FIGURE 12
Comparison graph between previous production scheduling method and the intelligent search algorithm (ISA) (Mourtzis et al., 2020a).
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the status of resources and orders on factory floors (Li et al.,

2015) and provides real-time status information (e.g.,

machine availability), that is, required for achieving

optimal scheduling (Mourtzis et al., 2016a).

• Result delivery: After a task is completed, associated

resources are released, and the ultimate execution

results (e.g., parts, components, or end-products) are

delivered to consumers via logistics or the Internet (Liu

et al., 2017).

• Service assessment: Consumers can evaluate the services

they have used after they receive the execution results (Feng

and Huang 2018). The evaluation results reflect their

overall level of satisfaction with the results, and they can

also serve as a useful reference for future customers when

choosing services (Cui et al., 2016).

There have been several papers published recently that focus

on the scheduling process (Table 5).

TABLE 5 Typical work on scheduling in cloud manufacturing.

References Scheduling
algorithms

Performance criteria Scheduling
methods

Nature of tasks

Laili et al. (2011) Genetic algorithm Time Static Multiple sequentially

Li et al. (2016) Max percentages
algorithm

Makespan, resource utilization, load
balancing

Static executed design task single scientific workfiow
task

Lin and Chong
(2017)

Genetic algorithm Time – Single composite computing tasks

Li et al. (2012) – Cost, capability Dynamic Multiple composite tasks

Tai et al. (2013) Genetic ant Time, capability, quality, cost Dynamic Multiple composite

Colony algorithm manufacturing tasks

Cheng et al. (2014) Genetic algorithm Profit, task execution success rate Static Multiple composites, Homogeneous
manufacturing tasks

Jian and Wang
(2014)

Particle swarm
optimization

Time, cost Static Single composite manufacturing tasks

Ma et al. (2014) Contract net Time Adaptive Multiple tasks with different numbers of
operations

Wang et al. (2014) Particle swarm
optimization

Time Static Multiple atomic manufacturing tasks

Single composite task

Lartigau et al.
(2014)

Artificial bee colony Availability, reliability –

Mourtzis et al.
(2015c)

Intelligent search
algorithm

Cost, time, quality Adaptive Multiple tasks

Cao et al. (2016) Ant colony Time, cost, quality, service Static Single composite

Li et al. (2017) optimization Genetic
algorithm

Time, cost, load balancing Static manufacturing task Multiple composites,
heterogeneous manufacturing tasks

Jiang et al. (2021) Genetic algorithm Makespan, cost Static Multiple products to be disassembled

Li et al. (2016) Specifically designed
algorithms

Makespan Static Multiple homogeneous jobs

Liu et al. (2017) Workload-based
heuristic

Time, cost, quality Static Multiple heterogeneous manufacturing tasks

Zhang et al. (2017) Game theory Time Static Multiple composite, heterogeneous
manufacturing tasks

Lu et al. (2017) Biogeography- based
optimization

Time, load balancing, machine utilisation Static Multiple composite, heterogeneous
manufacturing tasks

Xiao et al. (2015) Shuffied frog leaping
algorithm

Cost, time, capability utilisation, tardiness Static Manufacturing tasks

Yuan et al. (2017) Particle swarm
optimization

Load balancing, reconstruction cost, delayed
workload minimisation

Static Multiple different kinds of products

Wang et al. (2017) Particle swarm
optimization

Makespan Static Multiple jobs

Zhang and Wong,
(2017)

Genetic algorithm Cost, priority, reliability, energy
consumption, customer satisfaction

Dynamic Multiple independent orders

Zhou and Zhang
(2016)

– Time Dynamic Multiple composite tasks
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4 Challenges and trends

4.1 Opportunities and challenges of I4.0 to
production scheduling

Customer demands, which are characterized by personalization,

call for a more rapid and accurate market response from

manufacturing enterprises today, against the backdrop of

globalization and fierce market competition. Enterprises are

expected to establish a more efficient supply chain and improve

their operational efficiency through horizontal integration or inter-

organizational collaboration (such as cloud network synergy,

human-equipment synergy, and equipment synergy) to meet this

requirement (Mourtzis et al., 2022a). As a result of the socialization

of global production and life, the impact of global climate, and the

recognition of the concept of environmental protection and

sustainable development, environmental protection (emission

reduction, resource conservation, recycling and reuse) has

become another focus for manufacturing enterprises (Sachs et al.,

2021). As a result, in light of the current manufacturing industry

development and reform, scheduling will face the following

challenges as a key tool for optimizing production operations:

• Sustainable Manufacturing Scheduling (Jena et al., 2020).

• Mass customized manufacturing scheduling (Wan et al.,

2021).

• Inter-and intra-organizational collaboration scheduling

(Frazzon et al., 2020).

While Cyber Physical System (CPS) and adaptive

manufacturing may be the most influential I4.0 factors for

operational scheduling (Monostori et al., 2016), scheduling is also

influenced by other layers of organizational decision-making. As a

result, in order to fully assess the potential impact of I4.0 on

scheduling, the concepts, methods, and technologies of I4.0 that

affect other layers of organizational decision-making, such as

Internet of Things (IoT), horizontal and vertical integration, big

data, and cloud computing, have to be considered (Meissner and

Aurich 2019). Table 6 lists the general opportunities in the

scheduling field, as well as the most significant challenges

associated with each of these opportunities. The table also

includes a list of critical research and operational fields that are

relevant to each challenge. It has to be also noted that big data and

cloud technologies (i.e., cloud computing, cloud manufacturing)

appear to be mostly regarded as potential solutions to some of the

identified challenges in the scheduling field, rather than posing new

challenges (Zhong et al., 2017).

4.2 Development trends

According to literature, researchers have begun to use

advanced information and communication technology (such

as IoT, cloud computing, CPS, big data, edge computing, and

AI) to address the challenges that the manufacturing system has

faced in Industry 4.0. Therefore, the implementation of these

technologies will have significant impact on the production

system, potentially leading to changes in production

scheduling modes.

• Adaptive and self-organized scheduling (Dolgui et al., 2019;

Mourtzis, 2020a)

TABLE 6 Opportunities and challenges in scheduling stemming from the implementation of I4.0 (Parente et al., 2020).

I4.0 area Opportunities Challenges Critical scheduling areas
(CSA)

CPS Embedded systems, including
smart sensors and monitoring

To process the large number of events and analyze
the large amounts of generated data relevant for
scheduling

Enhanced online, real-time, and reactive scheduling

Machine-to-machine/
Human–robot collaboration

To account for technological limitations of smart
sensors and monitoring technologies in schedules

Holistic scheduling, including higher hierarchical
decision levels included in the scheduling process

Machine proactiveness and self-scheduling

Different optimization tradeoffs considering the new
interactions

Scheduling under uncertainty, incomplete and missing
data

IoT & Services Servitization To achieve high schedule adaptability required by
mass customization

Decentralized and autonomous decision-making

Prominence of the more flexible scheduling paradigms

Horizontal and
Vertical integration

Increased information and
transparency

To integrate the newly available information and
concepts into scheduling

Holistic scheduling, considering more supply chain
information and higher hierarchical decision levels
included in the scheduling process

Adaptive
manufacturing

Increased flexibility and
effectiveness in complex systems

To manage, optimize, and schedule in highly
complex environments

Decentralized and autonomous decision-making
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• Big data driven scheduling (Kong et al., 2020)

• Collaborative scheduling

o Supply-chain collaborative scheduling (Dolgui et al.,

2020)

o Cloud-edge collaborative scheduling (Ma et el., 2020)

o Human-machine collaborative scheduling (Zhou et al.,

2019)

• Digital Twins-based scheduling (Zhang et al., 2019; Wang

and Wu, 2020)

4.3 Disadvantages of production
scheduling in manufacturing

Within manufacturing operations, production scheduling is

one of the most critical operations. There is a lack of planning

and execution in the overall production process without

adequate production scheduling. Production scheduling is

used by many operations and production facilities in order

to determine when products will be manufactured. However,

there are a few drawbacks with regards to the utilization of

production scheduling in manufacturing that must be

considered before the tool/software is implemented. The

main drawbacks of the identified production scheduling

techniques that require improvement are as follows (King

et al., 2021):

• Complexity: A common disadvantage for smaller

manufacturing industries. Because of the numerous

variables associated with production scheduling and

production scheduling software, a significant amount

of time is required to fully understand the operation.

When it comes to production scheduling, it is critical to

keep track of the production crews, which can result in a

lot of work for the person in charge of production

scheduling. Additionally, the usage of the scheduling

software, there are many details that have to be

addressed.

• Cost: The cost of implementation is another potential

issue with production scheduling. The manufacturing

industries may need to purchase software and other

resources to aid in the implementation of a

production scheduling system. Next, they will also

need to pay for training so that the software can be

used. This may necessitate devoting an employee to the

training, which is costly. Thus, managers and engineers

should consider whether the additional cost is justified

before implementing production scheduling.

• Lack of flexibility: Several factors in the manufacturing

process can significantly alter the outcome. The

businesses may not be able to adapt quickly enough to

avoid problems if they are on a production schedule. It

can be difficult to stop the process and start working

elsewhere once materials have arrived and the staff is

ready to work.

• Skewness: The difficulty in scheduling processes is the final

potential issue with production scheduling. For instance, if

an unexpected machine breakdown occurs for a specific

timeslot, the entire production schedule is disrupted.

While there are some drawbacks to production scheduling,

it is a requirement for all manufacturing operations. To stay

ahead of the competition, industrial and manufacturing

companies should have an adequate and advantageous

production system.

4.4 Industry 4.0 adoption level

Industry 4.0 is currently recognized as a key factor in the

competitiveness of businesses currently and in the future. The

readiness and implementation of various technologies, however,

varies from enterprise to enterprise. An Industry 4.0 index has

been developed based on the performed factor analysis and

allows businesses to assess their current Industry 4.0 maturity

(Honti et al., 2020). Enterprises can quickly determine their own

level of Industry 4.0 technology readiness thanks to the

VPi4 index (Pech and Vrchota, 2022) and its methodology.

The index is a tool that managers can use to set strategic

goals and create plans that address the issues raised by the

Fourth Industrial Revolution. It can also be a factor in

choosing priorities for the future development of an enterprise

when deciding on investment plans. The managers can also

contribute to the choice of projects that should be carried out

in order to maximize synergies.

Summarizing, adoption of Industry 4.0 technologies and use

cases varies significantly by continent and by industry sectors.

According to IoT Analytics and Industry 4.0 and Smart

Manufacturing Adoption Report the following can be

summarized regarding the international level of Industry

4.0 adoption (Wopata, 2020):

• Less than 30% of manufacturers report widespread

adoption of Industry 4.0

• Regional variations: North American manufacturers have

adopted Industry 4.0 technologies the most (36%), while

the adoption percentage of EuropeanManufacturers is 27%

and Asian with a focus on Chinese manufacturers is 20%.

• Leading manufacturers in Industry 4.0 adoption are:

Siemens, General Electric (GE), and Boeing.

a) Siemens

i) Visionary Industry 4.0 Strategy

ii) New digital business models

iii) Extensive Industry 4.0 implementations in own

smart factories

b) GE
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i) Digital Twin Approach

ii) Great Digital Products

iii) High usage of Industry 4.0 implementations in own

smart factories

c) Boeing

i) Implementation of Digital Twins in a large scale

ii) Pillar technologies of Industry 4.0 such as

Augmented Reality, Simulation and 3D Printing

• For many years, the automotive industry has been driven

by competition to innovate. Due to that, automotive

Original Equipment Manufacturers (OEMs) have

embraced new technologies like robotics and

FIGURE 13
Workflow of the adaptive scheduling algorithm for Machine Tool Monitoring.
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management techniques to increase operational

efficiency and gain a competitive edge

5 Discussion and outlook

5.1 Adaptive shop-floor scheduling
framework

Short-term scheduling is one of the most common

manufacturing decision-making issues. In modern shop

floors, increasing product variety creates even more

uncertainty and turbulence, making scheduling a difficult

problem. The integration of scheduling and monitoring

systems will allow for adaptive decision-making, which will

improve shop-floor awareness and information flow. A typical

case study in Industry 4.0 manufacturing facilities is the Data

Monitoring Systems in Shopfloors. The monitoring system’s

data is used to identify potential machine-tool breakdowns and

create feasible and adaptable schedules. The data from the

monitoring system can be used in two ways. In the first case,

the scheduling tool and algorithm can request monitoring data

from the monitoring system. The second method is that the

monitoring system informs the scheduling tool and algorithm

about shopfloor turbulences. The monitoring system checks the

progress of running tasks and retrieves information about their

status. Each scheduled task can have one of the following status:

Completed, in progress, or pending. In order to produce

feasible and accurate schedules, the aforementioned data are

used as input to the scheduling algorithm. According to

Mourtzis and Vlachou (2018), Adaptive scheduling is

defined as the ability to re-generate alternative and feasible

schedules based on the current shop-floor situation. Re-

scheduling is done whenever a change is required, as

determined by the monitoring system’s feedback.

Furthermore, re-scheduling can be done in two ways based

on the information gathered by the monitoring system:

• When the status of a machine tool is detected to be down, as

well as when it returns from down or set up mode

• When the monitored processing time exceeds the

scheduled time, the makespan is greatly influenced

More specifically, and as shown in Figure 13, the status of

the machine tools is investigated first. The running tasks are

monitored if the status of the machine tools is not detected as

down or if the machine tools do not return from down or setup

mode. The status of each task, as well as the task duration, is

monitored. The time required to complete a task based on the

generated schedule is referred to as task duration. If a

monitored task duration is longer than the scheduled task

duration provided by the scheduling tool, the system looks

into two possibilities:

• The machine tool next task is checked by the system. The

overall schedule is shifted forward if the end time of the

monitored task is greater than the start time of the next task

in the machine tool

• The post-condition of each task is also checked by the

system. If the end time of a task is greater than the start

time of the post condition, the overall schedule is shifted

forward

underWhen rescheduling is required in any of the situations, the

monitoring system calculates the pending tasks as well as the

availability of each machine tool. As a result, when rescheduling

is necessary, the monitoring system provides the scheduling

algorithm with the machine tools, as well as their availability and

pending and ongoing tasks. To generate feasible scheduling

alternatives, the scheduling algorithm is used, which consists of a

multi-criteria decision-making algorithm. As presented in the

workflow of Figure 13, the determination of the alternatives is

the first step in the procedure. The next step is to identify the

attributes, which are the criteria used to rank the options. Following

the definition of the criteria, the consequences must be defined. The

values of the attributes at the time the decisions are made in order to

evaluate the alternatives are the consequences. The proposed

algorithm takes into account the following main criteria:

flowtime (6), tardiness (7), cost (8), and quality (9). Finally, in

comparison to other approaches, the proposed scheduling algorithm

is chosen because it has the ability to adapt to new orders and

perform quick rescheduling with high-quality solutions (Mourtzis

et al., 2013a) as presented in Table 7.

5.2 Industry 4.0 and beyond

There have been several responses and discussions in the

research community since the European Commission published

its Policy Brief on “Industry 5.0—Towards a Sustainable, Human-

Centric, and Resilient European Industry” (Breque et al., 2021). The

report acknowledges the ability of industry to achieve societal goals

beyond employment and growth to become a resilient provider of

prosperity. This is done by requiring production to respect the limits

of our planet and putting industrial worker wellbeing at the center of

the production process.

While Industry 5.0 is more value-driven toward practical

applications of readily accessible enabling technologies in

industry, Industry 4.0 is more technology focused (Xu et al.,

2021). Three interconnected pillars are considered the core

values of Industry 5.0: 1) human centricity, 2) sustainability,

and 3) resilience. It has to be emphasized that:

“Industry 5.0 complements the existing Industry

4.0 paradigm by having research and innovation drive the

transition to a Sustainable, Human-centric & Resilient

European industry”
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Additionally, to strike a balance between economic growth

and the eradication of social issues in society, the Japan Cabinet

(CAO, 2016) has proposed the term Society 5.0 (Deguchi et al.,

2020). In Society 5.0, people, things, and systems are all

connected in cyberspace and optimal results obtained by AI

exceeding the capabilities of humans are fed back to physical

space. This process brings new value to industry and society in

ways not previously possible as presented in Figure 14.

Thus, both Industry 5.0 and Society 5.0, recognize the power of

industry to achieve societal goals beyond jobs and growth, to become a

“resilient provider” of prosperity by making production respect the

boundaries of our planet and placing the wellbeing of the industry

worker at the center of the production process (Mourtzis et al., 2022b).

5.3 Adaptive bio-inspired transformation
of manufacturing

Optimization as a general topic, has an increased added

value, as it enables engineers to improve manufacturing and

production systems. Up until the last decade, optimization has

been limited to two approaches, in particular 1) deterministic,

and 2) meta-heuristic. Although the above-mentioned

techniques have provided adequate results, there is still fertile

ground for further improvement. In Figure 15, Manufacturing is

opposed to Biology, in an attempt to identify the possible aspects

that could be affected by bio-inspired engineering. Essentially,

the content of Figure 15 could facilitate engineers towards the

design and development of frameworks for the integration of bio-

inspired approaches/algorithms in modern manufacturing

(Byrne et al., 2018.)

Undeniably, during the last decades manufacturing as well as

Information and Communication Technologies (ICT) have

undergone tremendous changes, especially when taking into

consideration the advances in the computational power and

the hardware/network capabilities. As it is commonly

concluded, AI is not a revolutionary technological field,

however, given the above-mentioned technological advances, it

resurfaced during the last 5 years and under the framework of

Industry 4.0. AI approaches, and especially optimization is based

on the setup of a proper mathematical model, that efficiently

describes the physical model. Consequently, in order to optimize

TABLE 7 Time required for scheduling within a week based on the adaptive scheduling and the traditional approach.

Time required for
scheduling/week

Adaptive scheduling (min) Traditional approach (min)

Initial schedule 15 90

Rescheduling 30 60

Total 45 150

FIGURE 14
Society 5.0 as an ecosystem (Okamoto, 2019).
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certain parameters the implementation of suitable fitness

functions is necessary, in order to explicitly define the

optimization goals, criteria, as well as the limitations. On the

contrary, physical systems, and nature’s optimization models,

operate under an entirely different model, which could be

described by the term “Open Adaptation.” Essentially, Open

Adaptation does not require the strict setup of the above-

mentioned parameters, thus entailing an advanced level of

intelligence versus the evolutionary intelligence of modern

computational systems. By extension engineers will have to

further work on the comprehensive understanding of the

natural optimization systems, in order to successfully reverse

engineer its properties, the models’ structures, and the operating

principles, before proceeding with application in modern

production and manufacturing systems.

Considering the statements made in the previous paragraph

of this Section, one can conclude, that natural systems are very

complex systems, having undergone centuries of development,

adaptation, and optimization. Delving deeper into the structure

of the natural systems, a possible approach for the successful

decoding of these systems, would the creation of parallels. More

specifically, engineers could focus on depicting natural systems as

engineering systems or interpreting natural processes in

engineering/system processes. For example, immune systems

logic, could facilitate in the design and development of crisis

management strategies. Concretely, robustness and resilience of

systems, which has been largely researched through the last

2 years, could imitate the principles of immune systems in

order to detect volatile behaviors, detect and recover from

external disturbances and therefore to reschedule the

operation of the production network, in order to minimize

undesired effects. Similarly, nature uses collective systems,

which can be realized as smaller communities (e.g., insects).

Such social insect societies and their operating principles are

useful for the development of scheduling approaches, e.g., job-

shop scheduling, and their contribution could extend to planning

and layout of entire manufacturing networks.

Ultimately, nature could be considered as a black box, which

engineers have not yet fully decoded. However, as it is apparent,

there are several underlying opportunities if lessons are to be

learnt from nature and its models/mechanisms. However, some

key points for consideration and future research need to be

discussed. Firstly, so far, engineering was based on heavily

structured systems, systems that in various cases are not

adaptable/flexible to changes, centralized, and all aspects are

over-defined, thus minimizing the degrees of freedom. On the

contrary, natural systems operate in an abstract way. Therefore,

Ueda has proposed a new concept for manufacturing systems, the

Biological Manufacturing Systems (BMS) (Ueda, 1992; Ueda

et al., 2000). Among the key features/benefits of the BMS is

the ability for real-time scheduling, reducing the need for global

control of the production network, the ability of disengage

production for the need for line setup by integrating modular

and mobile elements.

According to Ueda, BMS do not require global control,

thus control is passed to the lower levels of the production.

Consequently, the implementation of suitable frameworks

that provide with decision-making tools/functionalities to

the lower production levels is required, while the upper

production levels receive adequate insights regarding the

FIGURE 15
The bi-directional systematic approach for the identification of potential impact of biological transformation of manufacturing.
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facility and network operations. Thus holonic approaches

have emerged, realizing individual entities of the

production as holons/agents, distributed within the

production network, capable of co-operating with other

holons, but autonomous as well (Mourtzis et al., 2021c).

Currently, due to the vast amount of data produced at a daily

basis frommanufacturing facilities, and the increased complexity

of the digital/virtual models employed for describing physical

production networks, increased computational resources are

required. Therefore, given the continuously connected device

networks complex calculations can be performed more easily.

Ephemeral computing can be realized as a paradigm that enables

the execution of complex computational tasks by exploiting

heterogeneous computational resources associated with a

limited time (Mostaghim, 2010).

6 Conclusion

In this research work the latest advances and the trends in

adaptive scheduling in the Cloud Manufacturing scheme have

been investigated. It can be stressed out that the Industry 4.0 as

well as the upcoming Industry 5.0 are the key enablers, and the

industrial domain has to take advantage of the constantly

evolving technologies and techniques in order to 1) remain

competitive in the challenging global landscape, 2) become

even more resilient, 3) integrate humans at a greater scale

(human centricity). The current status of Industry

4.0 implementation (at a global scale) indicates that although

there is adequate technological background/support, industries

have to pick up the pace in order to reach a common level of

technological integration. By extension, this will enable modern

manufacturing and production systems and networks to start

working on the human-centric aspect of the systems, and

consequently to embrace such technologies. In order to do so,

research focus has been set on the topics of Smart Manufacturing,

CloudManufacturing, and Scheduling. The latter, as examined in

the previous paragraphs is a multi-faceted problem that requires

special attention from the research community. Industrial

scheduling, and by extension Planning and Control, despite

being very old engineering challenges, can be facilitated by the

new technologies introduced under the Industry 4.0 framework,

and more specifically, by Big Data Sets, as well as the constantly

increasing computational power. On the hand, Quantum

Computing, which is still in its infancy will further facilitate

the processing of even bigger data sets, in shorter times, thus

engineers will be able tomodel physical systems in a more natural

(close to natural) way.

By and large, Industry is constantly getting modernized with

the integration of cutting-edge technologies. During the last

decade, digital technologies have been advanced considerable,

thus unveiling new opportunities for the optimization of the

modelling, design and operation of manufacturing systems and

networks. In the current era of digitalization, researchers are

putting effort on developing solutions based on Artificial

Intelligence algorithms. Indeed, AI can be considered as a

mainstream topic that will elevate the Smart Manufacturing

paradigm.
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