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Development and evaluation
of an ensemble model to
identify host-related metadata
from fecal microbiota of
zoo-housed mammals
Franziska Zoelzer*, Daniel dos Santos Monteiro
and Paul Wilhelm Dierkes

Bioscience Education and Zoo Biology, Goethe University, Frankfurt am Main, Germany
Much research has been conducted to describe the factors that determine the

fecal microbiome, with diet and host phylogeny as the main drivers. The

influence of diet has been described at different levels. Firstly, there are major

differences in the microbiomes of herbivorous and carnivorous species and

secondly the morphology of the digestive system also determines the

composition and diversity of the microbiota. In this study, we aim to describe

the influence of the three factors – diet, digestive system and host - on the

microbiota in order to develop a model that is able to characterize host-specific

metadata from an unknown fecal sample. We therefore analyzed the 16s rRNA

from 525 fecal samples of 14 zoo-housed species belonging to different

phylogenetic groups including herbivores, carnivores and omnivores. We

found significant differences in the bacterial taxa correlated with these groups.

While herbivores show positive correlations with a large number of bacterial taxa,

we found fewer taxa correlating with carnivores or omnivores. We also detected

considerable differences in the microbiota of the ruminant, hindgut fermenting

and simple digestive system. Based on these results, we developed a logistic

ensemble model, that predicts the diet and based on these findings either the

herbivorous digestive system or the carnivorous host-family from a given fecal

microbiota composition. This model is able to effectively discriminate herbivores,

omnivores and carnivores. It also excels at predicting the herbivore-specific

digestive system with 98% accuracy, further reinforcing the strong link between

microbiota and digestive system morphology. Carnivorous host-family

identification achieves an overall accuracy of 79%, although this performance

varies between families. We provide this trainedmodel as a tool to enable users to

generate host-specific information from their microbiome data. In future

research, tools such as the one presented here could lead to a combined

approach of microbiome and host-specific analyses which would be a great

advantage in non-invasive wildlife monitoring.
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1 Introduction

In recent years, both extensive research efforts in the field of

microbiome science as well as advances in DNA sequencing

technology highlighted the importance of gastrointestinal

microorganisms. These microorganisms have been extensively

characterized, with a particular focus on their ability to produce

short-chain fatty acids (SCFAs) as an essential energy source for the

host organism (Koh et al., 2016; Rıós-Covián et al., 2016; Sanna

et al., 2019). In addition, a large number of studies have been carried

out investigating composition, diversity, and intricate relationships

that govern the gastrointestinal microbiome in different animal

species as well as within different phylogenetic and dietary groups

(Ley et al., 2008a; Nelson et al., 2015; Youngblut et al., 2019; Milani

et al., 2020). Contemporary research raised compelling questions

beyond the mere description of species-specific microbiomes,

especially on influencing factors. Diet and phylogeny are now

widely recognized as the primary drivers that shape the

composition of the fecal microbiota.

For dietary studies on animals, the morphology of the respective

digestive system must be taken into account. Carnivorous species

are characterized by a simple digestive system with a short intestine

and colon as well as a small cecum. In general, carnivores show little

adaptations to microbial fermentation, as they rely on an easily

digestible protein-based diet and have lower glucose requirements

(Stevens and Hume, 1995; Mackie, 2002). In contrast, herbivores

depend on microbial fermentation to break down cellulose and

hemicellulose. Within herbivores, two digestive systems are

predominant. On the one hand, hindgut fermenters have a simple

stomach and an enlarged large intestine to increase food retention

time. Furthermore, microbial fermentation occurs after enzymatic

digestion in either an enlarged cecum (e.g. Leporidae, Caviidae) or

colon (e.g. Equidae, Tapiridae). On the other hand, microbial

fermentation takes place prior to enzymatic digestion in foregut

fermenters. This dietary group has a segmented stomach that differs

in the extent of compartmentalization. While the stomach of

ruminants (e.g. Bovidae) consists of the rumen, reticulum,

omasum and abomasum, the stomach of pseudo-ruminants (e.g.

Camelidae) consists of only three parts. Furthermore, non-

ruminant foregut fermenters (e.g. Macropodidae) have a bipartite

foregut consisting of a sacciform and tubiform area (Stevens and

Hume, 1995). Several studies have shown that each of these

digestive systems hosts its own microbiota due to the different

morphological adaptations and specializations (Ley et al., 2008a;

Muegge et al., 2011; Nishida and Ochman, 2018; Zoelzer

et al., 2021).

Host phylogeny is the second key factor that shapes the fecal

microbiota composition. The interaction between host and

microorganisms is defined as phylosymbiosis (Lim and

Bordenstein, 2020). Phylosymbiosis is described on different

scales. Firstly, regarding a great phylogenetic context where

numerous animal orders are compared with each other, the

microbiota similarity increases with an increasing degree of

kinship among the host species (Kartzinel et al., 2019; Rojas et al.,

2021; Wu et al., 2022). Secondly, even on a smaller phylogenetic

scale, indications for phylogeny have emerged in the last years.
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Some studies found that closely related species express a high

similarity in their fecal microbiota. This was shown for great apes

(Ochman et al., 2010), small rodents (Knowles et al., 2019) and

Cervinae (Li et al., 2018). Although these studies provide clear

evidence of phylosymbiosis, it is important not to ignore the

possible additional influence of environment and diet.

Due to the strong influence of the host on the microbiota, we

aim to reverse this approach by developing a computational model

that predicts the host from a given fecal microbiota sample. In a first

step, we test whether different bacterial taxa correlate with the host’s

characteristics: the host diet group (herbivore, carnivore,

omnivore), the host digestive system (ruminant, hindgut

fermenter, simple) and the host-family applying a correlational

analysis. In a second step, we develop a model that is able to predict

those metadata from a given microbiota composition. Various

modeling approaches gained widespread recognition and are now

being applied in the fields of ecology and evolution, as they provide

a versatile approach to effectively deal with complex data structures

(Bolker et al., 2009). In microbiome research, machine learning

techniques are mainly used to predict disease susceptibility patterns

in the human microbiome (Korpela et al., 2014; Yazdani et al., 2016;

Duvallet et al., 2017; Espinoza, 2018). Recently, some studies

developed models to predict host-specific factors from the fecal

microbiota such as age or sex (Pannoni et al., 2022; Sweeny et al.,

2023). Based on these findings and on the strong influence of host

phylogeny, we hypothesize that it is possible to develop a model that

identifies different host-families from an undisclosed fecal sample.

This approach would open up new possibilities for microbiome

analysis in non-invasive wildlife monitoring, i.e. using a single fecal

sample of undisclosed origin and only one DNA sequencing

workflow for an analysis of both microbiome and host-specific

information. Compared to common microsatellite methods, this is

more cost- and labor-efficient in sampling, sequencing and

analysis efforts.
2 Materials and methods

2.1 Sample collection

Between May 2018 and November 2020, a total of 525 fecal

samples were collected from 14 species belonging to different

dietary groups of 17 zoos across Germany (Supplementary

Table 1). To ensure adequate representation, a minimum of 20

samples were analyzed for each species. The collection method

employed is non-invasive, with samples primarily obtained during

the daily cleaning routines by the keepers. After collection, the fecal

samples were promptly transferred to sterile cryotubes and stored in

liquid nitrogen until further processing. The care and use of animals

during the research adhered to the guidelines set by the European

Association of Zoos and Aquaria (EAZA). StarSEQ GmbH, located

in Mainz, Germany, conducted the subsequent sample preparation.

Initially, the samples underwent homogenization using the

Precellys® Evolution Homogenizer (Bertin Instruments, Rockville,

USA). Next, DNA extraction was carried out using the QIAamp®

PowerFecal DNA Kit (Qiagen, Hilden, Germany). To measure the
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DNA concentration in the extracted samples, a NanoDrop

spectrophotometer (Thermofisher, Massachusetts, USA)

was utilized.
2.2 16S rRNA gene sequencing and
data processing

At StarSEQ GmbH, sequencing of the V3-V4 region of the 16S

rRNA gene was performed using a dual-index strategy based on the

protocol of Caporaso et al., 2012 with minor modifications. To

generate amplicons, a single step PCR of 33 cycles was performed

using the primer combination 341f and 806bR as described by

(Apprill et al., 2015) and (Takahashi et al., 2014). The resulting

library was then sequenced on the Illumina MiSeq platform in

paired-end mode (300 nt), including a 25% PhiX control library.

Subsequent data analysis was carried out using the QIIME 2

platform (Bolyen et al., 2019), and amplicon sequence variants

(ASVs) were determined using DADA2 (Callahan et al., 2016). A

phylogenetic tree was constructed for all sequences using MAFFT

sequence alignment (Katoh et al., 2002) and low abundant features

that are covered by less than 10 sequences, chloroplast and

mitochondrial sequences were removed from the dataset. For

taxonomic assignment of ASVs, a pre-trained Naive Bayes

classifier (Bokulich et al., 2018) based on the SILVA 138 full-

length database (Quast et al., 2013) was employed. The following

statistical analyses were performed in R version 4.3 (R Core Team,

2022) as well as in Python version 3.10 (van Rossum and Drake,

2009). To identify bacterial families that are linked to either dietary,

morphologically similar digestive systems or phylogenetic groups,

we calculated the spearman correlation coefficient with a minimum

of R>0.5. Taxa that showed correlation coefficients from above 0.5

as strongly correlating. Based on those results, we performed a

general linear model (glm) to test whether the correlating taxa are

statistically significant factors in explaining whether a given

microbiome composition belongs to one of the given categories

or not.

Next, we developed a model to predict the diet, digestive system

and host-family of an undisclosed sample. The preprocessing

steps included:
Fron
1. Ensuring no missing values were present, which attests to the

thoroughness of our data collection process.

2. Normalizing the data by converting raw counts to relative

abundances, thus facilitating comparison across samples.

3. Removing sequences that were low in abundance or non-

bacterial, refining the dataset to emphasize bacterial profiles

relevant to the animals’ diets.
These steps, essential for preparing the data for machine

learning, complement the methodical sample collection and

sequencing methods described in our documentation. We

acknowledge that due to the unstandardized collection procedure

of the samples and the time component among other factors our

dataset does not strongly support the assumption of IID. However,
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we have taken several steps to ensure that the data we used was

thoroughly checked and prepared for further analysis and the use in

machine learning models.

In the development of our machine learning model, the initial

feature space comprised a comprehensive set of 164 bacterial taxa

identified in the fecal samples. Recognizing the potential for

overfitting and the importance of focusing on the most impactful

features, we implemented a pre-processing step to refine this feature

space. Specifically, we applied a thresholding technique to exclude

bacterial taxa present in quantities below a certain threshold,

thereby reducing the dimensionality of our feature space. This

resulted in a total of 128 bacterial taxa. This approach ensured

that only the most prevalent and potentially influential taxa were

included in the model, allowing for a more interpretable and robust

analysis. The final dimensionality of our feature space, therefore,

reflects this subset of features, each representing a dimension, and

was determined based on their relative abundance in the dataset.

This methodology aligns with best practices for managing high-

dimensional data and enhances the model’s ability to generalize by

focusing on features with sufficient representation across samples

(James et al., 2013).
2.3 Model training and
evaluation framework

The dataset was divided into training, development, and test

sets with a ratio of 64%, 16%, and 20%, respectively. This split

ensured enough data for training the models, allowed for

hyperparameter optimization on the development set, and

provided an unbiased evaluation on the test set. The training of

the models was systematically conducted through grid search,

meticulously iterating over a range of hyperparameter

combinations to identify the optimal settings based on AUC and

macro average F1 scores.

In our quest to solve a classification problem, we explored four

models that are recognized for their superior performance in

managing the intricacies of high-dimensional datasets: Logistic

Regression, Decision Tree, Random Forest, and SVM. Such

models have been substantiated to offer the best outcomes in

contexts akin to ours, adept at navigating the challenges unique

to complex data landscapes (Papoutsoglou et al., 2023). After

evaluating those models, we enhanced the predictive accuracy by

employing an ensemble of logistic regression models, adhering to

the hierarchical classification procedure of diet, herbivorous

digestion types, and carnivorous host-family. Ensemble modeling

combines the predictions from multiple models to increase the

robustness of the results, leveraging the strength of each individual

model without weakness of a general model.
1. Hierarchical Model Training and Validation: We trained

individual logistic regression models at each level of the

hierarchy—first on diet, then on digestion types for

herbivores, and on the host-family for carnivores and

omnivores. Each model was validated using the
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development set, ensuring that we could fine-tune the

hyperparameters effectively. This hierarchical approach

allowed the ensemble to build upon the structure and

dependencies inherent in the data, using the development

set to guide the selection and combination of models

without biasing the final evaluation.

2. Aggregation of Model Probabilities: Aggregation of Model

Probabilities: The ensemble method was implemented

using a sequential, multi-stage approach. In each stage,

multiple models predict the label for the respective

category, and the label with the highest calculated

probability is selected. This approach ensures that the

most precise prediction of each model is considered, with

the final decision based on the most probable forecast. This

method allows for a differentiated and context-dependent

integration of predictions from various models, taking into

account both the accuracy and the consensus of individual

models at different classification stages

3. Performance Evaluation: The final evaluation of the

ensemble model’s performance was conducted on the test

set. This step is crucial, as it provides an unbiased estimate

of how well the ensemble model generalizes to new, unseen

data. The metrics from this evaluation were used to assess

the success of the modeling approach.
The emphasis throughout the modeling process was on the

refinement of the ensemble based on development set results rather

than test data, maintaining the integrity of the test set for a genuine

evaluation of model generalization. The ensemble’s performance

was quantified using the F1 score, which harmonizes precision and

recall, to ensure the model’s efficacy across both prevalent and rare

classes within our dataset.
3 Results

A total of 525 fecal samples comprising 14 species were

sequenced on Illumina MiSeq platform in paired-end mode,

targeting the V3-V4 region of the 16S rRNA gene. After

preprocessing, the dataset contained 27,188,318 sequences,

ranging from 5,836 to 303,032 sequences per sample, with an

average of 51,299 sequences per sample.
3.1 Correlation of bacterial taxa with diet

Applying the Spearman correlation to the data set with respect to

diet groups, the strongest correlation values are found for herbivores.

All correlation coefficients and respective p-values are shown in the

Supplementary Table 2. Within the R>0.5 limit, 12 positively

correlating bacterial families are identified (Figure 1A). Within these,

Spirochaetaceae (R=0.83), F082 (R=0.81), Rikenellaceae (R=0.77),

Methanobacteriaceae (0.75), Akkermansiaceae (R=0.75),

Ruminococcaceae (R=0.69), Christensenellaceae (R=0.67),

Fibrobacteraceae (R=0.60) and Prevotellaceae (R=0.57) show a strong
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positive correlation with herbivores. The following generalized linear

model (glm) confirms these findings, indicating that the occurrence of

Methanobacteriaceae (t=9.95, p<0.01), Spirochaetaceae (t=6.21,

p<0.01), Akkermansiaceae (t=3.99, p<0.01), Ruminococcaceae

(t=3.66, p<0.01) and Rikenellaceae (t=3.62, p<0.01), as well as the

absence of Peptostreptococcaceae (t=-9.69, p<0.01), Fusobacteriaceae

(t=-8.94, p<0.01) and Clostridiaceae (t=2.09, p=0.04), are significant

factors in distinguishing a herbivorous from carnivorous or

omnivorous host. Nevertheless, these bacterial taxa contribute in

different proportions to the herbivore microbiota. While

Ruminococcaceae (Average ± standard deviation: 16.30% ± 10.20%),

Spirochaetaceae (9.06% ± 8.74%) and Rikenellaceae (7.55% ± 4.78%)

are on average more abundant, Akkermansiaceae (2.53% ± 2.85%) and

Methanobacteriaceae (4.31% ± 5.37%) are less abundant (Figure 2).

Carnivorous species show a negative correlation with most of the

bacterial families that correlate with herbivores. Only two positively

correlating bacterial taxa are identified: Fusobacteriaceae (R=0.80,

t=17.84, p<0.001) as well as Burkholderiaceae (R=0.58, t=4.38,

p<0.001). As shown in Figure 2, Fusobacteriaceae (19.93% ± 15.37%)

is a predominant taxon while Burkholderiaceae (1.62% ± 2.29%) occurs

in low proportions in carnivores. Contrary to herbivores and

carnivores, the omnivorous hosts assessed in this study only display

strong correlation to Enterococcaceae (R=0.50, t=8.90, p<0.01).

Enterococcaceae shows no correlation to either herbivores or

carnivores, but this family only contributes on average to 5.65% ±

8.51% to the microbiota composition of omnivores.
3.2 Correlation of bacterial taxa with
digestive system

With regard to the digestive system, herbivores in this study are

divided into foregut ruminants and hindgut colon fermenters.

Ruminants show strong and significant positive correlations with

Methanobacteriaceae (R=0.71, t=17.50, p<0.001), Ruminococcaceae

(R=0.68, t=12.13, p<0.001), Akkermansiaceae (R=0.63, t=3.87,

p<0.01), Prevotellaceae (R=0.57, t=4.80, p<0.001), Christensenellaceae

(R=0.53, t=-3.52, p<0.01), Desulfovibrionaceae (R=0.52, t=4.10,

p<0.01) and F082 (R=0.51, t=-5.96, p<0.01). With the exception of

the latter, which is shared with the hindgut fermenters, these bacterial

taxa are exclusively positively correlated with ruminants.

Ruminococcaceae are highly abundant in this dietary group with an

average of 22.62% ± 8.58%, followed by Prevotellaceae (9.68% ± 4.51%)

and Methanobacteriaceae (6.75% ± 6.06%) (Figure 2). Furthermore,

the absence of Clostridiaceae (R=-0.53, t=3.04, p<0.01) is another

indicator of a ruminant host species.

The correlation analysis reveals differences between ruminants

and hindgut fermenters. While Ruminococcaceae are high-

abundant in the microbiota of ruminants, this taxon does not

correlate with hindgut fermenters (Figure 1). In contrast,

Spirochaetaceae are the most abundant taxon that shows the

strongest positive correlation (R=0.70, t=5.66, p<0.001) and on

average make up 18.81% ± 6.22% of the hindgut fermenters

microbiota. Similar to ruminants, there is an archaeal taxon

strongly positively correlating with hindgut fermenters, namely
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Methanocorpuscularceae (R=0.68, t=3.16, p<0.01). Other hindgut-

specific bacterial families make up less than 5% on the average

microbiota as shown in Figure 2. These include Fibrobacteraceae

(R=0.73, t=4.27, p<0.001), Synergistaceae (R=0.79, t=5.67, p<0.001)

and Defluviitaleaceae (R=0.55, t=3.28, p<0.01).

The simple carnivore digestive system is characterized by a

different bacterial composition. In general, bacterial families are less

positively correlated with this digestive system, which is reflected in

the correlation values as well as in the lower t-values of the glm.

Therefore, the four positively correlating bacterial families occur in

higher proportions. Strong correlational values are found for

Clostridiaceae (R=0.73, t=3.21, p<0.01), Enterobacteriaceae

(R=0.70, t=2.56, p=0.01), Fusobacteriaceae (R=0.69, t=6.43,

p<0.001) and Peptostreptococcaceae (R=0.55. t=2.77, p<0.01)

which contribute to 19.50% ± 17.52%, 9.64% ± 15.15%, 15.71% ±

16.08% and 11.13% ± 9.98% to the microbiota composition. The

glm also identifies significantly negatively correlating taxa as

indicators to distinguish this digestive system from the others.

These include Ruminococcaceae (R=-0.83, t=-10.49, p<0.001),

Rikenellaceae (R=-0.89, t=-8.03, p<0.001), Spirochaetaceae (R=-
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0.94, t=-17.10, p<0.001), Methanobacteriaceae (R=-0.84, t=-22.77,

p<0.001) and Akkermansiaceae (R=-0.85, t=-8.70, p<0.01), which

were previously identified as herbivore-specific taxa.
3.3 Correlation of bacterial taxa with
host-family

The calculation of correlations for bacterial taxa with host-

families does not reveal strong correlations for Ailuridae,

Herpestidae and Canidae. The only carnivorous host-families that

show strong correlations with bacterial taxa are Felidae and Ursidae.

As shown in Figure 1, Felidae correlate significantly positive with

Fusobacteriaceae (R=0.54, t=5.27, p<0.001) and negative with

Rikenellaceae (R=-0–52, t=-7.90, p<0.001), while Ursidae only

show a positive correlation with the occurrence of Enterococcaceae

(R=0.50, t=8.90, p<0.001).

Within herbivores, the Equidae display three significantly

positive correlations with Spirochaetaceae (R=0.70, t=15.33,

p<0.001), Fibrobacteraceae (R=0.73, t=4.28, p<0.001) and
B

C

A

FIGURE 1

Spearman correlation between different host-specific groups and microbial taxa. (A) shows the correlation of diet, (B) the correlation of the digestive
system and (C) the correlation of the host-family with microbial families. The coloring scheme ranges from highly negatively correlating (dark blue)
to highly positively correlating (dark red) taxa. For this analysis a threshold of the correlation coefficients was set to a minimum of R>0.5.
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Synergistaceae (R=0.79, t=5.68, p<0.001). Further positive

correlations are found for F082 (R=0.63, t=0.49, p=0.62),

Methanocorpuscularceae (R=0.66, t=3.15, p<0.01) and

Defluviitaleaceae (R=0.55, t=3.29, p<0.01). In particular, the high

average abundance of Spirochaetaceae (18.81% ± 6.22%) and the

low abundance of Ruminococcaceae differentiate the Equidae from

Giraffidae and Bovidae as is shown in Figure 2. In contrast, the

other identified taxa represent less than 5% of the average Equidae

microbiota. Giraffidae only show a strong positive correlation with

PeH15 (R=0.68, t=13.13, p<0.001) which therefore can be used to

differentiate this ruminant family. However, this family contribute

on average less than 1% to the microbiota composition. Figure 2

shows that Ruminococcaceae is another important taxon for the

discrimination that occurs on average in 23.34% ± 4.49% within the

Giraffidae. The second ruminant family, Bovidae, shows significant

positive correlation to Methanobacteriaceae (R=0.67, t=17.83,

p<0.001), Ruminococcaceae (R=0.56, t=6.17, p<0.001) and

Akkermansiaceae (R=0.63, t= 5.57, p<0.001). Compared to the

Giraffidae, the Bovidae show a comparable average proportion of

Ruminococcaceae (22.43% ± 9.39%), but a higher average

proportion of Methanobacteriaceae (8.06% ± 6.13%).
3.4 Developing an ensemble model to
identify host-specific information

Upon evaluating these models, we gravitated toward Logistic

Regression for several reasons, chief among them being its optimal

balance between predictive prowess and interpretability. This model

not only showcased high accuracy and exceptional AUC scores but also
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presented an ease of interpretability vital for elucidating the biological

narratives underlying our data. While Random Forest exhibited

marginally superior AUC values, signifying its robustness in class

differentiation, the preference for Logistic Regression was driven by

its straightforwardness and the lucidity it offers in result explanation—a

critical consideration in our study aimed at decoding complex

biological phenomena (Table 1). This approach aligns with

recommendations for handling high-dimensional data, underscoring

the importance of model interpretability alongside performance

(Papoutsoglou et al., 2023). Thus, our decision underscores a

deliberate prioritization of analytical clarity and reliability, reinforcing

the rationale for our model selection amid a landscape of equally

compelling alternatives.

As we expect herbivores, carnivores and omnivores to differ in

their microbiota composition, we developed an ensemble model that

can accurately identify the diet type (herbivore, carnivore, omnivore)

based on the microbiota composition of a fecal sample. The model

has an accuracy of 88%. The F1 score for identifying diet type varies

between 0.73 for omnivores, 0.87 for carnivores, and 0.93 for

herbivores (Table 2). In a second step, the model predicts the

digestive system of herbivores to be simple, ruminant, or hindgut

fermenter with an overall accuracy of 98%. The hindgut fermenters

show the best results (F1 = 1.00), followed by the ruminants

(F1 = 0.98) and the simple digestive system (F1 = 0.92). Due to the

limited number of samples after this step and the resulting poor

results of the model in predicting the host-family, we omitted this

step for the herbivores. Nevertheless, since the Equidae is the only

family present in the hindgut fermenters in this study, the F1 score

applies to this family as well. Another distinguishable host-family due

to its unique feature of a simple digestive system is the Ailuridae
FIGURE 2

Average taxonomic microbial composition of different host-specific groups. Only the respective correlating taxa (R>0.5) are colored to show the
differences within diet type, digestive system and host-family. Furthermore, the F1 score of the logistic regression model is shown for each category.
frontiersin.org

https://doi.org/10.3389/fmamm.2024.1380915
https://www.frontiersin.org/journals/mammal-science
https://www.frontiersin.org


Zoelzer et al. 10.3389/fmamm.2024.1380915
(F1 = 0.92). Since all carnivores have the same simple digestive

system, a discrimination at this level is not necessary here. Instead,

the model achieves an accuracy of 79% in distinguishing between

host-families. Canidae are distinguished from the other carnivores

with a F1 score of 0.93, while Felidae (F1 = 0.82) and Ursidae

(F1 = 0.79) are detected with slightly less reliably. However, this step

of the model fails to identify the Herpestidae because of an

insufficient sample size (F1 = 0.00).
4 Discussion

4.1 The influence of diet, digestive system
and host phylogeny on the microbiota

We found clear differences in bacterial families correlating with

either herbivorous, carnivorous or omnivorous hosts. The greatest

divergence between these groups is the number of either positively or

negatively correlating bacterial taxa. While herbivores show positive

correlations with many taxa, carnivores express the opposite pattern.

One reason for this may be the overall higher microbial diversity in

the feces of herbivores, which has been demonstrated repeatedly (Ley

et al., 2008a; Vital et al., 2014; Youngblut et al., 2019; Guo et al., 2020;

Zoelzer et al., 2021). The dependence of herbivores on fermentative

bacteria is further supported by the fact that the most strongly

correlating taxa are involved in fiber digestion. For example

Rikenellaceae and Ruminococcaceae are known as herbivore-

specific bacterial families (Milani et al., 2020; Zoelzer et al., 2021)
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and play an important role in cellulose degradation and fiber

digestion (Obregon-Tito et al., 2015; La Reau and Suen, 2018).

Another important aspect of fiber digestion by fermentative

bacteria is the production of short-chain fatty acids (SCFAs), which

serve as an energy source for the host. Spirochaetaceae, which

correlate strongly with herbivores, are able to produce the SCFAs

butyrate and acetate from different polysaccharide intakes (Pascale

et al., 2018; van den Abbeele et al., 2022). In contrast, less positively

correlating taxa are found in carnivores. Fusobacteriaceae show

strong correlation with carnivore hosts. This family is known to be

dominant in meat-based diets and is involved in protein digestion

(Vital et al., 2014; An et al., 2017; Badri et al., 2021; Martıńez-López

et al., 2021). A different pattern is observed within omnivores. Here

only one bacterial families is found to correlate positively,

Enterococcaceae. Nevertheless, this taxon belong to the phylum

Firmicutes, which is known to be highly represented in omnivore

species (Sommer et al., 2016; Trujillo et al., 2022a, Trujillo et al.,

2022b). Overall, these results suggest that there are considerable

differences in the microbiota, especially between herbivores and

carnivores/omnivores.

Furthermore, we analyzed microbial taxa that correlate with the

morphology of the digestive system.We found clear differences here

as well (Figure 1). Both herbivore digestive systems rely on

microbial degradation of cellulose and production of SCFA’s, but

the site of fermentation differs. As the name indicates, the

fermentation in ruminants takes place in the highly comparted

forestomach, prior to enzymatic digestion. We identified

Ruminococcaceae, Prevotellaceae and Methanobacteriaceae as
TABLE 1 Performance comparison of logistic regression, random forest, decision tree and SVM models for predicting diet, digestion and family based
on bacteria taxa.

Logistic Regression Random Forest Decision Tree SVM

AUC F1 AUC F1 AUC F1 AUC F1 Support

Diet 0.98 0.86 0.99 0.87 0.91 0.80 0.97 0.74 79

carnivore 0.92 0.93 0.90 0.85 27

herbivore 0.98 0.95 0.96 0.96 47

omnivore 0.67 0.73 0.53 0.40 5

Digestion 1.00 0.96 1.00 0.98 0.95 0.93 1.00 0.97 79

foregut ruminant 0.94 0.98 0.90 0.96 24

hindgut colon 0.94 0.97 0.92 0.97 18

simple 0.99 1.00 0.97 0.99 37

Family 0.97 0.87 0.99 0.72 0.84 0.70 0.97 0.58 79

Ailuridae 0.89 0.67 0.67 0.67 5

Bovidae 0.97 0.86 0.81 0.83 17

Canidae 0.67 0.67 0.71 0.33 7

Equidae 0.94 0.97 0.89 0.97 18

Felidae 0.88 0.87 0.78 0.73 22

Giraffidae 0.75 0.40 0.63 0.00 7

Ursidae 1.00 0.57 0.40 0.50 3
The three different levels of the models are shown in bold with the respective values.
frontiersin.org

https://doi.org/10.3389/fmamm.2024.1380915
https://www.frontiersin.org/journals/mammal-science
https://www.frontiersin.org


Zoelzer et al. 10.3389/fmamm.2024.1380915
strongly correlating with this digestive system. The two ruminants

assessed in this study, namely Giraffidae and Bovidae, can be

distinguished in terms of the methanogenic archaea and

Bacteroidales PeH15. While Bovidae correlate strongly with

Methanobacteriaceae, Giraffidae do not show a correlation with

archaea. The low proportion of Methanobacteriaceae in Giraffidae

has also been demonstrated in several studies (Roggenbuck et al.,

2014; Zoelzer et al., 2021). The differences between these two

ruminants may be due to adaptation to either browsing

(Giraffidae) or grazing (Bovidae). Compared to grazing

ruminants, browsers have a smaller rumen and larger intestines

to increase retention time in the digestive system (Giesecke and van

Gylswyk, 1975; Hofmann, 1989; Woodall and Skinner, 1993;

Ginnett and Demment, 1997; Clauss et al., 2003; Mitchell, 2021).

As methanogenic archaea are responsible for balancing the pH-

value in the rumen, as mentioned above, the different archaeal taxa

may be adapted to different rumen sizes and compartments.

Hindgut fermenting species are adapted to a microbial

fermentation that occurs after the enzymatic digestion. Although

the site of fermentation is not the rumen but the large intestine, the

fermentation process is quite similar. In this study, we identified

Spirochaetaceae and Fibrobacteraceae as significantly correlating with

this digestive system in Equidae. This is consistent with previous

findings that Spirochaetaceae is a predominant core member in the

equid microbiota (Yatsunenko et al., 2012; Obregon-Tito et al., 2015;

Edwards et al., 2020). Another important taxon in the Equidae is

Fibrobacteraceae (Figures 1, 2). This family consists of only one

genus, Fibrobacter. Taxa within this genus are particularly known for

their ability to degrade cellulose in low-oxygen environments, and

therefore contain many genes encoding glycoside hydrolases

(Montgomery et al., 1988; Abdul Rahman et al., 2015). In terms of
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archaeal taxa, the Equidae are distinct from ruminants. Here, we

identified Methanocorpuscularceae as another class of methanogenic

archaea within the fecal microbiota of herbivores. This taxon has also

been identified in several Equidae species (Edwards et al., 2020)

suggesting that the archaeal microbiota is also host- or at least

digestion type specific.

Regarding the simple digestive system, strongly correlating taxa

such as Fusobacteriaceae and Clostridiaceae, are mainly involved in

protein degradation and digestion of high-fat diets, which again

strengthens the influence of diet on the microbiota. We found no

strong correlations with microbial taxa for Ailuridae, Herpestidae and

Canidae host-families, which may be a limitation for the model

prediction. Further indications for a possible differentiation of

carnivore and omnivore host species can be morphological

differences in the simple digestive system. For example, both Ailurus

fulgens and Ursus arctos have no caecum so microbial fermentation

takes place in the enlarged large intestine (Roberts andGittleman, 1984;

Stevens and Hume, 1995). This increased intestinal surface might be an

adaptation for microbial fermentation of plant material.

Overall, the different digestive systems have a strong impact on

the respective microbiota and the microbial taxa necessary for the

digestive process are important to distinguish between the digestive

system or host-families.
4.2 Developing a model to identify host-
specific information from the microbiota

The analytical challenge we addressed is a classification

problem, with the aim to predict categorical outcomes such as

diet, digestion type or host-family, based on the microbiota

composition of various species. For such classification issues,

logistic regression and decision trees are commonly employed

models. Logistic regression is advantageous when the probability

of a class membership is a linear function of the features, and it is

particularly effective in binary and multinomial scenarios. Decision

trees are favored for their interpretability and ease of handling non-

linear relationships and have been used in microbiome studies as

well (Roguet et al., 2018). In the present study, however, we decided

to use logistic regression instead of random forest models. This

improved efficacy can be attributed to logistic regression’s resilience

against overfitting, especially when the underlying relationship

between the predictor variables and the log-odds is linear.

Decision trees, while powerful, can sometimes overfit the training

data, particularly when the feature space is large, and the model is

complex. Given these considerations, logistic regression was

selected as the primary model moving forward.

A logistic ensemble model was developed to extract as many host-

specific information as possible from an unknown fecal sample.

Mainly, the three factors diet, digestive system and host species, that

shape the microbiota composition, are of interest. The model

accurately distinguishes between the diet type and the herbivore

digestive systems with a high model accuracy and nearly perfect F1

scores. This indicates that the model is sound from a computational

perspective and furthermore supports the hypothesis that diet and the

morphology of the digestive system have a strong influence on the
TABLE 2 Logistic ensemble model to characterize an unknown
fecal sample.

F1 score Support Accuracy AUC

Diet 0.88 0.99

herbivore 0.93 48

carnivore 0.87 45

omnivore 0.71 12

Digestive system 0.98 0.99

foregut ruminant 0.98 25

hindgut colon 1.00 17

simple 0.92 6

Host-family 0.79 0.94

Canidae 0.93 14

Felidae 0.82 27

Herpestidae 0.00 4

Ursidae 0.79 12
The different levels are shown in bold in the first column including the respective categories.
The overall model accuracy, F1 scores, AUC values and support are given in the
following columns.
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composition of the microbiota (Ley et al., 2008a, Ley et al., 2008b; O'

Donnell et al., 2017; Zoelzer et al., 2021). For carnivores, which all have

a simple digestive system, we tried to identify the host-family. The

overall model accuracy is 79%, but the F1 scores vary between the host-

families. The best results are obtained for Canidae (F1 = 0.93) and

Felidae (F1 = 0.82) samples. To the best of our knowledge, this is one of

the first studies that clearly distinguishes between canid and felid

microbiota sample. Many studies focusing on the differences between

carnivores, herbivores and omnivores found no distinct clustering of

samples from these two groups. In contrast, canids and felids mostly

fall into the same cluster and even express a high variability within the

respective cluster (Vital et al., 2014; Zhu et al., 2018; Guo et al., 2020).

The fact that it is possible to distinguish between these two families

using the modeling approach shown here, demonstrates the potential

utility of the method in the field of microbiome research. Differences in

the microbiota of canids and felids occur e.g. in the respective

correlating taxa (Figure 1). While canids correlate with

Bacteroidaceae, felids show a correlation with Peptostreptococcaceae

that occur in greater proportion in this family. This is in line with the

fact that canids are able to cope with higher amounts of dietary

carbohydrates and a fiber-rich diet (Deng and Swanson, 2015).

Bacteroidaceae are often linked and affected by an increased amount

of carbohydrates (Kerr et al., 2013; Panasevich et al., 2015; Vázquez-

Baeza et al., 2016) while Peptostreptococcaceae are linked to the dietary

protein metabolism (Schulz et al., 2014; Fan et al., 2017). Another

aspect in the distinction of the canid and felid microbiota may be

phylosymbiosis. Since the Canidae evolved in the Eocene about 40–43

Mya and the Felidae in the Oligocene about 34–24 Mya each

microbiota may have evolved with the respective host-family (Wang,

2008; Tedford et al., 2009; Berta, 2011). The classification of the

Ursidae results in a F1 score of 0.79, slightly less accurate than the

Canidae and Felidae. Overall a distinction of the Ursidae was to be

expected. Many descriptive studies on the microbiome of different

mammals show that the Ursidae cluster slightly separated from other

carnivore species, being grouped together with panda species (Ley

et al., 2008a; Zoelzer et al., 2021). During this third step of host-family

identification limitations occur in identifying the Herpestidae. Reasons

for this may be the small sample size of 20, which is the minimum

number that was being applied to the model. Therefore, it is

recommended for future studies that for host-family or even species

detection, the sample size should be increased.

With an increased sample size, host-family detection would also be

possible within the different herbivore digestive systems. The model

reaches a very good accuracy for the herbivore digestive systems.

Furthermore, Figures 1, 2 suggest that the microbiota of hindgut

fermenters such as the Equidae is distinct from other herbivores, so it

makes sense that the model is able to identify this host-family.

Furthermore, the model reaches a F1 score of 0.92 for the herbivores

with a simple digestive system, namely the Ailuridae. This was also

expected. As previously discussed, this family is characterized by a

herbivore diet, simple digestive system and belongs to the Carnivora.

Because of this unique combination of host-specific factors, and the

high model accuracy in discriminating diet and digestive system, the

Ailuridae can be identified as host-family.

Overall, we have developed a model that is able to predict the

host’s diet and digestive system very reliably from a given fecal
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microbiota composition. Limitations arise in the prediction of host-

families which works very well for the carnivores, but more effort is

needed to train the model on herbivores. To improve the accuracy of

the model, the number of samples per family should be increased

considerably. With this enlarged dataset the model is even able to

identify host-species without complications. As a guideline, we would

use a number of at least 50 samples per species, as this worked well to

identify canid and felid host-families. Furthermore, it would be

interesting to implement time series data for different individuals

per species. As we have shown in a previous study, it is possible to

identify individuals, that show a very unique microbiota, based on

such datasets (Zoelzer et al., 2023). This was possible because of low-

abundant bacterial taxa that varied temporarily within and between

individuals. Not only could this improve the model accuracy because

of more input data per species, it would also open up a new level

beside species recognition – individual identification. Some studies

have already successfully identified host-specific factors such as age

(Biagi et al., 2012; Yatsunenko et al., 2012; Björk et al., 2019; Low et al.,

2022), diet (Ley et al., 2005), health status (Greenblum et al., 2012;

Tuddenham and Sears, 2015; Gupta et al., 2020) or even kinship from

the microbiota composition, nevertheless this studies were mostly

performed on one species. With an ensemble model approach as

presented in this study, such host-specific information could be gained

from a variety of species, originated from undisclosed fecal samples.
5 Conclusion

We were able to show that diet, digestive system and host-

family are influencing factors for an animal’s microbiota. Based on

these findings, we developed a logistic ensemble model that is able

to identify the host’s diet and digestive system very accurately.

Furthermore, the identification of host-families works very well for

carnivores, but limitations arose due to small sample sizes. Future

studies will overcome these limitations by increasing sample size

and including more host species in the model. This will allow future

studies to look at other influencing factors, such as seasonal effects

on the microbiome caused by dietary changes throughout the year.

Such modeling approaches are very promising in the field of

microbiome research as they provide new opportunities to combine

the analysis of microbial data with host metadata. This has a wide

range of applications, particularly in field studies. With a well

curated study design, distinct fecal samples can be easily collected

especially from herbivorous species, but host information is usually

rare or difficult to collect non-invasively. Currently, this is usually

done by fecal microsatellite analysis. Unfortunately, this method is

cost-intensive because microsatellite loci need to be described for a

species or at least a group of animals, and multiple microsatellites

are required for species identification (Kurose et al., 2005; Miller

et al., 2016; Walker et al., 2019). Another limitation is the need for

high quality host DNA, which is possible but difficult to obtain from

fecal samples. Therefore, the modeling approach to gain as much

host specific information as possible from the fecal microbial

composition is promising as it is more cost- and labor efficient

than traditional approaches and opens up a new field in

microbiome research.
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