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Digital Twin is one of the fundamental enabling technologies for Industry 4.0 as it allows the
convergence between a physical system and its digital representation. A proper modelling
method is the prerequisite for successful digital twin implementation. The manufacturing
process determines critically the quality of the manufactured products. The influential
elements need to be systematically organized when modelling a manufacturing process.
This paper proposes a semantic modelling method named RMPFQ (Resource, Material,
Process, Function/Feature, Quality) aiming to interlink the main influential factors related to
product quality during manufacturing processes. The proposed RMPFQ model is
formalized with an application ontology following the IOF-Core middle-level and BFO
top-level ontologies. Based on this ontology, a semantic-driven digital twin architecture is
designed and mapped to the recently proposed Cognitive Digital Twin concept. A
correlation matrix is designed to quantify the relationships among RMPFQ elements
thus to facilitate the industrial applications. A case study based on the assembly
process of a washing machine is conducted to demonstrate the implementation
procedures of the proposed RMPFQ method.
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1 INTRODUCTION

Digital Twin (DT) is a virtual, digital equivalent to a physical product (Grieves, 2014). It is a concept
fostered by various advanced technologies such as Cyber-Physical Production Systems (CPPS),
Industrial Internet of Things (IIOT), Artificial Intelligence (AI), 3D modelling, system simulation,
digital prototyping etc. (Chavarría-Barrientos et al., 2018; Wang et al., 2019). DT is one of the
fundamental enabling technologies for Industry 4.0, as it makes possible of the convergence between
a physical system and its digital representation (Wang et al., 2015; Schleich et al., 2017). Aiming at
modelling complex structures and processes, DTs enables to detect physical problems sooner, predict
outcomes more accurately, and create higher quality products (Stavropoulos and Mourtzis, 2022).
The concept of DT has been evolving rapidly in recent years and has been widely applied in various
industrial scenarios such as system modelling and simulation (Jinjiang Wang et al., 2018), design
validation (Detzner and Eigner, 2018), manufacturing process optimization (Wang et al., 2019) etc.
The modelling of DT plays a critical role in its practical applications. An appropriate DT model
should be capable of ensuring a correct match with the original physical system and representing its
actual conditions. However, it remains a challenging task to build a feasible DT model for
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manufacturing systems and processes due to their complexity in
industrial applications. The manufacturing processes can
significantly affect the quality of a product. In the
manufacturing phase, the designed quality of a product is
expected to be realized by machining or assembling materials
according to certain production processes (Foehr et al., 2013b).

Zero-Defect-Manufacturing (ZDM) (Psarommatis et al.,
2020) is one of the important targets of Industry 4.0 and DT
is expected to empower this vision. When designing a DT model
for a manufacturing system, all the relevant factors, such as
production design, machining processes, and the inbound
logistic purchasing all necessary materials, as well as the
interactions among them need to be taken into consideration.
This leads to the interoperability issues among different
stakeholders from inside or outside of a company. It is due to
the fact that data from different sources usually have
heterogeneous syntax, schema, or semantics, making different
stakeholders difficult to interoperate. Semantic engineering
provides solutions to achieve semantic interoperability in a
heterogeneous information system by defining formal models
for domain knowledge.

The main research questions this study aims to address are: 1)
how to formally describe a manufacturing system with semantic
engineering approaches? 2) How to integrate semantic
technologies with DTs to enhance their cognitive capabilities? 3)
What are the available tools enabling the implementation of
knowledge modelling for manufacturing systems? Targeting at
these research questions, this paper proposes a semantic modelling
method for manufacturing processes with special focus on the
quality perspective. It covers the main elements that can impact
product quality in the manufacturing phase, including
manufacturing resource, materials, production processes,
product features and functions. The proposed model is further
used as the basis for a semantic-driven digital twin architecture
which is the first step towards the recently proposed Cognitive
Digital Twin (CDT) paradigm (Zheng et al., 2021).

The rest of the paper is arranged as follows: Section 2
introduces some existing studies related to this paper. Section
3 describes the proposed RMPFQ model, as well as an enabling
correlation matrix and an application ontology structure. Section
4 presents the architecture of the semantic-driven DT
architecture and its relations with CDT. Section 5 introduces
a case study extracted from an industrial application scenario to
demonstrate the implementation procedures of the proposed
RMPFQ model. Finally, Section 6 summarizes the paper with
a conclusion about the preliminary contributions of the proposed
approach and the outlook into the future work.

2 LITERATURE REVIEW

This section reviews the core concepts mentioned in this study
including Digital Twin, semantic modelling and the recently
emerged Cognitive Digital Twin. Considering multiple topics
are involved, it would be overloaded to conduct thorough
systematic literature reviews. Therefore, only some of the most
pertinent studies of each topic are introduced in this section.

2.1 Digital Twin
After a decade of rapid development, DT has become an essential
enabling technology for advanced manufacturing. A basic DT is
composed of three main elements including the physical entity in
real space, virtual representations in virtual space, and the
connections of data and information that tie the virtual and
real spaces together (Grieves, 2014). Based on this three-
dimension definition, Tao et al. (2017) proposed a five-
dimension DT model to promote the further applications of
DT by adding two more dimensions, i.e. DT data and services.
During the past decade, DT and relevant technologies have been
widely applied in many different domains such as prognostics
and health management (Tao et al., 2018), operation state
monitoring of complex equipment (Gockel et al., 2012;
Seshadri and Krishnamurthy, 2017).

DT has also been broadly adopted in the manufacturing
domain covering different production systems. Tao et al.
(2017) developed a DT model for a shop-floor and proposed a
reference architecture with operating mechanism to facilitate the
implementation of the shop-floor DT concept. Focusing on the
additive manufacturing, Knapp et al. (2017) developed a DT
model for typical additive manufacturing processes and analyzed
its main components. A DT reference model was developed by
Wang et al. (2019) aiming at improving the fault diagnosis
capabilities of rotating machinery. In order to achieve
autonomous manufacturing, a DT-based Cyber-Physical
Production System (DT-CPPS) was proposed in (Ding et al.,
2019) to create smart shop floors by combing CPPS and DT
technologies. Aiming at ZDM, Psarommatis (2021) proposed a
methodology for developing DT models for modeling a
production system, and used the created DT model to create
ZDM performance maps. Mourtzis et al. (2021) integrated DT
with a ZDM framework aiming to optimize equipment design
using data derived from industrial environments. Their
framework covers data acquisition, data processing and the
simulation. Both historical data and simulation data were used
for DT construction.

With the rapid deployment of advanced technologies, such as
IIOT and CPPS, modern manufacturing systems are getting
increasingly complex. Such a complex system can be treated as
a system of systems consisting of various subsystems and
components. Moreover, different stakeholders are involved
during different lifecycle phases of the manufacturing system.
When developing DTs for such a complex system, it is a
challenging task to cope with the heterogeneity brought by
different stakeholders and subsystems thus to achieve high
level of interoperability. A semantic model can provide
possible solutions to this challenge.

2.2 Semantic Modelling
An information model of a system can enable to abstract different
types of data and information of the system, and to provide an
understanding of how the data elements are related (Calero et al.,
2006). A common information model makes possible of data and
information sharing with unambiguous, shared meaning, thus to
achieve semantic interoperability at the system level (Hildebrandt
et al., 2020). A semantic model is a type of informationmodel that
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supports the modelling of entities and their relationships. The
total set of entities in a semantic model comprises the taxonomy
of classes that can be used to represent the real world. The main
objective of semantic modelling is to abstract different kind of
data within the context of its correlation, and to model the
domain world at the abstract level. The main benefits of such
semantic models include avoiding misunderstanding, enhancing
interoperability, enabling reasoning and leveraging resources,
among others (Calero et al., 2006).

Ontology engineering is one of the prominent approaches to
create such semantic models. It includes a set of activities,
methodologies, tool suites and languages that concern the
ontology development and management (Gómez-Pérez and
Suárez-Figueroa, 2009). Feilmayr and Wöß (2016) defines
ontology as “a formal, explicit specification of a shared
conceptualization that is characterized by high semantic
expressiveness required for increased complexity.” Ontology
enables capturing and instantiating knowledge persistently so
that it can be reused in a tool-agnostic way. It can be used as a
rusted source of knowledge to provide a unified and coherent
view over existing systems (El Kadiri and Kiritsis, 2015).

To assure the interoperability and reusability of different
ontologies, a hierarchical methodology should be followed, i.e.
using upper-level ontologies to unify the lower-level application
ontologies. The existing ontologies can be categorized into at least
three levels: top-level ontology, middle-level ontology and
application ontology.

• A top-level ontology contains a set of general vocabularies
commonly used across all domains. These vocabularies are
properly structured and formally defined according to
certain methodology. Examples of popular top-level
ontologies include the Basic Formal Ontology (BFO)
(Arp and Smith, 2008) and the Descriptive Ontology for
Linguistic and Cognitive Engineering (DOLCE) (Borgo
et al., 2022).

• A middle-level ontology focuses on certain application
domains such as manufacturing, material, chemistry,
biology etc. Manufacturing is one of the main application
areas of ontology. For example, Lemaignan et al. (2006)
developed the MASON (MAnufacturing’s Semantics
ONtology) as a preliminary upper ontology aims to
create a common semantic net for the manufacturing
domain; and explored its possible applications in
automatic cost estimation and semantic-aware multi-
agent manufacturing system. Negri et al. (2015) created
the MSO (Manufacturing System Ontology) focusing on the
discrete manufacturing, process production and the logistics
domains. The Industrial Ontologies Foundry (IOF) (IOF,
2021) is an ongoing initiative aims to co-create a set of open
domain-level ontologies to support the manufacturing for
industrial needs and to promote data interoperability.
Depending on its scope, a middle-level ontology can be
further narrowed down to certain domain and sub-domain
ontologies.

• An application ontology is developed for a specific
application scenario with customized vocabularies and

relationships. It can be developed on the basis of a
middle-level ontology. The relevant data sources can be
added to an application ontology to construct a knowledge
graph and to conduct certain specific tasks. For example,
Foehr et al. (2013a) proposed the MPFQ-model (Material,
Production Processes, Product Functions/Features, Product
Quality) to organize the main factors during production
that can impact product quality. Based on this model they
developed an application Ontology to support quality
optimization of discrete manufacturing processes.

2.3 Semantic-Driven and Cognitive Digital
Twin
Modern industrial systems are highly complex involving
heterogeneous data, information and knowledge across
different lifecycle phases and various industrial domains.
Cross-domain and cross-lifecycle integration is a main
challenge for DT applications in to such complex systems.
Previous studies (Banerjee et al., 2017; Kharlamov et al., 2018;
Gómez-Berbís and de Amescua-Seco, 2019) have explored the
feasibility of using semantic modelling to address the data
heterogeneous problem due to different protocols and
specifications follows by different stakeholders, therefore to
enhance the interoperability of DTs. The adoption of semantic
technologies enhances the cognitive capabilities of the current
DTs and makes possible of integrating multiple related DTs.
Based on these studies, the CDT concept has been attracting
much attention recently (Zheng et al., 2021).

The CDT concept is first proposed in 2016 (Adl, 2016) along
with the cognitive evolution of IoT technologies. It is further
explored from the perspectives of cognitive computing and
artificial intelligence in 2017 (Fariz Saracevic, 2017), as well as
from the angle of hybrid human-machine cognitive capabilities
(Fernández et al., 2019). Some studies (Abburu et al., 2020b; Lu
et al., 2020; Ali et al., 2021) have tried to define CDT by extending
DTs with extra semantic capabilities, model and twin
management capabilities, as well as autonomous decision-
making capabilities.

A recent study (Zheng et al., 2021) reviews existing studies
about CDT and defines CDT as “a digital representation of a
physical system that is augmented with certain cognitive
capabilities and support to execute autonomous activities;
comprises a set of semantically interlinked digital models
related to different lifecycle phases of the physical system
including its subsystems and components; and evolves
continuously with the physical system across the entire
lifecycle.” CDT is considered as the next generation of DT
(Boschert et al., 2018) as it will enable different cognitive
capabilities, such as attention, perception, comprehension,
memory, reasoning, prediction, decision-making, problem-
solving, reaction and so on, making it possible to deal with
complex and unpredicted behaviours with optimization
strategies dynamically (Kokar and Endsley, 2012; Fernández
et al., 2019; Al Faruque et al., 2021; Zheng et al., 2021).

Despite of the promising future of CDT and other semantic-
driven DT methods, there are many gaps need to be bridged. A
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functional and comprehensive knowledge base is the core for this
capability. Knowledge representation and acquisition are among
the most challenging task for CDT development (Zheng et al.,
2021). Due to the heterogeneity and ambiguity of domain
knowledge, it is difficult to specify, formalize and transfer it
into a machine understandable format (Abburu et al., 2020a).
Semantic technologies such as ontology and knowledge graphs
have been widely adopted for knowledge management.

Targeting at the challenges of knowledge representation and
acquisition, this paper proposes a semantic modelling method for
manufacturing systems focusing on the quality perspective. The
aim is to push forward the application of semantic-driven DTs in
manufacturing domain proceeding towards the CDT paradigm.

3 THE RMPFQ MODEL

To deal with the complex quality requirements in the Factories of
the Future (FoF), a project named “inteGration of pRocess and
quAlity Control using multi-agEnt technologies” (GRACE)
founded by European Union was created. It mainly focused on
the provision of a new multi-agent architecture, combined with a
methodology for quality assurance and improvement to provide
suitable solutions for plant operators (Foehr et al., 2013b). The
MPFQ-model was developed in this project to provide integrated
consideration of factors related to product quality in
manufacturing phase, i.e. material, production process, and
product functions (Foehr et al., 2013a). The simplified
elements of the MPFQ-model and their interrelations are as
shown in Figure 1.

The MPFQ-model was developed based on the processes of
assembly manufacturing. As shown in Figure 1, during an
assembly Process (k), two or more Materials (x, y) are
assembled to form a Function (m) which impacts Quality (n).
This model can properly describe some typical assembly
processes. However, in many cases the manufacturing
resources can also affect the manufactured product quality.
For example, during a machining process, usually only one
workpiece is machined, and it interacts directly with a
machine tool. The status of the machine and machine tool can
directly affect the quality of the workpiece. Even for assembly

processes, the status of the production resources, such as fixture
and tooling, can also impact the final product quality. Therefore,
theMPFQ-model needs to be extended to fit more manufacturing
scenarios.

This study extends the MPFQ-model by adding the Resource
element to represent the manufacturing resources. Figure 2
shows the elements of the proposed RMPFQ model and their
interrelations, as well as some exemplary data related to these
elements.

Based on the definition of MPFQ-model (Foehr et al., 2013a),
we define the elements of the proposed RMPFQmodel as follows:

• Manufacturing Resource, according to ISO 15531,
represents the devices, tools and means, at the disposal of
the enterprise to produce goods and services, but except raw
material and final product components.

• Material represents the entities that are needed to produce a
certain product or product component, which may include
raw materials, pre-products, consumables, operating
supplies, product components and assemblies (O’Sullivan
and Sheffrin, 2007).

• Manufacturing Processes are defined as processing and
transforming materials into the final goods by using
machines, tools and human labour. This process is
defined within the plant engineering (Gibovic and de
Ciurana, 2008).

• Product Functions/Features represent the distinguished
characteristics of a product item, which may include
functionalities like specific tasks, actions or processes that
the product is able to perform; and/or other features like
performance (Foehr et al., 2013a).

• Product Quality (Q) is defined as, according to DIN EN ISO
9000, the degree of conformance of final product functions
and features to designed requirements.

For the definition of Resource, we followed the ISO 15531
standard as it is close to the purpose of the proposed RMPFQ
model, although there exist several different definitions as
reviewed by Emilio et al. (Sanfilippo et al., 2019). The
elements of the RMPFQ model may have different emphasis
for assembly and machining processes, although they might share

FIGURE 1 | MPFQ-model elements and their interrelations.
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the same names. The output of an assembly process is usually
either the final product or main components of it. In this case, the
quality (Q) directly interacts with the customers’ requirements,
and the function (F) is the core to fill such requirements, which
then requires qualified components/parts/materials (M) being
assembled through proper Processes (P). In contrast, the output
of a machining process is usually a workpiece manufactured by a
supplier. The quality (Q) of the part mainly refer to the
conformance of workpiece features to the designed
requirements. It does not necessarily interact with the
customers requirements, and the F element emphasizes more
on the Features of the part although it may impact the Function of
the product in the assembly process.

The proposed RMPFQ model can be used to model different
phases of a product lifecycle, i.e. product part machining process
and components assembly process. In addition to the interactions
between different elements inside a RMPFQ model, relationships
also exits between different RMPFQ models corresponding to
different manufacturing processes. Figure 3 depicts a typical
application scenario including two machining processes
followed by an assembly process. The two machining

processes are executed by two different suppliers producing
two parts, which are then assembled through the assembly
process.

There are several types of interrelations in this simplified
scenario.

• A given material (Ma, Mb) is machined by manufacturing
resources (Ra, Rb) (e.g. fixture and associated tooling and a
cutting tool) through a plannedmachining process (Pa,Pb). This
composes the RPM interactions (marked with orange lines).

• The machining process (Pa, Pb) uses input material (Ma,
Mb) and resources (Ra, Rb) to produce one or more features
(Fa, Fb), composing the RMPF interactions (marked with
blue lines).

• All the RMPF elements may also have straightforward
impact on the quality (Qa, Qb) of the machined
workpiece (marked with green lines).

• For the assembly process, the machining process is replaced
by assembly process and the input includes multiple
materials instead of one single workpiece. The
interactions among the elements remain the same.

FIGURE 2 | RMPFQ model elements and their interrelations.

FIGURE 3 | Interactions between RMPFQ models.
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It is worth to note that there also exist relations among
different resources, i.e. machine, setup, and cutting tool, which
is not reflected in the proposed model; and a machining process
may generate multiple features as described by Najam et al.
(Anjum et al., 2012).

3.1 RMPFQ Correlation Matrix
To better evaluate the relationships among different elements, a
correlation matrix is designed as shown in Figure 4. It enables
quantifying the impacts of RMPF elements on quality (Q). It is
composed of three dimensions corresponding to the RMPF
entities, Quality entities, and quality inspection Stations.
Station is added to reflect the quality control procedures in a
physical manufacturing system. It is not included in the RMPFQ
model since it only inspects product quality but does not impact
the quality directly. Details about each dimension of the
correlation matrix are explained as follows:

• Bottom-left matrix: Correlation between RMPF entities, i.e.
Resource (R1, Ri, RNr), Material (M1, Mj, MNm), Process (P1,
Pk, PNp), Function (F1, Fl, FNf), and Quality (Q1, Qn, QNq)
entities. Each of them represents the impact level of a RMPF
entity on a Quality entity. Nr, Nm, Np, Nf, Nq are the total
numbers of RMPFQ entities respectively; and rq, mq, pq, fq
represent the correlation values between RMPF and Quality
entities.

• Bottom-right matrix: Correlation between each of the
RMPF entities and inspection Station (S1, Sm, SNs). Each
of them represents the possibility of a RMPF entity been
inspected by a certain station. Ns denotes the total number
of stations; and rs, ms, ps, fs are the correlation values
between RMPF and each station.

• Top matrix: Correlation between each of the Quality and
Stations entities. It represents the capability of each station
to inspect a certain quality indicator.

FIGURE 4 | Three-dimension correlation matrix between RMPFQ elements and assembly stations.
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During industrial applications, the correlation values between
RMPF-Quality, and between RMPF-Station are directly given by
experts based on their knowledge. The correlations values can be
measured by positive rational numbers in a predefined range. For
example, multiple experts can evaluate separately for each
correlation and categorize them into four levels, i.e. No
correlation, low correlation, medium correlation and high
correlation. Then the evaluation results can be averaged and
mapped into a range such as [0−4] representing the four levels.

In contrast, the correlation between Quality-Station can be
calculated based on the previous evaluation results since a station
does not impact quality directly. The correlation value (Cmn) of a
station Sm with a quality Qn can be calculated using the following
Eq. 1:

Cmn � ∑
Nr

i�1
rqin × rsim( ) +∑

Nm

j�1
mqjn × msjm( ) +∑

Np

k�1
pqkn × pskm( )

+∑
Nf

l�1
fqln × fslm( )

(1)
To better indicate the performance of a certain station for

measuring a quality entity, the above correlation can be further
transformed into percentage (Pmn) divided by the values of all
stations for this quality entity. It can be calculated with the
following Eq. 2:

Pmn � Cmn

∑
Ns

m�1
Cmn( )

× 100% (2)

Once the above correlationmatrix is completed, the results can
be stored into a graph database enabled by semantic modelling.
The value of each correlation can be used as a property of a
relationship in the graph database. More details will be
introduced in the following sections.

4 RMPFQ APPLICATION FOR
SEMANTIC-DRIVEN DIGITAL TWIN

The proposed RMPFQ model can be used to supported semantic
modelling for DT applications. This section first introduces the
development of application ontologies based on RMPFQ; and
them presents a semantic-driven DT architecture based on the
application ontology.

4.1 RMPFQ for Ontology Development
The feasibility of using such a model to develop application
ontologies has been verified by previous studies. The
aforementioned MPFQ model was used to create the GRACE
Ontology (Leitão et al., 2012) aiming to optimize discrete
manufacturing processes. In a previous study (Zheng et al.,
2020a), the proposed RMPFQ model was adopted to support
the development of an application ontology for knowledge
management of aircraft assembly system design.

To improve the interoperability, the application ontology
needs to follow commonly used upper-level ontologies. In this
study, the middle-level IOF-Core ontology1 is adopted as the
basis of the application ontology. IOF-Core itself refers to the
BFO as the top-level ontology. It contains a set of formally defined
vocabularies that can be used for creating application ontologies
in the manufacturing domain. Figure 5 illustrates the structure of
the application ontology. All the RMPFQ elements can be
integrated to predefined classes in IOF-Core.

• The RMPFQ-Resource entities refer to tangible
manufacturing resources. Therefore, they can be inserted
as sub-classes of the Material Resource in IOF-Core. The
Resource defined in IOF-Core has a wider range than
manufacturing resources. It includes also intangible
resources and human resources.

• The RMPFQ-Material entities can be inserted as sub-classes
of Material Artifacts in IOF-Core, which traces back to
material entity in BFO.

• The RMPFQ-Process entities cover both Assembly Process
and Manufacturing Operation in IOF-Core, which trace
back to process in BFO.

• The RMPFQ-Function/Feature entities can be mapped to
Product Design, Requirement and Function which are sub-
classes of Directive Information Content Entity and
Dispostion in IOF-Core. They can further trace back to
generically dependent continuant and specifically dependent
continuant in BFO.

• The RMPFQ-Quality entities can be directly mapped as
subclass quality which is defined in BFO.

The interrelations between RMPFQ elements can be
transferred to object properties in the application ontology,
such as Process(Pk) − requiresResource → Resource(Ri) and
Process(Pk) − relizesFunction → Function(Fm). More specific
examples will be introduced in the case study section. The
formal definitions and descriptions of the mentioned IOF-
Core classes can be found in the source file of the IOF-Core
ontology1. It is worth to notice that the IOF-Core ontology is an
ongoing project. There are still pending issues to be fixed in the
future versions, for example, the location of Product and
Resource. They are currently positioned at the same level of
BFO entities such as generically dependent continuant and
independent continuant. It will be rearranged in the new
version which is expected to be released in the near future.

The adoption of IOF-Core and BFO assures the
interoperability of the developed application ontology with
other ontologies that follows the same top-level ontology. It is
worth to mention that BFO is not the only top-level ontology.
Other ones such as DOLCE (Borgo et al., 2022) are also widely
adopted by many application ontologies. It remains a challenging
task to assure interoperability across these top-level ontologies.
There are some ongoing efforts aiming to address this challenge
by integrating or connecting different top-level ontologies. For

1https://github.com/NCOR-US/IOF-BFO.
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example, the OntoCommons project2 aims to create an Ontology
Commons EcoSystem (OCES) for data documentation, including
a set of ontologies and tools, covering the manufacturing and
material domains.

4.2 Semantic-Driven Digital Twin
Architecture
To facilitate industrial applications, a semantic-driven digital
twin architecture is designed based on the aforementioned
application ontology and the proposed RMPFQ model. In a
previous study (Zheng et al., 2020c), a multi-agent digital twin
architecture for manufacturing processes using the MPFQ model
has been proposed. The digital twin architecture in this study, as
shown in Figure 6, is an extended version of the previous MPFQ-
based model.

As shown in Figure 6, the overall semantic-driven digital twin
architecture is divided into real space, virtual space and the
connections between them. More specifically, the real space
represents the physical manufacturing system in reality; the

virtual space includes a data management layer, a model
management layer, a service layer and a user interaction layer.
The details and functions of each layer are introduced as follows.

• Physical manufacturing system represents the physical
elements that compose a manufacturing system,
including resources (e.g. machines, fixture, facilities),
materials (e.g. raw materials, workpieces, assemblies) and
other relevant elements such as the environment of the
workshop. The physical elements provide data sources for
the virtual space through embedded sensors, measurement
equipment and inspection stations and so on.

• Data management layer includes all functions related to
data ingesting, integration, storage and analysis etc. It is the
core of the proposed semantic-driven architecture. Its main
components and functions are introduced as follows:
–Ontology-based graph database: The application ontology
is used to create a graph database to integrate all the data
related to the digital twin. The adoption of upper-level
ontologies such as IOF-Core and BFO enables semantic
interoperability among heterogeneous data sources. In
terms of development tools, the open source ontology
editor Protégé can be used to edit and validate the

FIGURE 5 | Application ontology structure based on RMPFQ model and IOF-Core ontology.

2https://ontocommons.eu/.
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ontology schema. It supports Web Ontology Language
(OWL) and includes deductive classifiers to validate that
models. It has an easy connection with agent development
frameworks such as Java Agent Development Framework
(JADE). The developed application ontology can then be
imported to a graph database such as Neo4j3 which provides
more capabilities to allow linking different data sources to
the ontology classes and object properties. It also makes
possible of more advanced queries and reasoning by
combining query languages with other programming
languages. For example, Neo4j provides the Cypher4

query language whcih can be integrated with Python and
Java etc. to perform more complex query and
reasoning tasks.
– Data sources: several types of data are involved
corresponding to the elements of the proposed RMPFQ
model. For a typical manufacturing process, the data about
the manufacturing resource, material, features and quality
indicators are usually generated on-line by embedded
sensors or off-line by external measurement equipment.
The process, function and quality requirement data are
usually obtained from data repositories of the production
management systems like Product Data Management
(PDM) or Enterprise Resource Planning (ERP) systems.
– Data storage and sharing: Depending on the demand of
the application scenarios, different data storage and sharing
solutions can be utilized, such as centralized enterprise data
server, private or public cloud storage and decentralized

distributed file system etc. Considering the data
heterogeneity of a modern company, the system needs to
support both structural and non-structural data storage and
sharing. There is a trend adopt blockchain and distributed
ledger technology to cope with data privacy/security and
trust issues during data sharing, especially for inter-
enterprise interoperations. In case of large data volumes,
distributed peer-to-peer data storage systems like
InterPlanetary File System (IPFS) provide proper
solutions. Technical details can be found in previous
studies (Shangping Wang et al., 2018; Naz et al., 2019;
Ordieres-Meré et al., 2019; Zheng et al., 2020b; Sun et al.,
2020). To produce the information for desired services, data
analysis needs to be conducted with the support of data
mining and machine learning technologies, which has been
extensively studied in data science field, thus not introduced
in this study.
– Data interoperability: to enable the data flow and
exchange across different system components, existing
standards and specifications need to be considered. A
recent report (Meyer et al., 2020) investigated popular
standards and specifications adopted by some European
manufacturing enterprises, including communication
protocols, such as OPC-UA, MQTT, MTconnect, HTTP/
REST, Modbus, PPMP, and AMQP etc.; and semantic
specifications such as B2MML, CAEX, PLCOpen,
COLLADA, AutomationML, MTConnect, and
MIMOSA etc.

• Model management layer aims to store and manage
different types of virtual models such as product design
model, resource model and process model among others. A
model manager can be created based on the graph database

FIGURE 6 | The proposed semantic-driven digital twin architecture for manufacturing systems.

3https://neo4j.com/.
4https://neo4j.com/developer/cypher/.
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to provide functions such as version management,
traceability management, consistency management, co-
design and co-simulation etc. This layer is added to cope
with the high complexity of some manufacturing systems
following the CDT reference architecture proposed by
Zheng et al. (2021). It makes possible of extending a
single digital twin model to multiple federated models to
cover different hierarchical levels of a complex
manufacturing system, for example from a single
assembly station to an assembly line and further to the
entire factory or multiple factories.

• Service management layer orchestrates and presents
different business services such as data-driven services
and model-driven services to the end user according to
the requirements of the application scenarios. Typical
examples of such service include fault diagnosis and
prognosis, predictive maintenance, manufacturing
process optimization and decision-support for physical
entities; and calibration of the parameters of the virtual
models during the running to sustain its high
performance.

• User interaction layer enables stakeholders to interact with
different services provided by the digital twin through
certain user interfaces.

As shown in Figure 6, the proposed semantic-driven DT
architecture can be mapped to the functional layers of the
CDT reference architecture proposed in (Zheng et al., 2021),
which was designed based on the Reference Architecture Model
Industrie 4.0 (RAMI4.0) (Adolphs et al., 2015).The physical
manufacturing system can be mapped to the Physical Entities
layer of CDT: and the four virtual layer can bemapped to the Data
Ingestion and Processing layer, Model Management layer, Service
Management layer, and User Interface layers of CDT
correspondingly. There is no Twin Management layer included
in the proposed DT architecture because this study currently
covers only a single manufacturing system without dealing with
multiple DT models.

5 CASE STUDY

In order to demonstrate the feasibility of the proposed RMPFQ
model for knowledge modelling, a case study is conducted based
on a dummy dataset extracted from an washing machine
assembly line. This section first introduces the application
scenario. Then it explains the implementation of the RMPFQ
model based on this case including the development of an
application ontology, the construction of an ontology-based
graph database, and semantic-driven services. A short
discussion is presented in the end to summarize the
application achievements and limitations.

5.1 Application Scenario
An assembly line of washing machine is composed of a set of
assembly processes corresponding to different functional units of
the machine, such as washing unit, hydraulic unit, drum unit,

heat pump unit and chassis unit etc. The data used in this case
study are extracted from a real assembly line. The information
about the RMPFQ elements has been anonymized and no
sensitive data are included. The processes and materials are
commonly used in most washing machine assembly lines of
different manufacturers.

As shown in Table 1, this case study involves seven entities of
material, process and function, as well as five entities of resource,
quality and station. Most of them are extracted from the drum
unit assembly process. The relationships among these entities can
be identified according to the RMPFQ model and inserted to the
application ontology. Some of the relations are illustrated in
Figure 7. The impacts of RMPF entities on quality and
stations can be evaluated using the correlation matrix as
introduced previously. More details will be introduced in the
following sections.

5.2 Implementation and Results
5.2.1 Development of Application Ontology
An application ontology is developed based on the IOF-Core
ontology and the RMPFQ modelling approach for the case study.
As shown in Figure 5, based on the BFO framework, the IOF-
Core ontology defines a set of commonly used vocabularies in
different industry. According to the application scenario, new
classes and individuals, such as the aforementioned RMPFQ
elements, can be added to the IOF-Core ontology to create a
more specific application ontology.

The Protégé software is used to support ontology
development. The source code of the IOF-Core ontology is
open available1, which can be imported to Protégé and used as
basis to create the application ontology. Some of the main classes
of the application ontology related to the case study are shown in
Figure 8. The source file of the application ontology is available
online5.

As shown in Figure 8, the classes on the left are mostly defined
in IOF-Core which provides the basic structure of the application.

TABLE 1 | Exemplary RMPFQ elements and stations extracted from an assembly
line of washing machines.

Material Process Function

Bearing Bearing Insertion Hold (Bearing → Crosspiece)
Belt Belt Assembly Hold (Crosspiece → Sleeve)
Crosspiece Crosspiece Assembly Push (Sleeve → Seal)
Drum Drum Screwing Rotate (Pulley → Crosspiece)
Pulley Pulley Assembly Tension (Pulley → Belt)
Seal Seal Insertion Unbalance (Bearing → Tub)
Sleeve Sleeve Insertion Wear (Seal → Sleeve)

Resource Quality Station

Assembly Robot Assembly Conformity Bearing Insertion
Conveyor Energy Saving Control Gap Machine
Clamp Green Footprint Functional Test
Fixture Noise Vibration Test
Pneumatic Screwdriver Safety Visual Check

5https://github.com/zhengxiaochen/rmpfq_ontology.
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New classes corresponding to the RMPFQ elements and stations
related to the application scenario are added as shown in the right
side of Figure 8.

5.2.2 Ontology-Based Graph Database
The developed application ontology is used as basis to construct a
knowledge graph enabled by Neo4j graph database. It can be
deployed locally or on a cloud server to enable remote access by
different stakeholders. Neo4j provides a plugin named
Neosemantics6, which enables using RDF data in Neo4j graph
database. It allows importing and exporting ontologies in various
formats, such as OWL, RDF, XML, and Turtle etc. Once imported
to Neo4j, different querying and reasoning can be executed based
on tailored query conditions and reasoning rules.

Some of the entities listed in Table 1 and their
interrelationships are presented in Figure 9. The figure is
generated by the Neo4j Browser plugin. As shown in Figure 9,
all the entities in Neo4j can be categorized into Node (colored
circles) and Relationship (arrow lines). Different properties can be
added to each of the nodes and relationships, such as id, name,
label, and uri, among others. The relationships in Neo4j can be
generally mapped to the object properties in OWL ontologies. The
main difference is that it is not possible to define properties for
object properties in OWL ontologies. In contrast, Neo4j graph
database allows define multiple customized properties for
relationships, for example, the required quantity of a material,
the cost of a manufacturing resource, the impact weight of a

process on a quality indicator and so on. This advantage enables
such a graph database to model manufacturing processes more
comprehensively and flexibly.

As shown in Figure 9, six types of nodes (corresponding to the
RMPFQ elements and stations listed in Table 1) and six types of
relationships among the nodes are defined.

• The hasMaterial relationship defines the required materials
of an assembly process, for example, (BearingInsertion) −
[hasMaterial] → (Bearing).

• The hasResource relationship defines the required resources
of an assembly process, for example, (BearingInsertion) −
[hasResource] → (Fixture).

• The providesFunction and receivesFunction relationships
define the provider and receiver of a function, for
example, (Sleeve) − [providesFunction] → (Push) ←
[receivesFunction] − (Seal).

• The impactsQuality relationship defines the impact of a
RMPF entity on a quality entity, for example, (Pulley) −
[impactsQuality] → (Noise).

• The hasCorrelation relationship defines if a RMPF entity
can be measured or evaluated at a station, for example,
(Crosspiece) − [hasCorrelation] → (VibrationTest).

Based on existing relationships, new relationship can be
generated through reasoning according to certain rules. For
example, the following rule in natural language: “if a Material
(m) has impact on a Quality (q) and this Material (m) can be
inspected at a Station (s), then this Quality (q) should has
correlation with this Station (s),” can be defined in Neo4j

FIGURE 7 | Exemplary RMPFQ elements and their relationships (the meaning of lines are the same as in Figure 2)

6https://github.com/neo4j-labs/neosemantics.
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Cypher query language:

The execution result of the above reasoning rule is shown in
Figure 10. New relationships between quality and station entities
are created according to the rules defined above. Similar rules can
be defined for generating other relationships, for example, among
processes, functions and stations. After the relationships are
defined, certain properties can be added, for example the
impact weights of RMPF entities on quality entities. The
values of these weights are evaluated by domain experts using
the RMPFQ correlation matrix as introduced previously.

An exemplary correlation matrix corresponding to the dummy
dataset inTable 1 is created as shown inTable 2. All the correlation
values between RMPF-Quality, and between RMPF-Station are

provided by domain experts from the case owner. The correlation
between Quality-Station (the bottom three rows in percentage) are
calculated according to Eqs 1, 2. To reduce the size of the table,
three entities of each category are selected. The presented values are
the average of the results from three experts and some of them are
modified to respect data privacy regulations of the case owner.

Once the correlation matrix is defined, the values can be used to
update the corresponding relationship properties in the graph
database. The Cypher excerpt below demonstrates an example of
updating the weights of the relationships betweenMaterial (Bearing)
- Quality (Noise) andMaterial (Bearing) - Station (Functional Test).

The Neo4j graph database provides drivers for multiple
programming languages, e.g. Python and Java, making it

FIGURE 8 | Main classes of the application ontology.
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possible to integrate Cypher queries into these languages thus to
conduct more complex querying and reasoning tasks.
Customized middleware can be developed to automatically
execute the aforementioned property updating process.

With all the relevant properties added, the graph database is
ready to be deployed for providing tailored semantic-driven
services such as process monitoring and quality prediction.
Real time data about resource, material and process are
collected from inspection stations on the assembly line.
After parsing and preprocessing, these data are further
analyzed using manual feature extraction and machine
learning algorithms. The knowledge captured in the graph
database such as the interrelations among different RMPF
entities and their influence on certain quality aspects.
Summarized results can be presented to different

stakeholders to dynamically monitor the assembly process
and support decision-makings considering different key
performance indicators (Papacharalampopoulos et al., 2020;
Juhlin et al., 2021). Due to limited resource, the procedures of
creating such semantic-driven services using the captured
knowledge is not included in this paper. As a
complementary, a previous study (Hu et al., 2022) has
introduced the approach of querying information about
assembly processes from the ontology-based graph database
and use it to support simulations. Graph databases, such as
Neo4j in this case, provide Application Programming
Interfaces (APIs) enabling the development of tailored
middleware for data retrieving and parsing.The retrieved
data can be fed to corresponding discrete event
simulation (DES) and 3D simulation engines. The

FIGURE 9 | Application ontology RMPFQ classes and their relationships in Neo4j.
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simulation results can be further visualized and recommended
to the end user.

5.3 Discussion
The objective of this case study is to demonstrate the
implementation of the proposed RMPFQ model in industrial
scenarios. An application ontology is developed to formalize the
RMPFQ model, based on which a graph database is constructed
to enable semantic-driven services. The aforementioned
correlation matrix is used to quantify the impacts of resource,
material and process entities on different quality indicators,
which are stored in the graph database as relationship
properties. Due to limited resource and efforts, this paper
could not cover all aspects of the case study. There are several
limitations:

• This paper covers mainly the semantic modelling part of the
application case, whereas the topics about data collection

and analysis, service generation mechanisms, as well as the
result visualization and user interaction are not covered in
this study. Existing studies have extensively investigated
these topics and many verified solutions are available in the
market.

• Due to limited resources, we are not able to implement the
proposed framework to a complete industrial case in this
study. The dataset used in the case study is a simplified
dummy dataset containing limited number of resource,
material and process entities. For a complete assembly
line, more elements need to be considered and a larger
correlation matrix is expected. Therefore, it is difficult to
evaluate the performance of the proposed method in real
industry applications. One of the future works will be testing
the proposed approach in a lab environment with all the
core components.

• In industrial applications, a critical task is to decompose a
complete product into multiple function units and create

FIGURE 10 | An example of generating new relationships between quality and station entities through reasoning.

TABLE 2 | Correlation matrix for evaluating relationships between RMPFQ elements.

Quality Station

Noise Energy Saving Safety Functional Test Vibration Test Visual Check

Material Bearing 1.30 1.75 0.17 0.25 1.00 0.00
Belt 2.15 1.72 0.55 0.35 0.75 0.85
Crosspiece 0.67 0.15 0.83 0.00 0.67 0.15

Process Bearing Insertion 2.67 1.29 0.17 0.10 0.67 0.00
Belt Assembly 2.29 1.67 1.33 0.20 0.45 0.75
Drum Screwing 2.33 1.33 0.10 0.05 0.35 0.00

Function Push 1.67 0.33 0.10 0.15 0.25 0.00
Rotate 0.67 0.50 0.10 0.55 0.40 0.05
Wear 1.00 0.33 0.33 0.00 0.15 0.00

Resource Fixture 0.67 0.33 0.10 0.00 0.00 0.10
Robot 1.33 0.00 0.33 0.00 0.00 0.10
Clamp 0.33 0.10 0.67 0.00 0.01 0.00

Quality Noise — — — 17.81% 54.98% 27.22%
Energy Saving — — — 18.49% 54.23% 27.29%
Safety — — — 13.99% 47.37% 38.64%
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function models for each unit thus to identify the
relationships among different materials and processes.
This task can be performed using methods such as
Quality Function Deployment (QFD). In this case study,
this task is not included since existing studies have provided
sufficient solutions.

6 CONCLUSION

This paper proposes a knowledge modelling method for
manufacturing systems with special focus on the quality
perspective. It covers the main factors related to product
quality including manufacturing resources, materials,
processes, features and functions. To quantify the impacts of
these elements on certain quality indicators, a correlation matrix
is designed, which takes into account the quality inspection
stations on the assembly line. Based on the RMPFQ modelling
method, an application ontology structure is created following the
IOF-Core middle-level and BFO top-level ontology to ensure
cross-domain interoperability. By enriching the ontology with
relevant object and relationship properties, a graph database is
constructed facilitated by Neo4j platform. Inspired by the recently
proposed CDT concept, a semantic-driven digital twin
architecture is designed aiming to accelerate the application of
the proposed modelling method in industry.

The implementation of the proposed semantic-driven digital twin
architecture requires the support of various advanced technologies
including semantic modelling, IIoT, machine learning, cloud and
distributed computing, among others. This study mainly focused on
the semantic modelling topic. There are still some gaps need to be
bridged in future. Moreover, it is a challenging task for most small
and medium-sized enterprises (SMEs) to implement such new
solutions and they need to find the suitable technology suppliers.
To address this challenge, several international projects and
initiatives have been created involving manufacturing enterprises,
relevant technology providers and research organizations aiming to
build a platform to provide SMEs with suitable solutions. The work
present in this paper is part of such projects focusing on zero-defect
manufacturing and autonomous quality in the Industry 4.0. As
future work, the proposed model will be further extended and
validated in more manufacturing scenarios. Some of the future
works are listed below.

• To extend the application scenario to multiple system levels,
i.e. from a single assembly line to multiple connected lines,
and further to include inter-organizational manufacturing
systems such as the machining processes of materials and
components from suppliers.

• To integrate multiple lifecycle phases such as product and
system design, operation and maintenance etc. As an
example, an application ontology was developed based on
the proposed RMPFQmodel targeting at the design phase of
an aircraft assembly system (Zheng et al., 2020a).

• To explore the application of the proposed model in more
semantic-driven services enabled by ontology engineering
and graph databases.

• To integrate relevant technologies for implementing the
proposed semantic-driven digital twin architecture thus to
push forward the current digital twin to the cognitive digital
twin paradigm.
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