AUTHOR=Sarswatula Sai Aravind , Pugh Tanna , Prabhu Vittaldas TITLE=Modeling Energy Consumption Using Machine Learning JOURNAL=Frontiers in Manufacturing Technology VOLUME=2 YEAR=2022 URL=https://www.frontiersin.org/journals/manufacturing-technology/articles/10.3389/fmtec.2022.855208 DOI=10.3389/fmtec.2022.855208 ISSN=2813-0359 ABSTRACT=
Electrical, metal, plastic, and food manufacturing are among the major energy-consuming industries in the U.S. Since 1981, the U.S. Department of Energy Industrial Assessments Centers (IACs) have conducted audits to track and analyze energy data across several industries and provided recommendations for improving energy efficiency. In this article, we used statistical and machine learning techniques to draw insights from this IAC dataset with over 15,000 samples collected from 1981 to 2013. We developed predictive models for energy consumption using machine learning techniques such as Multiple Linear Regression, Random Forest Regressor, Decision Tree Regressor, and Extreme Gradient Boost Regressor. We also developed classifier models using Support Vector Machines, Random Forest, K-Nearest Neighbor (KNN), and deep learning. Results using this data set indicate that Random Forest Regressor is the best prediction technique with an