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How to quantify developmental
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2Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada,
3Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom, 4Institute of
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Malaria infections represent an iconic example of developmental synchrony,

where periodic fevers can result when the population of parasites develops

synchronously within host red blood cells. The level of synchrony appears to vary

across individual hosts and across parasite species and strains, variation that—

once quantified—can illuminate the ecological and evolutionary drivers of

synchrony. Yet current approaches for quantifying synchrony in parasites are

either biased by population dynamics or unsuitable when population growth

rates vary through time, features ubiquitous to parasite populations in vitro and in

vivo. Here we develop an approach to estimate synchrony that accounts for

population dynamics, including changing population growth rates, and validate it

with simulated time series data encompassing a range of synchrony levels in two

different host-parasite systems: malaria infections of mice and human malaria

parasites in vitro. This new method accurately quantifies developmental

synchrony from per capita growth rates using obtainable abundance data even

with realistic sampling noise, without the need to sort parasites into

developmental stages. Our approach enables variability in developmental

schedules to be disentangled from even extreme variation in population

dynamics, providing a comparative metric of developmental synchrony.
KEYWORDS

model-validated methods, Plasmodium chabaudi, Plasmodium falciparum, population
dynamics, developmental timing, intraerythrocytic development, Leslie matrix
1 Introduction

Malaria parasites replicate in the blood of their hosts, and when this replicative cycle is

synchronized, it can result in the periodic fevers classically associated with malaria infection

(Kitchen, 1949; Nerlich et al., 2008). Synchrony indicates the degree to which parasites within

infected red blood cells (iRBCs) show similar developmental timing across the population of

iRBCs that make up an infection, and it can have consequences far beyond triggering

symptoms. Since antimalarial drugs are most effective against certain parasite developmental

ages (ter Kuile et al., 1993), parasite populations may be vulnerable—or resilient—to clearance
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by fast-acting drugs depending on the timing and synchronization of

development (White et al., 1992). Theory suggests that pathogenic

organisms could evolve different developmental schedules as a form of

non-classical drug resistance (Neagu et al., 2018). Such evolutionary

changes in synchrony could have knock-on consequences for malaria

epidemiology, since synchrony is thought to influence infection severity

(Touré-Ndouo et al., 2009) and the odds of onward transmission

(Greischar et al., 2014; Schneider et al., 2018). Synchrony also

influences capacity to accurately measure population expansion,

generating spuriously large parasite multiplication rates and making

it challenging to quantify how novel therapeutics (e.g., drugs, vaccines)

impact parasites in vivo (Greischar and Childs, 2023). Anticipating

synchrony and its potential to evolve requires understanding the degree

to which parasites show heritable variation in their developmental

schedules, but quantifying that variation has so far been stymied by

methodological challenges. Existing methods are incapable of

quantifying synchrony in ways that enable comparisons across

genetic backgrounds and environments (Greischar et al., 2019).

The difficulty of quantifying synchrony arises in diverse systems

(including insect pests, Bjørnstad et al., 2016), but addressing the

challenges for malaria parasites—where data are available from

artificial culture, experimental animal models, and natural

infections—offers scope for making the comparisons needed to

resolve the proximate and evolutionary drivers of developmental

rhythms. In the context of malaria parasites, synchrony refers to the

period of development and multiplication within a red blood cell

(RBC)—the “intraerythrocytic development cycle” or IDC—that is

completed when the RBC bursts to release merozoites, stages

capable of invading RBCs. While periodic fevers are indicative of

synchrony, the iRBC abundance required to trigger fevering (the

“pyrogenic threshold”) varies across hosts (reviewed in McKenzie

et al., 2008), and infections can be synchronized even when hosts

show no outward symptoms (Färnert et al., 1997). Fevers are

therefore an inconsistent marker of synchrony. In practice,

synchrony is nearly always quantified as the percentage of

parasites in a particular age range (i.e., a morphologically distinct

stage of the IDC; Lambros and Vanderberg, 1979; Deharo et al.,

1994, Deharo et al., 1996; Reilly et al., 2007; Touré-Ndouo et al.,

2009; Allen and Kirk, 2010; O’Donnell et al., 2011), a metric that

suffers from multiple sources of bias. Attempting to distinguish

developmental age from morphology is inherently subjective

(Ciuffreda et al., 2020) and the duration of a particular

morphological stage can vary across genotypes (e.g., the early

“ring” stage in Plasmodium falciparum, Reilly et al., 2007).

Distinct from these practical challenges, stage percentages

represent a biased estimate of synchrony because parasite age

distributions vary with population growth rates (White et al., 1992;

Khoury et al., 2014; Greischar et al., 2019). This bias will be far more

widespread—impacting infections in vivo and in vitro—since malaria

infections exhibit extreme variability in population dynamics, such

that parasite numbers within an infection can vary over several orders

of magnitude on the timescale of days or weeks (e.g., Miller et al.,

1994; Huijben et al., 2010; Wacker et al., 2012). Robust comparisons

can be made by focusing on time windows where population

dynamics are similar across treatments (e.g., comparing synchrony

in typical versus perturbed host feeding rhythms, Prior et al., 2018),
Frontiers in Malaria 02
but that approach cannot be generalized, e.g., to the case where

treatments alter parasite population dynamics. In vitro experiments

reflect this quandary: Allen and Kirk (2010) hypothesized that

shaking P. falciparum cultures would help maintain synchrony by

reducing spatial variation in nutrient availability and concomitant

variability in developmental duration, and they tested that hypothesis

by checking for a greater percentage of iRBCs in the early part of

development in shaken versus static cultures following initial

synchronization. However, shaking cultures also accelerates

population expansion by reducing merozoites that are wasted

invading RBCs that have already been infected, as would be

frequent in static cultures (Allen and Kirk, 2010). Thus, a greater

percentage of young iRBCs would be expected even if shaking did not

reduce variability in developmental duration. Recent efforts to

quantify synchrony have focused on using gene expression data to

obtain parasite age distributions (Ciuffreda et al., 2020), but the

fundamental problem remains: age distributions, nomatter how well-

resolved, are still influenced by population dynamics in ways that

preclude broader comparison of developmental synchrony

(Greischar et al., 2019).

The population dynamics that undermine the stage percentage

approach also preclude the most commonly used method for

quantifying synchrony that does not rely on age distribution data.

In some malaria species, iRBCs in the latter half of parasite

development sequester in the microvasculature of their hosts where

they cannot be easily sampled (e.g., P. falciparum; White et al., 1992),

causing periodic fluctuations in iRBC abundance where the period

corresponds to the duration of the IDC. The fluctuations can be fit

with a model to quantify synchrony. Those models assume log-linear

expansion (i.e., a constant rate of parasite multiplication) and fit a

sine wave, the amplitude of which serves as a metric for the degree of

synchrony (e.g., Simpson et al., 2002; reviewed in Gnangnon et al.,

2021). That approach sidesteps the bias inherent to stage percentages

but cannot be applied broadly, for example, when sequestration is

absent or when parasite multiplication rates change through time.

Sequestration is not ubiquitous and cannot take place in vitro or in

certain hosts (e.g., rag1−/− mice, Khoury et al., 2014). While parasites

often multiply exponentially initially, that log-linear expansion

cannot continue indefinitely as resources become exhausted and

immune pressure mounts, so the latter portions of time series must

be discarded prior to fitting the model. It is also not obvious how the

amplitude of fitted sine waves can be translated into a biologically

meaningful and readily comparable measure of developmental

synchrony, especially for malaria species that do not sequester and

hence do not exhibit oscillations in observable iRBC abundance.

Here we present a new method for quantifying synchrony that

treats the age distribution as unobserved data and instead quantifies

developmental synchrony by fitting a simple model, a Leslie matrix

(Leslie, 1945), to infection time series (specifically, repeated

measures of infected RBC densities). This approach estimates the

time window over which a cohort of parasites within an infection

complete their IDC and burst out of RBCs: a short window, relative

to the cycle length, indicates a highly synchronized infection, while

a long window indicates asynchrony. Since no existing approach

can provide accurate estimates of synchrony from empirical data

against which to compare (Greischar et al., 2019), we instead
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validate this approach by applying it to simulated data (i.e., where

the true answer is known). We do this for two malaria species,

Plasmodium falciparum and P. chabaudi, that show considerable

differences in the duration of the IDC and population dynamics.

Our approach can recover differences in synchrony using tractable

sampling schedules, and, equally important, can detect similar levels

of synchrony despite differences in IDC duration and population

dynamics across species. This method relies on iRBC counts

sampled multiple times per IDC rather than labor-intensive

morphological staging. The focus on stage percentages has left a

dearth of relevant data sets for applying this method, but these data

are readily obtainable whenever sequestration does not obscure

iRBC abundance (e.g., in vitro). Unlike existing metrics, this

definition of synchrony enables comparisons across species and

environments even when population dynamics also vary, providing

a framework for understanding the evolutionary drivers and

practical consequences—including the capacity for harm and

vulnerability to control—of synchrony.
2 Methods

We develop an approach for measuring synchrony by fitting a

model to per capita replication rates calculated from iRBC time

series. We estimate synchrony from the age distribution of parasites

within iRBCs, similar to past efforts (Ciuffreda et al., 2020) but with

an important difference: instead of directly measuring age

distributions—a composite measure of synchrony and population

dynamics—we fit the initial age distribution with a model that

accounts for subsequent changes in age structure caused by

population dynamics. We focus on initial ages because changes in

the age distribution through time reflect both synchrony, the

variation in developmental timing across the population of iRBCs,

and population growth (Greischar et al., 2019). The simple model

we fit to data to estimate synchrony represents a null hypothesis for

how age distributions would change through time in response to

population dynamics if synchrony were constant. Other hypotheses

can then be tested against the null model, e.g., that synchrony

increases or decreases with time, or that there are multiple cohorts

with distinct levels of synchrony. Ideally, we would apply this

method to real data, comparing its performance against the

current gold standard approach. However, in this case the gold

standard metric—the percentage of parasites in a particular

developmental window—is known to be unacceptably biased

(Greischar et al., 2019), so we instead simulate data where the

true level of synchrony is known (that is, specified in the

mechanistic model) and constant. We use those simulated data

both to illustrate the bias inherent to the gold standard approach

and to validate our novel approach.
2.1 Simulated time series data

We use a previously described mechanistic model (Greischar

et al., 2014) to simulate experimental infections of mice with the

rodent malaria parasite, P. chabaudi, and in vitro cultures of human
Frontiers in Malaria 03
malaria parasites, P. falciparum. These two scenarios exhibit

divergent population dynamics: P. chabaudi requires 24 hours for

the IDC and RBCs are replenished by the host causing iRBC

abundance to rebound from infection-induced decline; P.

falciparum requires 48 hours for the IDC and replicates in an

artificial culture of RBCs without RBC replenishment (in our

simulations). The model tracks the abundance of infected and

uninfected RBCs, as well as the number of RBC-invasive

merozoites, per microliter (details in Supplementary Methods).

We simulate four different levels of synchrony, identical for each

of the two scenarios (Figure 1), and sample our simulated infections

on empirically feasible schedules. To test low resolution time series,

we simulate “even” sampling where infections are censused twice

per IDC with equal time between each sample (12 hours apart for P.

chabaudi and 24 hours apart for P. falciparum). We also examine

“uneven” sampling where more samples are taken per IDC and

sampling is concentrated around peak bursting. For uneven

sampling, we assume only three samples per IDC are possible for

P. chabaudi infections in vivo (gathered in an eight hour window

around peak bursting), whereas we simulate sampling P. falciparum

in vitro every two hours for the 12-hour period spanning peak

bursting (seven samples per IDC, as described by Reilly Ayala et al.,

2010). By using distinct sampling schedules for the two species, we

also test whether the new approach can cope with practical

differences in the timing and frequency with which malaria

species can be assessed.

We use simulated iRBC abundance as is and also with realistic

sampling noise. We assume that iRBC abundance will be assessed

via microscopy, since qPCR estimates parasite genome copies that

can only be related to iRBC abundance if the level of synchrony is

known (e.g., Cheesman et al., 2003). Microscopy protocols for

estimating iRBC abundance via microscopy vary, so we test the

consequences of either counting iRBCs until a target total number

of RBCs have been observed (binomial error) or counting to a target

iRBC number (negative binomial error). Details of the model,

parameter values, and simulated sampling schedules and

sampling noise can be found in Supplementary Methods. We

confirm that simulated data generate biased estimates of

synchrony using existing methods (percentage of iRBCs in the

early half of development) and then test our new approach for

quantifying synchrony.
2.2 A new metric for
developmental synchrony

Our metric for synchrony requires estimating the initial iRBC

age distribution, while accounting for changes due to population

dynamics. We do this by fitting a symmetric Beta distribution as

detailed below. A Beta distribution is flexible enough to yield iRBC

age distributions ranging from uniform to narrow bell curves

(Figure 1). The fitted initial iRBC age distribution can then be

used to demarcate the time required for 99% of iRBCs to burst (as in

Figure 1A), and dividing that quantity by the duration of the IDC

can serve as a measure of developmental synchrony that can be

readily compared across species:
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Synchrony = 1 −
Time required for 99%  bursting

IDC duration
: (1)

We subtract the fraction from one to arrive at a measure of

synchrony that scales from zero (completely asynchronous) to

one for perfectly synchronized infections, consistent with past

efforts to establish a “synchronicity index” (Deharo et al., 1996).

The time required for 99% bursting corresponds to the 0.005 and

0.995 quantiles of the symmetric Beta distribution given by the

shape parameter sP, multiplied by the duration of the IDC. Thus, for
Frontiers in Malaria 04
the same shape parameter, the time required for 99% of bursting

would take twice as long for P. falciparum compared with P.

chabaudi (Figure 1), since P. falciparum requires twice as long to

complete its cycle (reviewed in Paul et al., 2003; Mideo et al., 2013).

By default, the initial age distribution (the symmetric Beta

distribution) is centered halfway through development, but that

need not be the case in real populations. We therefore fit an

additional offset parameter that reflects the initial median age of

the cohort, around which the Beta distribution is centered. In this

way, we can independently specify the median age and the

variability around that median age. In contrast, if the initial age

distribution were specified with an asymmetric Beta distribution,

the shape parameters would alter the mean and the variance

simultaneously. The choice of 99% of the time required for

bursting can yield values comparable to the full duration of the

IDC for asynchronous infections, and hence a synchrony of zero

according to Equation 1. Note that synchrony can be calculated

given an age distribution (here specified by one parameter, sP) and

the duration of the IDC. We test our approach on simulated data by

comparing known sP values (i.e., the values used to simulate the

time series) with estimated values (ŝ P) obtained by fitting a simple

model (next section). We examine the simpler case of synchrony

being maintained through time and later discuss how this approach

could encompass changing synchrony.
2.3 Projecting population dynamics using
Leslie matrices

We next derive a simple model to fit to time series data and

thereby estimate the level of synchrony. In formulating that model,

we focus on one of the simplest ways of modeling the continual

feedbacks between population dynamics and age distributions, a

Leslie matrix (Leslie, 1945; reviewed in Hastings, 1997). Given

information on the number of new iRBCs generated by each

bursting schizont, a Leslie matrix can be used to project the

population expansion (or decline) of an age-structured

population, illustrated with a hypothetical example of a

population with four age classes in Figure 2. In the context of

malaria infections, a Leslie matrix can be used to specify how iRBCs

containing parasites in different developmental age classes

transition to subsequent developmental age classes or burst to

generate new iRBCs (Figure 2B).

We assume that the iRBC population is initially distributed

across n developmental age classes, that is, a discretization of the

continuous age distribution used in the data-generating model. The

fraction of the IDC spent within each class is given by 1/n (e.g., if

samples were taken, at minimum, 4 hours apart for a species with an

IDC lasting 24 hours, then n = 24/4 = 6, and each age class lasts 4

hours). When iRBCs are sampled at evenly spaced intervals

throughout the developmental cycle, n is equal to k, the number

of samples per cycle (e.g., in Figure 2, n = k = 4). If sampling is

uneven, n is equal to the duration of the IDC divided by the

minimum time between samples. For example, if sampling occurred

three times per cycle (k = 3) so that iRBCs were censused four hours

prior to peak bursting, at peak bursting, and four hours after peak
A

B

C

FIGURE 1

Differences in synchrony are dwarfed by population dynamics, even
for unrealistically well-sampled time series. We used a range of
starting age distributions for the initial cohort of iRBCs (A) and
simulated iRBC abundance for P. chabaudi infections of mice (B)
and P. falciparum infections in vitro (C), both “sampled” every 15
minutes. The initial age distribution for each cohort is described by a
symmetric beta distribution and is assumed to be extremely
synchronous (a narrow distribution of parasite ages, sP= 500,
orange), highly synchronous (sP= 100, pink), synchronous (sP= 10,
purple), or asynchronous (a uniform distribution of parasites ages,
sP= 1, blue). Those beta distributions translate into 99% of the initial
inoculum bursting within 2, 4, 13 or 24 hours (respectively) for P.
chabaudi, or within 4, 9, 26 or 48 hours (respectively) for
P. falciparum.
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bursting, we treat that situation as though iRBCs were counted

every four hours (with missing counts for three of the six samples),

so that again n = 24/4 = 6.

For a population with n age classes, the Leslie matrix (L) is

L =

m1 m2 … mn−1 mn

q1 0 … 0 0

0 q2 … 0 0

0 0 … 0 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 … qn−1 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(2)

where m values indicate the fecundity of each age class and q values

give the probability of individuals in a particular age class surviving

to mature into the subsequent age class in the next time point. We

assumed that each age class is certain to survive and mature into the

subsequent age class at the next time step (q1 = q2 = q3 =… =

qn−1 = 1). In the simulated data, approximately 2% of iRBCs will not

survive development due to background mortality of RBCs (μ, see

Supplementary Tables S1, S2). If we are nonetheless able to recover

the true duration of bursting, it would suggest the approach is

robust to at least small deviations from the assumption of 100%

survival of iRBCs during the IDC. Further, background RBC

mortality is likely to be the dominant force removing iRBCs in

the acute portion of infection, where RBC limitation can largely

explain dynamics (Mideo et al., 2008) and immune clearance is

thought to be minimal (White et al., 1992). Immunity will certainly

be minimal in vitro. Note that immune clearance of merozoites

would be accounted for through the calculation of parasite

multiplication rates (PMRs), the fold-increase in iRBC abundance

over each IDC represented in the time series (defined in Table 1).

However, when immune clearance of developing iRBCs is

substantial, the assumption of 100% iRBC survival through each

IDC may need to be revisited.

Since only the final age class of malaria parasites are capable of

bursting out to generate new iRBCs, m1 = m2 = m3 =… = mn−1 = 0
Frontiers in Malaria 05
andmn = Bt, where Bt is the number of new rings generated by each

iRBC completing development (Figure 2A). Note that Bt is not

equivalent to the burst size, the average number of merozoites

emerging from each bursting schizont, because some emerging

merozoites will fail to successfully invade. Once Bt values are

obtained by interpolating between PMR values (see below), the

Leslie matrix (Equation 2) can be parameterized for each time point

at which population projections are needed. Given a vector ~pt  to

indicate the numbers of iRBCs in each age class at time t,

~pt+1 = L~pt : (3)

The number of iRBCs in each age class is then summed to obtain the

projected total number of iRBCs at each time point. Projecting the

total iRBC abundance (Equation 3) enables calculation of the

predicted per capita growth rate, R̂ e for each time point, where

R̂ e =
o
n

i=1
pt+1,i

o
n

i=1
pt,i

(4)

and the i subscript indicates the developmental age class.

The initial number of iRBCs in each developmental age class,

denoted by the vector ~p0, can be specified with a symmetric beta

distribution, which has the useful property of ranging from uniform

(i.e., completely asynchronous, when the shape parameter, sP, is

equal to one) to increasingly narrow bell-shaped curves with

increasing sP values (Figure 1A). For a symmetric beta

distribution, the mean falls at 0.5 by default—equivalent to the

median parasite age falling exactly halfway through the IDC—but

that need not be the case for real data. We therefore fit an “offset”

parameter, constrained to vary between zero and one, to allow the

mean of the beta distribution (that is, the median parasite age) to

deviate from 0.5. We use the cumulative density function of the beta

distribution to obtain the initial stage distribution,~p0 , for a given

number of stage compartments (n). The initial I0 iRBCs are sorted

into n stages according to the beta distribution specified by a given
A B

C

FIGURE 2

Leslie matrices project how age distributions change in response to changing population growth. Panel (A) shows a hypothetical example of
changing numbers of new iRBCs produced per schizont (Bt) through time. In panel (B), progression through development is shown as a life cycle
diagram (left) and, equivalently, as a Leslie matrix (right). Leslie matrices—one for each Bt value—are used to project how age distributions change
through time (C), as in the example calculation shown at right. The Leslie matrix is denoted L while ~p indicates the abundance of iRBCs in each
developmental class.
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shape parameter, ŝ P (the quantity to be fitted). The initial number of

iRBCs is arbitrary, since we are fitting per capita replication rates

(rather than iRBC abundance), so we set I0 = 100 to avoid errors of

precision that might occur with lower iRBC counts.
2.4 Estimating developmental synchrony

We describe the algorithm for estimating synchrony using

Equation 1 (illustrated in Figure 3):
Fron
Step 1. Obtain time series of iRBC abundance, sampled

multiple times per IDC. Age distribution data are

not required.

Step 2. (a) We first calculate the parasite multiplication rates

(PMRs) and then (b) calculate the per capita replication

rates (Re, Table 1).

Step 3. By interpolating between the observed PMRs, we obtain

estimated Bt values needed to project population dynamics

for an age-structured population (see Figure 2).
The subsequent steps 4 and 5 are carried out numerous times, using

an optimization algorithm (details follow) to determine the starting

age distribution that yields predicted R̂ e values that best match the

observed Re values:
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Step 4.We project iRBC abundance for a large number of starting

age distributions ~p0 using a Leslie matrix (see example in

Figure 2). The starting age distribution is specified as a

symmetric Beta distribution with a shape parameter that

will be fitted (ŝ P) and used to calculate the time required

for 99% bursting and the level of synchrony according to

Equation 1. Though not used to calculate synchrony, we also

fit an offset parameter to allow the median parasite age to

deviate from the default of half the IDC duration.

Step 5. Each projected iRBC abundance is subsampled to

obtain values at the same times reported in the actual

data. That is, any time points that are missing in the

observations are dropped prior to calculating predicted

per capita replication rates (R̂ e) for comparison with

observed per capita replication rates (Re).

Step 6. Identify the initial age distribution associated with the

best fitting R̂ e (Equation 4). Determine the time required

for 99% bursting in that initial age distribution by

subtracting the 0.5% quantile from the 99.5% quantile of

the Beta distribution defined by the best fit ŝ P . Calculate

synchrony according to Equation 1.
2.5 Numerical optimization and estimates
of synchrony

We use the Nelder-Mead algorithm to locate the value of ŝ P
(and the offset parameter) that minimizes the sum of the absolute

error between the observed and predicted per capita replication

rates (Re and R̂ e, respectively). The machinery to perform the

optimization is readily available from R (R Core Team, 2020; see

Supplementary Methods for details and annotated code). For each

simulated time series, we run the optimization 1000 times with

randomly chosen starting parameters to increase the chances of

arriving at a globally optimal best fit. We then retain the best fit

shape parameter (ŝ P) and offset parameter from those 1000

optimizations (i.e., the values corresponding to the fit yielding the

lowest sum absolute error) and use it to calculate the time for 99%

bursting and then synchrony according to Equation 1.
3 Results

3.1 Stage percentages represent biased
synchrony estimates

Our simulated data reveal problems associated with the

common approach of quantifying synchrony as the percentage of

iRBCs in a particular life stage (reviewed in Greischar et al., 2019).

Since the morphologically distinguishable “ring” stage occupies

roughly the first half of intraerythrocytic development (Cheesman

et al., 2003; Reilly et al., 2007), 50% rings would correspond to

asynchrony in a population that is neither expanding nor

contracting, while 100% rings is typically thought to indicate
TABLE 1 Key terms and definitions used in our metric of synchrony, as
applied to malaria parasites.

Term Description Notes

iRBCt Infected RBCs/mL
blood at sampling
time t

Changes in iRBC abundance through time
(population dynamics) cause problems for
existing metrics of synchrony. Note that iRBC
abundance is not equivalent to parasite genome
copies, the output of qPCR

sP Shape parameter
for symmetric
Beta distribution

Specifies age distribution of the initial cohort of
iRBCs, i.e., the relative abundance of iRBCs at
different hours post-invasion. The best fit shape

parameter is denoted by ŝ P

Re Per capita
replication rate
(fold change
from one time
point to
the next)

Re,t =
iRBCt+1

iRBCt

n Number of
developmental
age classes
tracked in the
Leslie matrix

k Samples
per cycle

With even sampling, k = n; for uneven
sampling, k < n

PMR Parasite
multiplication
rate (fold change
in iRBC
abundance over
one IDC)

A measure of population

growth: PMRt =
iRBCt+k

iRBCt
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perfect synchrony (Greischar et al., 2019). The full simulated

dynamics of percentage rings (Supplementary Figure S1) already

indicate challenges with this metric: only if infections are sampled at

the perfect point in time, and with perfect accuracy, can we recover

the correct rank order of synchrony. Even then it is difficult to

correctly identify the asynchnronous infection because the

percentage rings consistently deviates from the null expectation of

50%. Of course, with real data, this resolution is not typically

possible, nor is the perfect accuracy of our simulated data.

Instead, we plot the data only from sample time points when
Frontiers in Malaria 07
maximal ring percentages would be expected in a synchronous

infection (i.e., the first half of the IDC, for each of the IDCs

simulated) and add realistic measurement error (Figure 4).

Depending on the sampling schedule, highly synchronized

infections can be indistinguishable from the asynchronous

expectation or may appear “semi-synchronized” (a bare majority

of parasites in the ring stage, e.g., ∼64%; Khoury et al., 2017). Note
that simulations of P. falciparum in vitro yield higher percent rings

on average (Figure 4B, D), since that population is only expanding,

in contrast to the simulations of P. chabaudi, which expand and
FIGURE 3

The new approach estimates synchrony while accounting for population dynamics. Example iRBC count data were obtained (Step 1) using the initial
age distribution shown (sP) and projecting forward using the Bt values shown at left (black, see Figure 2). We calculate PMR values (Step 2a) and per
capita replication rates (Re, Step 2b), the trajectory to be fitted. We estimate Bt values by linear interpolation of PMRs (Step 3). Using estimated Bt

values, we guess an initial age distribution and project population dynamics (Step 4) and calculate predicted R̂ e values to compare with observed Re

values (Step 5). We repeat steps 4 and 5 and retain the best fit initial distribution (ŝ P ) to calculate synchrony using Equation 1 (Step 6). To conserve
space, y-axis labels are given at the top of each column of panels.
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then decline (Figure 1B, C). The age distribution assessed at a single

time point—the equivalent of choosing one of the point estimates

on these plots—will frequently fail to detect even substantial rank

order differences in synchrony, but synchrony is frequently assessed

in this way (e.g., Touré-Ndouo et al., 2009; Ciuffreda et al., 2020).
3.2 The new approach recovers true
differences in synchrony

3.2.1 The effect of sampling timing
Differences in synchrony can be difficult to discern from iRBC

trajectories due to large changes in abundance that can occur in a

matter of days, even with extremely high resolution time series in the

absence of sampling noise (Figure 1B, C). Per capita replication rates

make distinct levels of synchrony much clearer (Re, Supplementary

Figure S2A, C). However, per capita replication rates vary with the
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sampling schedule, and sparse sampling reduces the ability to visually

detect differences in synchrony (e.g., twice per IDC; Supplementary

Figure S2B, D). We first examined the fitted per capita replication

rates compared to simulated P. chabaudi and P. falciparum values

assuming no sampling noise. The simple fitted model (colors as in

Figure 1) yields predicted R̂ e values that are very close to the Re values

from simulated data (Supplementary Figures S3, S4).

Model fitted estimates represent the best fit from 1000

randomly chosen starting values, so we re-ran fits 20 times on

simulated time series, without sampling noise, to estimate

variability in the fitting process itself. When sampling was

uneven, the fitted values did not vary, but even sampling twice

per IDC yielded a range of estimates for the duration of bursting

and hence synchrony (closed squares in Figure 5). For even

sampling only, multiple combinations of median parasite age

(fitted with the offset parameter) and duration of bursting yielded

equally good fits (Supplementary Figure S5). This issue—
A B

C D

FIGURE 4

Stage percentages vary with population dynamics, making it difficult to accurately assess and compare synchrony when estimated in this way. The
percentage of rings in simulated infections is shown for time points when rings would be expected (i.e., in the first half of each IDC). Ring
percentages from unevenly “sampled” infections (open circles in (A, B)) show percentages that deviate substantially from values expected for
perfectly synchronous, semi-synchronous, and asynchronous infections, while even sampling (closed squares in (C, D)) can only distinguish between
asynchrony and some degree of synchrony. Colors and x-axis indicate the true duration of bursting and hence initial level of synchrony as in
Figure 1A. P. chabaudi infections (A, C) were simulated over 16 IDCs, while P. falciparum simulations represent 4 IDCs. Vertical line segments
indicate ±10%, roughly the standard error reported for stage percentage data where sequestration is not occuring (as in rag1−/− mice; Khoury et al.,
2014). Horizontal lines indicate expected values for perfect synchrony (100%, long dash), asynchrony (50% rings in a static population, dotted line), or
a semi-synchronous population (64% rings, following Khoury et al., 2017). The corresponding initial age distribution and iRBC abundance are shown
in Figure 1 (details on data generating model in Supplementary Methods, parameter values in Supplementary Tables S1, S2).
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nonidentifiability—was foreshadowed by the extremely similar per

capita replication rates (Revalues) for all but the asynchronous

simulations (Supplementary Figure S4). In contrast, Re trajectories

are distinct for each level of synchronization with uneven sampling

(Supplementary Figure S3) and identifiability is not an issue. We

chose the timing of uneven sampling so that more samples were

taken around the median time of bursting for each cohort, since that

will yield the largest changes in iRBC abundance and hence the

largest Re values. If the time of median bursting is known, clustering

samples around that time is likely to make it easier to detect

differences in synchrony. However, if the timing of bursting is not

known, uneven sampling would still be useful to avoid

nonidentifiability between bursting duration and median

parasite age.

Focusing on the fits to noiseless data, unevenly sampled, we

obtain estimates of bursting duration and synchrony extremely

close to their true initial values (open circles, Figure 5). The fits to

simulated P. chabaudi infections appear to modestly overestimate

the duration of bursting, and hence underestimate the true level of

synchrony (Figure 5A, C), but that does not represent a problem

with the method itself. Rather, these estimates are detecting a

modest decline in initial synchrony over the 16 IDCs simulated,

due to very slight differences in IDCs within each cohort arising

from the exponentially-distributed waiting times in the merozoite

stage assumed in the underlying model. High levels of initial
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synchrony result in discrete pulses of merozoite abundance that

become wider through time as synchrony declines (Figure S6). The

P. falciparum fits are to shorter time series—4 IDCs—and the

synchrony estimates are therefore nearly identical to their initial

true values (Figures 5B, D). When we recalculate synchrony using

the mean hours for 99% bursting calculated from simulated

merozoite abundance (details in Supplementary Code), we find

that the new method returns estimates nearly identical to the true

value (Figure S7). Despite large differences in iRBC dynamics

(Figure 1B, C), the estimates of the duration of bursting (relative

to IDC length) and synchrony are extremely similar for P. chabaudi

and P. falciparum (Figures 5, S7). Thus, this approach yields

synchrony estimates that account for—and can therefore be

uncoupled from—the population dynamics that render existing

methods ineffective.

3.2.2 The effect of sampling noise
We then tested the new approach on the same underlying time

series with simulated sampling noise assuming percent parasitemia

was subject to a binomial or negative binomial distribution. For

simulated P. chabaudi infections, fitted estimates of synchrony

matched well with their true initial values on average, but

binomial error in percent parasitemia yielded a wide range of

fitted values that could sometimes suggest the incorrect rank

order of synchrony (Figure 6A). For negative binomial error,
A

B

C

D

FIGURE 5

The new approach estimates the duration of 99% bursting (A, C) and synchrony (B, D) very close to the true values (i.e., the values derived from the
Beta distribution used to simulate the “observed” time series), despite differences in IDC length and population dynamics. The time series to which
the Leslie matrix model is fitted were also used to generate Figure 4, but we used total iRBC abundance as shown in Figure 1 rather than stage
percentages. Fits to simulated P. chabaudi (P. falciparum in vitro) infections are shown in panels (A–D). Open circles denote uneven sampling
intervals while closed squares refer to sampling performed at even intervals twice per IDC. Vertical segments indicate the 95% high density region of
predicted values; only evenly sampled time series showed any variation in the predicted values. True initial synchrony and duration of bursting is
indicated with colors (as in Figure 1) and by position on the x-axis. Note that in addition to better identifiability, fitting to unevenly sampled data
provides more accurate estimates of true synchrony, accounting for modest loss of synchrony over simulated infections (Supplementary Figure S7).
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estimated synchrony is clustered tightly around the true value,

though the highest levels of synchronization may be difficult to

distinguish from one another (Figure 6B). Initial fits to noisy P.

falciparum time series using the same target counts as for P.

chabaudi (500 for binomial noise and 100 for negative binomial)

gave an unacceptably wide range of estimates and poor match to

true values (Supplementary Figure S8). Fits to noisy P. falciparum

time series show a wider spread of estimated values, since parameter

values were chosen to keep percent parasitemia below approx. 10%

(Supplementary Table S2). Using larger, but still plausible, target

counts (2000 and 400, respectively), we find that average fitted

values can deviate from the true rank order when error is binomially

distributed (Figure 6C), but the true rank order can usually be

recovered when error is negative binomially distributed

(Figure 6D). Noisy asynchronous time series present the biggest

challenge to accurate estimation of synchrony, since the ratio of

signal to noise is lowest. That is, oscillations in per capita replication

rates (Re values) are minimal (panels D and H in Supplementary

Figures S3, S4) so that sampling noise can easily masquerade as a

higher level of synchrony. Taken together, these fits suggest that

sampling to a target iRBC count should make it easier to distinguish

the true level of synchrony, and that greater effort (e.g., higher target

counts) will be needed for P. falciparum infections or other species

where percent parasitemia tends towards lower values.
Frontiers in Malaria 10
4 Discussion

Developmental synchrony has the potential to alter malaria

parasite fitness by influencing replication rates, drug efficacy, and

transmission success (Hawking et al., 1968; Hawking, 1970; White

et al., 1992; Greischar et al., 2014; Schneider et al., 2018; Owolabi

et al., 2021; O’Donnell et al., 2022; reviewed in Mideo et al., 2013;

Greischar et al., 2019; Prior et al., 2020). Further, parasites at

different developmental ages vary in their susceptibility to host

defenses (e.g., gd T cells; Costa et al., 2011) and antimalarial drugs

(Yayon et al., 1983), including the current front-line drug,

artemisinin (ter Kuile et al., 1993; Owolabi et al., 2021). The

ability to account for underlying differences in population

dynamics is central to comparing synchrony across environments,

populations and species. Intuitive metrics (e.g., the percentage of

iRBCs in a particular developmental stage) fail to account for

population dynamics and yield biased estimates of synchrony

(Greischar et al., 2019), except where population dynamics do not

vary across treatments (Prior et al., 2018). So far the only method

that sidesteps the bias generated by population dynamics is fitting a

dynamical model to data (White et al., 1992; Simpson et al., 2002;

reviewed in Greischar et al., 2019), but these models assume

constant population growth rates, preventing comparisons within

and across infections. We developed a new approach, validated
A

B

C

D

FIGURE 6

With sampling error, it is still possible to discern differences in synchrony, depending on the error distribution. The time series to be fitted are
identical to those shown in Figure 1 and used in Figure 5, but with simulated sampling noise added (see Supplementary Methods for details). Violin
plots showing the distribution of 20 fits to time series with simulated sampling noise, with a binomial (A, C) or negative binomial (B, D) distribution.
When error is binomially distributed (A, B), synchrony differences can be obscured, with asynchronous infections often appearing spuriously
synchronous. Synchrony estimates are better behaved when sampling noise follows a negative binomial distribution (B, D). P. falciparum tends
toward much lower percent parasitemia, especially in vitro (Reilly et al., 2007), so larger target RBC (iRBC) counts were used for (C, D), following
reported experimental protocols (see details in Supplementary Methods). For corresponding plots showing the estimated duration of bursting, see
Supplementary Figure S9.
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against simulated data, that can distinguish the level of synchrony

while accounting for considerable variation in population

growth rates.

The Leslie matrix model presented here describes the dynamics

for a population that begins at a particular level of synchrony and

whose age distributions are subsequently unperturbed except by

replication. That model is nonetheless able to return the correct

average level of synchrony when the underlying dynamics deviate

from the assumption of fixed IDC duration and synchrony changes

through time (Supplementary Figure S7). As is, these methods

could be applied whenever the goal is to detect average differences

in synchrony, e.g., the problem of determining which treatments

maintain higher levels of synchrony (such as shaking in vitro P.

falciparum cultures to maintain uniform distribution of nutrients,

Allen and Kirk, 2010). When synchrony is hypothesized to be

changing through time, whether due to processes internal or

external to the organisms in question, the fitted Leslie matrix

model represents the null expectation, serving as a starting point

to compare against more complicated scenarios. For example, this

approach could also be extended to quantifying how synchrony

changes over the course of infection by fitting the model to portions

of the time series. Each time window would then have a different

fitted shape parameter ŝ P , and by extension, a different estimated

duration of bursting and level of synchrony according to Equation

1. If splitting the time series into multiple windows results in a

better fit compared to fitting a single shape parameter for the entire

infection—reducing the sum absolute error enough to justify the

added complexity of the fitted model—that would suggest that the

level of synchrony is changing through time. A similar approach

could be used to test for deviations from our null assumption of

100% survival across all developmental classes. For example, drugs

may alter synchrony (i.e., the age distribution) directly since anti-

malarial drugs disproportionately impact parasites in the middle of

development when they are most metabolically active (ter Kuile

et al., 1993). As a consequence, population growth rates will also be

reduced, with indirect impacts on age distributions. A model that

incorporates enhanced removal of middle-aged parasites would

allow for direct impact of drugs on parasite age distributions,

while in our null model, drugs could only impact age

distributions via changes to population growth rates. Comparing

these models would reveal how drugs influence synchrony.

Our results have implications for the type of data and the

frequency and duration of sampling needed to quantify synchrony

in other systems, pathogenic and free-living. Crucially, age

distribution data are not required, only estimates of total

population size sampled multiple times per generation. Sampling

at even intervals through a generation is neither necessary nor

desirable, since that makes it difficult to estimate synchrony

separately from median age. We show that it is possible to

quantify synchrony from as little as four generations of data, i.e.,

four IDCs for malaria parasites. Estimating synchrony from even

shorter time series may be feasible depending on the error

distribution of the count data. Ideal methods for estimating

population size would produce consistent coefficients of variation

whether individuals are abundant or rare (e.g., negative binomial

error distribution). For the case of malaria infections, our new
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approach allows for sampling schedules that are entirely feasible in

experimental animal models (Deharo et al., 1994, Deharo et al.,

1996; O’Donnell et al., 2011; Prior et al., 2018; O’Donnell et al.,

2022) and even controlled human infection trials (reviewed in

Duncan and Draper, 2012). For plants and animals, a wealth of

data exist that can be used to parameterize matrix models (i.e., age-

specific survival and fecundity; Salguero-Gomez et al., 2015,

Salguero-Gomez et al., 2016), though the goal is typically to

estimate population expansion rates from age distribution data

(Hernández et al., 2023) rather than the reverse.

The methods in the present study rely on time series of

abundance, and there are important challenges to obtaining

accurate abundance data. In particular, the question of whether

synchrony can be resolved from the data depends on the level of

sampling noise, which for malaria parasites requires replicate

samples from the same infection at the same point in time.

Quantifying sampling noise would not require time series, though

it would be helpful to obtain replicate samples from infections with

different iRBC abundances, so that the relationship between the

mean and variance of iRBC counts can be established. These data

exist for PCR-derived counts in P. chabaudi (Mideo et al., 2008;

Huijben et al., 2010; Miller et al., 2010), but comparable data from

microscopy-derived iRBC counts appear to be lacking in both P.

chabaudi and P. falciparum. Estimates of that sampling error are

needed to make specific recommendations about experimental

design, including sampling frequency and duration. All else equal,

per capita replication rates will approach one (the population

replacement level) as sampling resolution increases, because

increases in iRBC abundance will be subdivided into smaller and

smaller intervals. That could make it more difficult to distinguish

synchrony-driven differences in per capita replication rates and may

represent another reason to aim for clustering sampling around

median bursting times, when changes in iRBC abundance—and

therefore in Re values—will be the greatest. Further, if error

distributions were known, it would be possible to implement a

maximum likelihood approach rather than minimizing the sum

absolute error as we have done here.

The other major challenge is that some developmental ages are

more difficult to sample. For example, the mature stages of some

Plasmodium spp. sequester where they cannot be sampled, at least

in certain hosts. When sequestration occurs, it would lead to

underestimates of total parasite abundance (e.g., P. falciparum,

White et al., 1992; P. vivax, Carvalho et al., 2010; P. berghei in

wild type but not rag1−/− mice, Khoury et al., 2014). If the level of

synchrony is changing through time, the bias introduced by

sequestration may likewise fluctuate, making it difficult to

compare synchrony estimates from different phases of infection

or across different infections. Sequestration is not universal, so some

host-parasite combinations would not suffer from this bias

(including P. berghei in rag1−/− mice (Khoury et al., 2014), any P.

falciparum infections in vitro). Sequestration is also a problem for

studies attempting to quantify synchrony in vivo from age

distribution data (Deharo et al., 1994, Deharo et al., 1996; Touré-

Ndouo et al., 2009; O’Donnell et al., 2011; Ciuffreda et al., 2020),

along with the added challenge of the bias introduced by population

dynamics (reviewed in Greischar et al., 2019). Accounting for the
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bias introduced by sequestration will be crucial for making

comparisons across parasite species that also vary in their

propensity to sequester as well as across environments where the

potential for sequestration varies (e.g., in vivo and in

vitro conditions).

Empirical advances offer some promise for sidestepping the

problem of sequestration to estimate total iRBC abundance from

proxy measures. Methods exist to quantify the total number of

parasite genomes from volatiles in breath samples (Berna et al.,

2015), plasma biomarkers (Dondorp et al., 2005), and—for

experimental animal models—from transgenic parasite strains

expressing luciferase or other markers (Franke-Fayard et al.,

2005). Caution is warranted in using these methods, since they

quantify parasite genomes, rather than iRBC abundance.

Unfortunately, those two quantities are only equivalent for

parasite populations that are synchronized and have not yet

begun DNA replication (e.g., Cheesman et al., 2003), so studies

attempting to quantify total parasite biomass must make

assumptions regarding the synchrony of the parasite population

being examined. The present study suggests that if biomarker

abundance were quantified at multiple time points per IDC, it

may be possible to fit rather than assume the underlying level of

synchrony by modifying the approach introduced here. As with

microscopy-estimated counts, quantifying the sampling error

distribution associated with these newer methods will be crucial

to determining feasibility.

Perhaps even more challenging is the fact that time series of iRBC

abundance are not typically gathered when the goal is estimating

synchrony; rather, stage percentages are overwhelmingly used to

compare synchrony through time and across different infections

(reviewed in Greischar et al., 2019). The focus on stage percentages

is understandable, given that researchers often require parasite

populations enriched for a particular developmental age class (for

example, when testing stage-specificity of antimalarial drugs, e.g., ter

Kuile et al., 1993). However, knowing the stage percentages at a

particular point in time does not enable the projection of future stage

percentages, especially when parasite numbers are changing

(Greischar et al., 2019). Since it utilizes replication rates, our new

approach can project how age distributions will change through time

for a given initial level of synchrony. Projected age distributions could

prove useful, for example, in predicting when parasite populations

will be most vulnerable to drug treatment or immune clearance.

Existing methods for quantifying synchrony are useful when

abundance is steady through time and the duration of

morphologically-distinguishable developmental stages is known in

advance (reviewed in Greischar et al., 2019). Those conditions are

likely to hold for only a small minority of cases, but the method

validated here can estimate synchrony when numbers are changing

—and in fact works best when populations are undergoing dramatic

changes in abundance—and requires no prior knowledge of stage

durations. The key requirements of this approach are time series of

iRBC abundance, sampled multiple times per developmental cycle,

and knowledge about the duration of development. While the focus

with stage percentage data has left a dearth of requisite data, they

are obtainable (O’Donnell et al., 2022). Further, given the kind and

resolution of data required, the approach is likely to have utility in
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other organisms, both pathogenic and free-living. Past studies

quantifying changes in synchrony in free living organisms have

relied on time series of abundance (e.g., insect pests, Yamanaka

et al., 2012; Nelson et al., 2013; Bjørnstad et al., 2016), but we have

shown that a useful signal of synchrony also emerges from per

capita replication rates. Whether models fit abundance or per capita

growth rates, accounting for population dynamics is necessary to

identify ecological processes that maintain versus erode synchrony

and to determine whether synchrony is heritable and capable of

evolving. These unresolved questions carry enormous practical

significance—the answers can inform the schedule of drug

treatment (or for free-living pests, chemical controls) and enable

predictions about evolutionary responses to intervention efforts. For

malaria parasites, better understanding of variation in synchrony—

which requires robust methods to estimate it—could improve

understanding of pathogenesis and epidemiology and inform

efforts to intervene at the individual and population level.
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SUPPLEMENTARY FIGURE 1

Percentage rings for the simulations shown in Figure 1. The bursting for the
initial cohort is shown in panel (A) (identical to Figure 1A), with the percentage

rings in P. chabaudi and P. falciparum shown in (B, C), respectively. Closed
squares (open circles) indicate time points corresponding to even (uneven)

sampling. See main text for details.

SUPPLEMENTARY FIGURE 2

Simulated per capita replication rates (Re) can show differences in synchrony
more clearly than iRBC abundance (compare to Figure 1B, C). The shape

parameter (sP) of the Beta distribution is shown in the key in order of declining
synchrony, where sP=1 yields a uniform age distribution (asynchrony). Left

panels show Revalues for simulated P. chabaudi (A) and P. falciparum in vitro
(B) infections sampled unevenly, while right panels show Re values when

infections are sampled twice per IDC (C, D). Note that Revalues vary with

sampling schedule, and sparse sampling (panels (C, D) can make it difficult to
discern smaller differences in synchrony.

SUPPLEMENTARY FIGURE 3

The fitted model can closely track simulated time series sampled at uneven
intervals. True (that is, derived from simulated “observations”, black) and fitted

per capita replication rates (Re and R̂ e , respectively) are shown for simulated

P. chabaudi (left panels) and P. falciparum (right panels) time series. Colors as
in Figure 1, and sampling occurred 3–4 times daily for each species (see

Simulating experimental infection data section in Methods for details). The Re

values shown in black are identical to the trajectories overlaid in

Supplementary Figure S2A, C.

SUPPLEMENTARY FIGURE 4

The fitted model can closely track simulated time series sampled at even
intervals. True (derived from simulated “observations”, black) and fitted per

capita replication rates (Re and R̂ e , respectively) are shown for simulated P.
chabaudi (left panels) and P. falciparum (right panels) time series. Colors as in

Figure 1, with sampling occurring at even intervals, twice per IDC. The Re
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values shown in black are identical to the trajectories overlaid in
Supplementary Figure S2B, D.

SUPPLEMENTARY FIGURE 5

With even sampling, multiple combinations of median parasite age and

duration of bursting yield identical fits (nonidentifiability). For both species
and each level of synchrony simulated, the combinations of best fitting

median parasite age and bursting duration are shown, with the range of
sum absolute error (SAE) values for even sampling given in the plot title. Open

circles indicate corresponding fits for uneven sampling, for reference (points

lie on top of each other). Colors as in Figure 5.

SUPPLEMENTARY FIGURE 6

The duration of bursting is apparent from merozoite abundance in the

simulated infections shown in Figure 1. Simulated P. chabaudi infections
encompass 16 IDCs (A–D), and synchrony decays to a small but noticeable

degree in extremely and highly synchronous infections (note the widening of

peaks over the course of infection). In contrast, simulated P. falciparum
infections (E–H) encompass only 4 IDCs and synchrony has minimal

opportunity to decay.

SUPPLEMENTARY FIGURE 7

Changes in synchrony through time (or a lack thereof) are apparent when

bursting duration is estimated from simulated merozoite abundance, and the

new approach can estimate the correct average level of synchrony with
uneven sampling. The most apparent changes in synchrony are in the

extremely and highly synchronized simulated infections for P. chabaudi,
which encompasses 16 IDCs (A), while P. falciparum infections show

minimal changes in synchrony over the 4 IDCs simulated (B). Calculating
synchrony using Equation 1 from the average duration of bursting shown in

panels (A, B) yields the x-axis values in panels (C, D) (respectively). When

changes in bursting duration through time are incorporated, the newmethod
returns estimates nearly identical to the true values (C, D) for uneven

sampling (open circles). As in Figure 5, even sampling (closed squares)
results in non-identifiability such that a range of estimated synchrony

values give similar fits to data (see Supplementary Figure S5).

SUPPLEMENTARY FIGURE 8

Synchrony differences are harder to discern for P. falciparum, which was
simulated to maintain a low percent parasitemia (approx. 10% or less,

Supplementary Table S2). Target counts as in Figure 6A, C.

SUPPLEMENTARY FIGURE 9

The ability to distinguish differences in the duration of bursting depends on

distribution of sampling noise. Violin plots showing the distribution of 20 fits

to time series with simulated sampling noise, with a binomial (A, B) or negative
binomial (C, D) distribution. When error is binomially distributed (A, B),
differences are difficult or impossible to detect, with asynchronous
infections often appearing with a spuriously short duration of bursting (that

is, highly synchronized). Duration of bursting estimates are closer to true
values when sampling noise follows a negative binomial distribution (C, D).

SUPPLEMENTARY TABLE 1

Parameters for within-host models of P. chabaudi infections of mice. Initial

inoculum size was chosen to give a reasonable approximation of the
dynamics of many experimental P. chabaudi infections, which attain peak

parasite density at day seven post-infection, with RBCs subsequently
dropping to their minimum value, on the order of a million RBCs per µL

(Huijben et al., 2010). Note that we used a larger merozoite mortality rate (µz)

than that used previously (Greischar et al., 2014, Greischar et al., 2016) with
the aim of slowing the loss of synchrony.

SUPPLEMENTARY TABLE 2

Parameters for within-host models of P. falciparum infections in vitro.
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